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Technical Note

Accelerated Noncontrast-Enhanced Pulmonary Vein
MRA With Distributed Compressed Sensing

Mehmet Akcakaya, PhD,' Peng Hu, PhD,! Michael L. Chuang, MD,*
Thomas H. Hauser, MD,* Long H. Ngo, PhD,' Warren J. Manning, MD,**

Vahid Tarokh, PhD,® and Reza Nezafat, PhD*

Purpose: To investigate the efficacy of distributed com-
pressed sensing (CS) to accelerate free-breathing, electro-
cardiogram (ECG)-triggered noncontrast pulmonary vein
(PV) magnetic resonance angiography (MRA).

Materials and Methods: Fully sampled ECG-triggered
noncontrast PV MRA, using a spatially selective slab inver-
sion preparation sequence, was acquired on seven healthy
adult subjects (27 *= 17 years, range: 19-65 years, 4
women). The k-space data were retrospectively randomly
undersampled by factors of 2, 4, 6, 8, and 10 and then
reconstructed using distributed CS and coil-by-coil CS
methods. The reconstructed images were evaluated by two
blinded readers in consensus for assessment of major PV
branches as well as the presence of artifacts in left atrium
(LA) and elsewhere. Diameters of right inferior and right
superior PV branches were measured. Additionally, mean
square errors (MSE) of the reconstructions were calculated.

Results: Both CS methods resulted in image quality
scores similar to the fully sampled reference images at
undersampling factors up to 6-fold for distributed CS and
4-fold for coil-by-coil CS reconstructions. There was no
difference in the presence of artifacts in LA and freedom
from important artifacts elsewhere between the two tech-
niques up to undersampling factors of 10 compared to
the fully sampled reconstruction. For the PV diameters,
no systematic variation between the reference and the
reconstructions were observed for either technique. There
were no significant differences in MSE between the two
methods when compared at a given rate, but the differ-
ence was significant when compared across all rates.
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Conclusion: The sparsity of noncontrast PV MRA and the
joint sparsity of different coil images allow imaging at
high undersampling factors (up to 6-fold) when distrib-
uted CS is used.
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ATRIAL FIBRILLATION (AF) is the most common sus-
tained cardiac arrhythmia, with a prevalence of over 2
million adults in the United States and accounts for
approximately one-third of all the hospitalizations for
cardiac rhythm disturbances (1). Pulmonary vein (PV)
magnetic resonance angiography (MRA) is commonly
used for assessment of PV anatomy in patients under-
going PV isolation for treatment of AF (2-5). PV imag-
ing is commonly performed prior and postradiofre-
quency ablation using MRI or multidetector computed
tomography (MDCT) (6,7). Preprocedural assessment
is used to identify any variant PV anatomy, PV diame-
ter and geometry, and to be able to integrate image-
based anatomy with electroanatomic mapping system
during ablation. Following ablation, the imaging is
also performed to diagnose stenosis and other related
complications (8).

Most commonly, PV MRA is performed during the
first-pass injection of gadolinium (Gd) contrast agents.
The image is acquired during a prolonged breath hold
of 20-25 seconds, which does not allow for isotropic
spatial resolution or electrocardiographic (ECG) gat-
ing. In addition, CE MRA is dependent on accurate
timing of the contrast bolus, which can be problem-
atic in clinical applications. With the recent recogni-
tion of the association of nephrogenic systemic fibro-
sis (NSF) and gadolinium-based contrast media in
patients with renal impairment (9), there has been
renewed interest in noncontrast-enhanced PV MRA.
Noncontrast PV MRA techniques using a steady-state
free precession (SSFP) sequence with a nonselective
excitation RF pulse to shorten TR and a coronal exci-
tation slab have been developed (10,11). An alterna-
tive noncontrast PV MRA technique using selective
blood inversion has also been described (12), in which
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a sagittal selective inversion is used to enhance the
conspicuity of the PV and left atrium (LA). In both
techniques, images are acquired using a 3D free-
breathing navigator-gated ECG triggered sequence,
resulting in significantly longer acquisition time (5-6
min). Current parallel imaging techniques such as
SENSE or GRAPPA allows acceleration of image acqui-
sition by usually a factor of 2-3. Thus, methods that
reduce the data acquisition time beyond what is al-
ready available with parallel imaging or partial Fourier
are appealing.

Compressed sensing (CS) is a method of image
reconstruction from undersampled data (13,14). CS
exploits the sparsity (or more generally, the compres-
sibility) of the MR data in a transform domain to
reduce the required minimal data for reconstruction
(15-17). Application of CS has been useful in a range
of MRI problems, such as dynamic MRI (18) and 3D
imaging of the upper airway (19). In a recent study,
CS was used in combination with a magnetization-
prepared 3D alternating repetition time-balanced
SSFP sequence for accelerating the acquisition of
lower leg angiograms up to rates of 4 without parallel
imaging (20).

Recently, there has been an effort to combine paral-
lel imaging methods with CS (17,21-23). One such
approach relies on distributed CS (24), a technique
that exploits the intersignal correlations of images in
multiple coils. The intersignal correlations in MRI are
expressed as joint sparsity in the image domain,
because the coil sensitivities only modulate the inten-
sity of the voxels. Using this joint sparsity property,
coil images may be simultaneously reconstructed
using distributed CS (21,22). Since distributed CS
uses the intersignal dependence of different coil
images, it has the potential to exploit redundancy
across multiple coils more efficiently than a coil-by-
coil application of CS. Therefore, application of dis-
tributed CS for pulmonary vein MRA could potentially
achieve acceleration beyond what can be achieved
using either CS or parallel imaging alone.

In this study we sought to investigate the efficacy of
distributed CS to accelerate 3D free-breathing, ECG-
triggered noncontrast PV MRA. We hypothesized that
distributed compressed sensing would enable greater
image acceleration than standard compressed sensing
applied to each coil independently.

MATERIALS AND METHODS

Distributed Compressed Sensing Image
Reconstruction

Consider mj(x y 7) to be the imaging data of size m x
n x p for the j™ coil and F to be the Fourier transform.
The undersampling operator keeps a subset ((2) of the
I-space and rearranges it to a vector denoted by Fy.
When the l-space is undersampled using the sampling
pattern ), the measurement in the j™ coil is given by:

S; = Fo(mj) + n;, (1]

where n; is an additive noise vector.
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The CS reconstruction solves the following optimiza-
tion problem:

rnlnH‘lfmJH s.t. ||Sj — Fo(myj H2 [2]

where V is the sparsifying transform, e is a distortion
threshold, and p is chosen to be a sparsity-inducing
norm (eg, p < 1). From an optimization perspective,
this optlmlzatlon 1s equivalent to minimizing ||SJ
Fqo(m; )| P where 1 is a function of «.

The coil sensfuvnfy map only modulates each voxel sig-
nal; therefore, it does not alter the sparsity pattern. Dis-
tributed CS has been proposed for a method of exploiting
intersignal dependence, when signals exhibiting the
same sparsity pattern are measured at different sensors.
By using the a priori information that the images in dif-
ferent coils are jointly sparse in PV-MRA, distributed CS
may take better advantage of the redundancies among
different receiver coils than applying CS independently to
each coil image. Thus, both the sparsity of the images
and the redundancy of receiver coils can be simultane-
ously used in reconstruction. The joint sparsity of multi-
ple coil images can be characterized by the [} » matrix
norm of the images (25), which is given by:

[[[my -

Ne 1/2
'mNc]Hl,ZZ Z <Z }mj()@ Y, Z)‘Q) ’ [3]

x,y,z \j=1

where N, is the number of coil elements. The I, norm
is applied across the coil elements generating a com-
bined sum of squares (SoS) image, and the [; norm is
applied to this combined image. Application of the [;
norm across the voxels promotes the sparsity in terms
of the number of spatial locations, whereas the appli-
cation of the I, norm across the coils promote similar
voxel values across different coil elements, i.e, if
m;(x,y.z) has high signal in coil element j, then there
is a good probability of high signal value in my(x,y,2)
for other coil elements k. In this case, the optimization
problem for reconstruction is given by:

1’1’111’1
my

ZHS Fo(my)|>+r)[my - my]ll . [4]

We solve the objective function in [4] by iteratively
alternating between enforcing data consistency and
thresholding the vectors in image domain according to
the joint sparsity constraint. The reconstruction algo-
rithm is implemented as follows:

1) Initialize m® = o.
2) At iteration t:
(a) calculate F(mj(t)).
(b) replace the values at the measured k-space
locations, (), with the measured Values S;.
(c) take inverse FFT of (b) to generate Vi (t)

(d) generate the root sum- square 1mage v()

(e) set mj(t“) (v — 1), /w0 where (), =
ax(|-|,0)sgn(-) is the soft thresholding
operator.

3) After T iterations, the algorithm outputs the SoS

image for m( ). 7mNC.
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Figure 1. Fully sampled
Ik-space data (UF1) and
undersampling patterns for
undersampling factors (UF) of
2, 4, 6, 8, and 10. A fully
sampled center of k-space
was used in all acceleration
rates. The corresponding
undersampling factors with
respect to the elliptical win-
dow are 1.6, 3.2, 4.7, 6.3, and

The thresholding parameter (1) was set to 1/500 of
the maximum (in absolute value) of the zero-filled
image for the first 50 iterations, and 1/100 of the
maximum value for the last 10 iterations. Sixty itera-
tions (T = 60) were used to generate the final image.

Noncontrast PV MRA

Written informed consent was obtained from all sub-
jects and the imaging protocol was approved by our
Institutional Review Board. All subjects were scanned
using a 1.5 T Achieva magnet (Philips Healthcare,
Best, The Netherlands) with a 5-channel phased-array
coil. The image reconstruction was performed offline
using MatLab (MathWorks, Natick, MA).

Noncontrast PV MRA images were acquired on seven
healthy adult subjects (27 *= 17 years, range: 19-65
years, four women). To increase the conspicuity of the
PV and LA, a gradient echo sequence with a sagittal
inversion slab was used to acquire noncontrast PV
images (12). The inversion slab was prescribed to cover
the LA and the superior and inferior vena cavae. The
sequence parameters included: TR/TE/a = 3 msec/1.4
msec/15°, TI = 500 msec, field of view (FOV) = 300 x
400 x 90 mm?®, isotropic spatial resolution 1.8 x 1.8 x
1.8 mm®, oversampling factor: 28%, 60 mm sagittal
inversion slab, ~550 msec trigger delay, with 50 views
per segment. No parallel imaging was used to facilitate
retrospective undersampling for CS reconstruction.

The k-space data were exported and transferred to a
stand-alone workstation to allow retrospective under-
sampling by factors of 2, 4, 6, 8, and 10. The central
phase encode lines in the central slices were kept (24
lines in the central k, slice, and decreasing in the outer
k, direction in a diamond-like shape). A central diamond
pattern was empirically selected to simultaneously cap-
ture most of the energy in the central k-space and allow
sufficient sampling of the edges of I-space. The edges of
the k-space were sampled using a zero-mean Gaussian
probability density (20) as shown in Fig. 1.

7.8.

As a comparison with the distributed CS recon-
struction, each coil was reconstructed individually
using conventional coil-by-coil CS reconstruction,
where the [; norm of each coil image was minimized
subject to a data-consistency constraint separately.
The SoS was performed to generate the final image.

Image Analysis

Both subjective and objective image analyses were
performed to evaluate the two CS reconstructions for
different undersampling factors. Eleven imaging data-
sets were reconstructed from the original raw k-space
data, which consisted of one from a fully sampled
Ie-space, five datasets reconstructed using distributed
CS for different undersampling factors of 2, 4, 6, 8,
and 10, and finally five datasets using coil-by-coil CS
reconstruction for undersampling factors of 2, 4, 6, 8,
and 10. For each subject, the 11 datasets were anony-
mized and randomly ordered. Subsequently, each
dataset was scored (1 to 5) by two blinded readers
(each with >10 years of experience in cardiac MR) in
a consensus reading (1 corresponding to “vessel not
visible, or no diagnostic information obtainable” and 5
corresponding to “excellent visibility or vessel defini-
tion”). Each PV branch (ie, right superior (RS), right
inferior (RI), left superior (LS), and left inferior (LI))
was scored independently, as was the LA. A separate
score was also given to the imaging artifact seen out-
side PV and LA. The PV scores given to all branches
were averaged for each subject.

For quantitative measurement, the diameters of right
inferior and right superior PV branches were measured
from axial images. Furthermore, the mean square error
(MSE) of each reconstruction was calculated as:

MSE = Z [myet (X, Y, 2) — Mreconstructed (X; Y, Z) |2' (5]

XY,z

The normalized MSE was then calculated by divid-
ing each individual MSE by the squared l, norm of
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Figure 2. (a) An axial slice, (b) coronal view of a 3D noncontrast PV MRA dataset reconstructed from fully sampled k-space
data (Reference) as well as undersampled l-space with undersampling factors (UF) of 2, 4, and 6, using distributed CS and
coil-by-coil CS. Left atrium and PV branches can be visualized at all acceleration rates with minimal image degradation (LA =
left atrium, AAo = ascending aorta, DAo = descending aorta, RIPV = right inferior pulmonary vein, LIPV = left inferior pulmo-
nary vein, RSPV = right superior pulmonary vein, LSPV = left superior pulmonary vein).

the reference image. The MSE was computed over the
central 40 slices for each technique.

Statistical Analysis

Imaging scores and MSE are presented as mean = 1
standard deviation for each of the two techniques.
Due to the small sample size, and the statistical sig-
nificance of the Shapiro-Wilk test for normality of the
paired differences of the scores (person-specific differ-
ence between each technique and the reference which
is a fully sampled k-space acquisition), the nonpara-
metric signed rank test was used to test for the null
hypothesis that the central tendency of the difference
was zero at different undersampling factors. Bonfer-
roni correction was performed to account for multiple
comparisons. All statistical analyses were performed
using SAS (v. 9.2, SAS Institute, Cary, NC). A Bonfer-
roni-corrected type-I error of 0.005 (0.05 divided by
10 comparisons) was used to consider statistical sig-
nificance. The right superior and inferior PV diame-
ters of the reconstructions were combined and com-
pared to those of the reference using the Bland-
Altman method. Correlation coefficient of the recon-
structed and reference diameters were also calculated.
The normalized MSE measures were compared using
the paired t-test for each undersampling factor. The
normalized MSE measures of the two methods were

also compared collectively for all undersampling fac-
tors and subjects. The linear mixed effects model was
used to capture the dependency of within-subject cor-
relation (each subject has five differences from five
different undersampling factors) which was modeled
using the compound-symmetry structure of the var-
iance-covariance matrix (26).

RESULTS
In Vivo Study

Figure 2a shows a single 2D slice of the reconstructed
images using the distributed CS and coil-by-coil CS
reconstruction methods from the noncontrast PV MRA
for three different undersampling factors. The image
corresponding to the fully sampled k-space is
included as the reference image. At the slice location
selected in Fig. 2, the LA, RIPV and LIPV can be
visualized in the reconstructions for all undersam-
pling factors. At higher undersampling factors, the
image quality degrades which can be associated with
lower signal-to-noise ratio (SNR). There are minimal
imaging artifacts from the aliasing caused by the
undersampling of the k-space. There is a noise-like
signal inhomogeneity in all PV images reconstructed
with CS, which is associated with the undersampling
and reconstruction of CS and can be seen even in
images with an undersampling factor of 2. Overall,
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Distributed CS Coil-by-coil CS

Figure 3. Sagittal view of (a) right, (b) left pulmonary veins from the same subject in Fig. 2 for undersampling factors (UF) of
2, 4, and 6 using both techniques, as well as the from the fully sampled reference (RIPV = right inferior pulmonary vein,
LIPV = left inferior pulmonary vein, RSPV = right superior pulmonary vein, LSPV = left superior pulmonary vein).

the RIPV was better visualized (4.1 = 0.4) in the fully
sampled images compared to the other three PV
branches (3.6 = 0.5, 3.9 = 0.4, 2.7 += 1.1 for RSPV,
LIPV, and LSPV, respectively), an intrinsic property of
our baseline noncontrast-enhanced PV MRA tech-
nique. A lower confidence in visualization of the LSPV
is generally consistent with our clinical experience
with contrast-enhanced PV MRA, as well as fully
sampled noncontrast PV MRA, likely in part due to
the smaller size of the LSPVs as compared with the RI
and LIPVs. No variant anatomy or early branching
was observed in any of the subjects. Figure 2b depicts
a coronal view of the superior PVs of the same sub-
ject. Figure 3a,b depicts sagittal views of the left and
right PVs, showing the origin of the PVs.

Tables 1 and 2 summarize the image quality scores
and the corresponding P-values for the two CS techni-

Table 1

ques for different undersampling factors. There was no
significant difference (P = NS) in the reconstructed PV
images using distributed CS for undersampling factors 2
through 6 compared to the fully sampled reference
image. Statistically significant decreases in image quality
were seen in coil-by-coil CS reconstruction at undersam-
pling factors 4 and higher for PVs. There was no differ-
ence for artifacts in LA or artifacts elsewhere scores for
any reconstruction method or undersampling factors. No
major artifact was observed in any of the imaging data-
sets that would reduce the confidence in their clinical
interpretation. The Bland-Altman plots of the PV diame-
ters are depicted in Fig. 4, and showed no systemic varia-
tion between the reference and the reconstructions. Fur-
thermore, the correlation coefficient between the PV
diameters of the reference and the reconstructed images
were greater than 0.99 in all cases.

Image Quality Scores for Pulmonary Veins (PV), Left Atrium (LA), and Freedom-From-Artifact (Artifact), as Well as Diameter
Measurements for Right Inferior (RIPV) and Right Superior Pulmonary Veins (RSPV) for Distributed CS

Distributed CS REF UF2 UF4 UF6 UF8 UF10
Imaging Score PV score 3.6 = 0.8 3.7 0.7 3.5+ 0.9 3.3 +0.9 3.1 £0.9 29 +0.9
P-value NA 0.2500 0.2500 0.0117 0.0001* 0.0002*
LA score 43 0.5 4104 4.0 0.6 3.9 07 3.6 +0.8 34 05
P-value NA 1.0000 0.5000 0.2500 0.0625 0.0313
Artifact score 41 0.4 41 £ 0.4 3.9 04 3.7 £ 05 3.7 £0.8 34 05
P-value NA NA 0.5000 0.2500 0.2500 0.0625
Diameters RIPV size (mm) 121 £ 2.4 11.8 £ 24 11.7 £ 2.4 11.6 £ 2.4 115 £24 111 £23
RSPV size (mm) 85*19 8.3+ 20 8.1 20 7.7 1.9 75 *19 7319

A Bonferroni-corrected P-value of 0.005 is considered significant for the comparison of the reconstructed image quality and the reference

image (UF: undersampling factor).
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Table 2
Image Quality Scores for Pulmonary Veins (PV), Left Atrium (LA), and Freedom-From-Artifact (Artifact), as Well as Diameter
Measurements for Right Inferior (RIPV) and Right Superior Pulmonary Veins (RSPV) for Coil-By-Coil CS
Coil-by-coil CS REF UF2 UF4 UF6 UF8 UF10
Imaging Score PV score 3.6 =0.8 3.4 0.8 3.2 0.9 3.1 0.8 2.9 0.7 3.0 =0.7
P-value NA 0.2891 0.0034 0.0001* <.0001* 0.0001*
LA score 4.3 =05 4.3 0.5 3.3 £0.5 3.3 £0.5 3.3 £0.5 3.3 0.5
P-value NA NA 0.0156 0.0156 0.0156 0.0156
Artifact score 4.1 0.4 4.1 +04 3.3 0.5 3.3 0.5 3.3 +0.5 3.1 =04
P-value NA NA 0.0313 0.0313 0.0313 0.0156
Diameters RIPV size (mm) 12.1 £2.4 11.9 £ 2.3 11.6 £2.5 115 2.5 11.3 £2.5 11.0 2.5
RSPV size (mm) 85 *1.9 84 +1.9 8.1 2.0 7.7 £2.0 75 *+1.9 72 1.9

A Bonferroni-corrected P-value of 0.005 is considered significant for the comparison of the reconstructed image quality and the reference

image (UF: undersampling factor).

The calculated MSEs from all datasets are shown in
Fig. 5. Although the mean value of the MSE for coil-by-
coil was generally lower than the MSE of the correspond-
ing distributed CS reconstruction, these differences were
not statistically significant (P < 0.01) after Bonferroni
correction (P = 0.017, 0.014, 0.012, 0.012, 0.011 for
undersampling factors 2, 4, 6, 8, and 10, respectively).
Significant differences between the two methods were
observed in the collective MSE comparison for all under-
sampling factors and subjects (P = 0.0065).

DISCUSSION

In this study we demonstrated that CS methods ena-
ble high acceleration of data acquisition for noncon-
trast PV MRA. The sparsity of noncontrast PV MRA
and the joint sparsity of images of different coil ele-
ments allow imaging at high undersampling factors.
Similar subjective image quality was observed in
reconstructed PV images using distributed CS for

undersampling factors up to 6 versus reconstruction
from a fully sampled k-space dataset. For the coil-
by-coil CS reconstruction, statistically significant
decrease in image quality was observed in the PV
images for undersampling factors 4 and higher. For
the LA or (freedom from) artifacts score, there was no
statistically significant difference for any reconstruc-
tion method or undersampling factor as compared
with the reference images.

The utility of distributed CS methods was also
investigated in our work. These methods minimize an
objective function that captures the joint sparsity
property subject to a data-consistency constraint. In
contrast, if each coil image is reconstructed individu-
ally, only the sparsity of that coil image is used in the
objective function. In terms of reconstruction time,
both proposed methods require approximately the
same number of operations. The main difference is
that the distributed technique requires one threshold-
ing operation per iteration followed by the mapping
of the combined image to individual coils, while the

UF 2 UF 4 UF 6 UF 8 UF 10
25 2.5 2.5 2.5 25
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Figure 4. Bland-Altman correlation analysis of the pulmonary vein diameter measurements for the two techniques at differ-
ent undersampling factors (UF). The plots show no systemic variation. However, the differences of measured diameters are

more spread out with increasing undersampling factors.
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Figure 5. The normalized MSE and standard deviation of
the MSE for distributed and coil-by-coil reconstructions at
acceleration rates of 2, 4, 6, 8, and 10. Normalized MSEs
were calculated as the mean-square distance between each
reconstruction and the fully sampled reference dataset, nor-
malized by the squared I, norm of the reference. There were
no differences (P = NS) between distributed and coil-by-coil
CS at any acceleration rate. A Bonferroni-corrected P-value
of 0.005 is considered significant for the comparison of the
two techniques at a given undersampling factor (UF).

coil-by-coil reconstruction requires N thresholding
operations per iteration. When thresholding is per-
formed for each voxel individually, as it is in this
work, the difference is negligible.

Coil-by-coil CS had lower mean values for normal-
ized MSE than distributed CS for all undersampling
factors. In our opinion, this discrepancy in the subjec-
tive image quality analysis, which favors distributed
CS, and MSE analysis, which favors coil-by-coil CS,
suggests that MSE may not be the optimal metric for
evaluating the quality of CS reconstructions in MRI.
Although MSE is a commonly reported fidelity mea-
sure in studies, it may not be fully capturing the crite-
ria experienced clinical cardiac MR readers use to
evaluate image quality. Similar conclusions have also
been made in the image processing community (27),
noting that the use of MSE implicitly assumes that all
parts of an image are equally important and that sig-
nal fidelity is independent of temporal or spatial rela-
tionships. The spatial dependence of image fidelity is
especially significant for MRI reconstruction, since
artifacts that can interfere with the clinical image
interpretation and are mainly located around PVs and
LA are highly important, whereas the noise artifacts
in areas of no signal or blurring artifacts in regions
not related to the PVs are less relevant. Alternative
methods for quantitative image quality assessment
based on human visual sensitivity and attention (28)
may be adapted to MRI; however, this requires further
investigation and is beyond the scope of this work.

Another quality measure for reconstructions is the
SNR of the reconstructed images. However, for CS
reconstructions it is difficult to provide a reliable SNR
measurement for a number of reasons. The recon-
struction algorithms threshold and shrink the noise
in the nonsignal areas, thus the measurement noise

Akcakaya et al.

level cannot be reliably determined from the final recon-
structed image. A region of interest (ROI) measurement
for the signal level in the anatomic structures of interest
also contains noise-like signal inhomogeneity because
of the reconstruction. Due to the nonlinear nature of
reconstruction, how measurement noise affects the
inhomogeneity in the ROI cannot be determined explic-
itly, and thus cannot be compensated for.

The CS reconstruction of MRA images has several
limitations. The fully sampled reference image cannot
be reconstructed exactly or uniquely. Instead, CS
reconstructions are sparse approximations of the ref-
erence image. Both the zero-filled image and the refer-
ence image have perfect data consistency, ie, their
Fourier transforms at locations () match the acquired
I-space lines exactly. Thus, the minimization of the
objective function in Eq. [4] is controlled by the spar-
sity-enhancing term. For both coil-by-coil regulariza-
tion (I; norm of each coil image) and distributed mul-
ticoil regularization (l; o matrix norm of coil images),
the zero-filled image had a smaller sparsity-enhancing
term than the reference image. Hence, any reconstruc-
tion algorithm minimizing an objective function of the
form in Eq. [4] chooses the zero-filled image over the
reference image. Note, however, that this does not
imply that the zero-filled image is the global minimizer
of the objective function. It only implies that the recon-
structed images are somewhere “between” the zero-
filled image and the reference image, but not exactly
equal to either, providing a sparse approximation to
the reference image.

Our study has several potential limitations. The
study cohort was small and consists of only healthy
subjects with presumably normal PV anatomy. The
image reconstruction and undersampling was per-
formed in a retrospective manner to allow better
understanding of the performance of the reconstruc-
tion technique. Although this approach eliminated the
possibility of between-scan variation, it also meant
that a prospective undersampled k-space PV MRA,
which would better reflect how the method would be
used clinically, was not performed. The parameters
used in the algorithm were determined empirically
based on published literature. We have not compared
our methods to parallel imaging techniques. Addition-
ally, we have not compared our reconstructed images
with the clinically used, first-pass contrast-enhanced
MRA or MDCT.

In conclusion, we have demonstrated that acquisi-
tion of noncontrast PV MRA can be accelerated for
undersampling factors of up to 6-fold with distributed
CS reconstruction and up to 4-fold with coil-by-coil
reconstruction.
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