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A Coding Theory Approach to Noisy Compressive
Sensing Using Low Density Frames

Mehmet Akçakaya, Jinsoo Park, and Vahid Tarokh

Abstract—We consider the compressive sensing of a sparse or
compressible signal . We explicitly construct a class of
measurement matrices inspired by coding theory, referred to as
low density frames, and develop decoding algorithms that produce
an accurate estimate even in the presence of additive noise. Low
density frames are sparse matrices and have small storage require-
ments. Our decoding algorithms can be implemented in
complexity, where is the left degree of the underlying bipar-
tite graph. Simulation results are provided, demonstrating that our
approach outperforms state-of-the-art recovery algorithms for nu-
merous cases of interest. In particular, for Gaussian sparse signals
and Gaussian noise, we are within 2-dB range of the theoretical
lower bound in most cases.

Index Terms—Belief propagation, coding theory, compressive
sensing, EM algorithm, Gaussian scale mixtures, low density
frames, sum product algorithm.

I. INTRODUCTION

A. Background

L ET with
. is said to be sparse if . Consider

(1)

where is an measurement matrix and is
a noise vector. When , is called the compressively
sensed version of with measurement matrix [14], [20]. In
this paper, we are interested in estimating a sparse vector from
the observed vector and the measurement matrix .
We refer to the case as noiseless compressive sensing.

This is the only case when can be perfectly recovered. In par-
ticular, it can be shown [15] that if has the property that every
of its columns are linearly independent, then a decoder can
recover uniquely from samples by solving the
minimization problem

(2)
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However, solving this minimization problem for general
is NP-hard [20]. An alternative solution method proposed in

the literature is the regularization approach, where

(3)

is solved instead. Criteria have been established in the literature
as to when the solution of (3) coincides with that of (2) in the
noiseless case for various classes of measurement matrices [15],
[20]. For chosen from a Gaussian ensemble, exact recovery
is possible if as long as the observations
are not contaminated with (additive) noise [15].
It can be shown that there is a relationship between the solu-

tion to problem (1) and minimum Hamming distance problem
in coding theory [1], [2], [41]. This approach was further ex-
ploited in [53]. Using this connection, we constructed ensem-
bles of measurement matrices1 and associated decoding algo-
rithms that solves the minimization problem with complexity

when [1], [2].
For problem (1) with nonzero , referred to as noisy com-

pressive sensing, the regularization approach of (3) can also
be applied, with an inequality constraint, (with
related to ). For a measurement matrix that satisfies
the restricted isometry principle (RIP), solving a quadratic pro-
gram generates with , where is a
constant that depends on [14]. This method may not be im-
plemented exactly in real time with the limitations of today’s
hardware. To improve the running time of methods, the use
of sparse matrices for have been investigated [8]. Using ex-
pansion properties of the graphs represented by such matrices,
one obtains with , where is a con-
stant depending on [8].
Variants of the matching pursuit algorithm, e.g., subspace

pursuit [19] and CoSaMP [35], have also been proposed with
similar guarantees to methods, and complexity ,
where is the complexity of matrix-vector multiplication and
is a precision parameter bounded above by (which

is for a fixed signal-to-noise ratio). An important
variant of the matching pursuit algorithm, namely sparse
matching pursuit (SMP) is proposed in [9]. This algorithm has

complexity, and for
measurements, outputs with ,
where is a constant depending on the sparse matrix .
Yet another direction in compressive sensing is the use of the

Bayesian approach. In [28], the idea of relevance vector ma-
chine (RVM) [46] has been applied to compressive sensing. Al-
though simulation results indicate that the algorithm has good
performance, it has complexity .

1We use the terms “frame” and “measurement matrix” interchangeably
throughout the rest of the paper.
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Another work that employs the Bayesian approach using
sparse matrices is proposed in [7] and [42]. Similar to our
approach, this excellent work uses a generalization of LDPC
codes [30], although their recovery technique is different from
our proposed method. The current paper improves both on the
performance and the complexity of the algorithm presented in
[7] and [42]. Further discussions are included in Section III.
For completeness, we also note the recent work on belief-prop-
agation-based algorithms for compressive sensing using dense
measurement matrices [21], [33].

B. Contributions

In this paper, we study the construction of measurement ma-
trices that can be stored and manipulated efficiently in high di-
mensions, and fast decoding algorithms that generate estimates
with small distortion. The ensemble of measurement matrices
is a generalization of LDPC codes and we refer to them as low
density frames (LDFs). For our decoding algorithms, we com-
bine various ideas from coding theory, statistical learning theory
and theory of estimation, inspired by the excellent papers of [7],
[9], [27], and [28].
More specifically, we combine the sum-product algorithm

[29], [30], Gaussian scale mixture distributions [4], [12], [46],
the expectation-maximization (EM) algorithm [22], [34] and
a pruning strategy [19], in a nontrivial way to design an effi-
cient and high-performance recovery algorithm, which we call
the sum product with expectationmaximization (SuPrEM) algo-
rithm. We note that although these components have been used
in compressive sensing before in [7], [9], [19], [28], [35], and
[42], it is the way we put them together that makes SuPrEM
algorithm efficient and suitable for sparse recovery for high
values of . With Jeffreys’ prior [23], [37], the SuPrEM algo-
rithm does not require any parameters to be specified except the
sparsity level , the noise level and the number of iterations for
the message-passing schedule. Simulation results are provided
in Section IV indicating an excellent distortion performance at
high levels of sparsity and for high levels of noise, as noted in
[25]. Furthermore SuPrEM algorithm can be implemented in

complexity for a fixed number of iterations, and the
exact number of operations required per iteration is specified in
Section III-B in terms of the design parameters of the measure-
ment matrix.
The outline of this paper is given next. In Section II, we in-

troduce low density frames and study their basic properties. In
Section III, we introduce various concepts used in our algorithm
and describe the decoding algorithm. In Section IV, we provide
extensive simulation results for a number of different testing cri-
teria. Finally in Section V, wemake our conclusions and provide
directions for future research.

II. LOW DENSITY FRAMES

We define a -regular low density frame (LDF) as a
matrix that has nonzero elements in

each row and nonzero elements in each column, and such
that . Clearly . We also note that the

redundancy of the frame is . We will restrict
ourselves to binary regular LDFs, where the nonzero elements
of are ones.

The main connection between the minimization problem
and coding theory involves the description of the underlying
code [1], of , where

One can view as the set of vectors whose product with each
row of “checks” to 0. In the works of Tanner, it was noted
that this relationship between the checks and the codewords of a
code can be represented by a bipartite graph [45]. This bipartite
graph consists of two disjoint sets of vertices, and , where
contains the variable nodes and contains the factor nodes

representing checks that codewords need to satisfy. Thus, we
have and . Furthermore node in will be
connected to node in if and only if the element of
is nonzero. Thus, the number of edges of the graph is equal

to the number of nonzero elements in the measurement matrix
. For an LDF, this leads to a sparse bipartite graph. We use
factor graphs [13] for our representation. For representation of
LDFs, it is convenient to use a factor node, depicted by a ,
called a parity check node. Specifically, we use the syndrome
representation [31], where the variable nodes connected the
parity check node sum to . Thus, the graph now represents the
set which is a coset of the underlying code
of the frame.
The natural inference algorithm for factor graphs is the sum-

product algorithm [13]. This algorithm is an exact inference
algorithm for tree-structured graphs (i.e., graphs with no cy-
cles), and is usually described over discrete alphabets. How-
ever, the ideas also apply to continuous random variables with
the sum being replaced by integration. In doing so, the com-
putational cost of implementation increases and this issue will
be addressed later. It is important to note that the graph repre-
senting an LDF will have cycles. Without the tree structure, the
sum-product algorithm will only be an approximate inference
algorithm. However, in coding theory, it has been empirically
shown that for sparse graphs this approximate algorithm works
very well, achieving the capacity of Gaussian channels within a
fraction of a decibel [30], [39].

III. SUM PRODUCT ALGORITHM WITH
EXPECTATION MAXIMIZATION

Given a set of observations, the sum-product algorithm (SPA)
can be used to approximate the posterior marginal distribu-
tions [29], [30]. In fact, when there is no noise, variants of this
algorithm [44] has been successfully adapted to compressive
sensing [41], [53]. However, for the practical case of noisy
observations, these algorithms no longer can be applied in a
straightforward manner, because the random variables are con-
tinuous. Some authors have tried to circumvent this difficulty
by using a two-point Gaussian mixture approach [7], [42]. In
their work, each component is modeled with the probability
density
where denotes the Gaussian probability density
function with mean and variance . is usually chosen
to be a constant multiple (e.g., 10) times bigger than . The
component with variance models the nonzero coefficients
of , whereas the other component models the near-zero
coefficients of . For recovery, the sum-product algorithm is
used with this probability distribution on . The complexity
of this algorithm may grow quickly as the number of Gaussian
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components in the mixtures could grow exponentially, unless
some approximation is applied. On the other hand, using
these approximations degrades the performance of the LDF
approach. Another approach is to use sampling from a product
of distributions [11] which is also used in the implementation of
[7]. This results in a large constant overhead for the algorithm,
although the complexity is [7]. Furthermore,
the accuracy of the algorithm also depends on the values of
and which need to be chosen properly based on knowledge
of .
In this paper, we consider Gaussian scale mixture (GSM)

priors with Jeffreys’ noninformative hyperprior to devise an es-
timation algorithm for the noisy compressive sensing problem

as well as the noiseless problem. Throughout the paper, we as-
sume that

However, simulation results (not included in this paper) indicate
that the algorithms still work well even for non-Gaussian noise.
We define the signal-to-noise ratio (SNR) as

A. Gaussian Scale Mixtures

The main difficulty in using SPA in compressive sensing set-
ting is that the variables of interest are continuous. Nonetheless
SPA can be employed when the underlying continuous random
variables are Gaussian [50]. Since any Gaussian pdf
can be determined by its mean and variance , these constitute
the messages in this setting. At the variable nodes, the product
of Gaussian probability density functions (pdf) will result in a
(scaled) Gaussian pdf, and at the check nodes, the convolution
of Gaussian pdfs will also result in a Gaussian pdf, i.e.,

and

where denotes normalization up to a constant,
and . We note that all the

underlying operations for SPA preserve the Gaussian structure.
However, the Gaussian pdf is not “sparsity-enhancing.”2

Thus, some authors propose the use of the Laplace prior,
. Clearly, with this

prior and for Gaussian noise

(4)

and maximization of is equivalent to minimizing
, which is the objective function for the LASSO

2By a sparsity enhancing (generalized) distribution, we mean that the
maximum a posteriori (MAP) estimator of , which outputs
favors sparse vectors in the presence of Gaussian noise with mean 0 and
covariance matrix . We note that the MAP estimate is given by

. When is a multivariate
Gaussian with independent components, this amounts to the minimization of
the norm of subject to a distance constraint on , which, in
general, does not favor sparse vectors.

Fig. 1. Contour plots for a Gaussian distribution (left), a GSM with
distributed according to Jeffreys’ prior (middle), a GSM with and i.i.d.
with Jeffreys’ prior (right).

algorithm [49]. However, a straightforward minimization of this
function or an appropriate a priori choice of may not be fea-
sible.We also note that there is a strand of work [5], [22], [24] on
developing lower complexity algorithms which find solutions
that approximately minimize this objective function.
In this paper, we consider the family of GSM densities [37],

given by where is a zero-mean Gaussian and is
a positive scalar random variable. This family of densities has
been successfully used in image processing [37], and learning
theory [13]. In our model, we use Jeffreys’ prior for ,
which in this case is given by . We note that this is
an improper density, i.e., it cannot be normalized. In Bayesian
statistics, this kind of improper priors are used frequently, since
only the relative weight of the prior determines the a posteriori
density [40].
As depicted in the middle subplot of Fig. 1, compared to

a Gaussian distribution, a GSM with distributed according
to Jeffreys’ prior has a much sharper peak at the origin even
when . However, the subplot on the right demon-
strates that if the are indeed independent, the GSM will
be highly concentrated not only around the origin, but along
the coordinate axes as well, which is a desired property if we
have no further information about the locations of the sparse
coefficients of [47]. Thus, in our model, we will assume that

in order to enhance spar-
sity in all coordinates. This independence assumption is natural
and commonly used in the literature [23], [49].

B. SuPrEM Algorithm

The factor graph for decoding purposes is depicted in Fig. 2.
Here, is the vector of observed variables, is the vector of
hidden variables and is the vector of parameters. At every it-
eration , this algorithm uses a combination of the Sum-Product
Algorithm (SPA) and EM algorithm [34] to generate estimates
for the hyperpriors , as well as a point estimate . In
the EM stage of the algorithm, for the E-step is given
by
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Fig. 2. Factor graph for a (3,6)-regular LDF with the appropriate hyperpriors.

where is a term independent of
, and .
Since in our setting, the underlying variables are Gaussian,

the density produced by the SPA is also Gaussian,
with mean and variance . One can explicitly write out

as

(5)

where is independent of .
For the M-step, we find .

Clearly can be maximized by maximizing each
. Hence we have the simple local update rule

(6)

We note that although we are using a specific GSM distribu-
tion that utilizes Jeffreys’ hyperprior, the algorithm can be used
with any GSM distribution. The family of GSM distributions
include the Laplace prior (frequently used in regularized al-
gorithms), the generalized Gaussian prior (frequently used in
minimization with ) and various other heavy-tailed den-
sities [4], [12]. The use of other priors from the GSM family
would lead to different update equations in the EM algorithm,
which depend on the parameter used in that specific prior (e.g.,
in the Laplace prior). This results in an additional parameter

which needs to be fine-tuned. On the other hand, the use of Jef-
freys’ prior results in a simple update rule that does not depend
on any parameters.
At each iteration, the sum-product algorithm can be used in

combination with the aforementioned EM update rule. How-
ever, this algorithm does not enforce sparsity, thus it is not well-
suited for situations where the output needs to be sparse, such
as the noiseless compressive sensing setting. To this end, we

propose our main algorithm, which is called the SuPrEM Algo-
rithm. An implementation of this algorithm is available in [56].
This algorithm enforces sparsity at various stages of the algo-
rithm and sends messages between the nodes of the underlying
graph accordingly. We keep a set of candidate variable nodes
that are likely to have nonzero values, and modify the mes-

sages from the variable nodes that do not belong to a specified
subset of denoted by [3]. Similar ideas have been used in
developing state-of-the-art recovery algorithms for compressive
sensing, such as sparse matching pursuit [9], subspace pursuit
[19], and CoSaMP [35]. The full description is given in Algo-
rithm 1.

Algorithm 1: SuPrEM Algorithm

• Inputs: The observed vector , the measurement matrix
, the sparsity level , the noise level (optional), and a
message-passing schedule .

1) Initialization: Let and let . Initial

outgoing messages from variable node is .
2) Check Nodes: For , let
be the indices of the variable nodes connected to the

check node . Let the message coming from
variable node to the check node at iteration

be for . Then the outgoing
message from check node to variable node

is . The
messages are sent according to the schedule .

3) Variable Nodes: For , let
be the indices of the check nodes

connected to the variable node . Let the incoming
message from the check node to the variable node

at the iteration be for .

a. EM update: Let

and . Then the EM update

is .
b. Message updates: The outgoing message from
variable node to check node at the

iteration is given by ,

where and

. The messages

are sent according to the schedule . Also make
decisions on

4) Sparsification:
a. Let be the indices of the largest .
b. Merge and , i.e., Let .
c. Identify the indices corresponding to the largest (in
absolute value) coefficients of .

d. The variable vertices , send out their messages
as was decided in Step 3. The variable vertices
, send out their messages with 0 mean and the

variance that was decided in Step 3. Also set
for .
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5) Decisions: Make decisions only the vertices in . Once
these are calculated, keep the indices with the largest

. Set all other indices to 0.
6) Iterations: Repeat (2)–(5) until convergence.

• Output: The estimate is .

The main modification is the addition of a sparsification step.
Intuitively is the reliability of the hypothesis .
Throughout the algorithm we maintain a list of variable nodes
that correspond to the largest coefficients of at itera-

tion . We also keep a list of variable nodes corresponding
to the largest elements of , i.e., those with the largest reli-
abilities of the hypothesis . In the sparsification stage,
these two sets are merged, . The addition and dele-
tion of elements from allow refinements to be made with each
iteration. We note at any given iteration. Deci-
sions are made on the elements of , and is updated. Finally
for variable nodes not in , the mean value of the messages is
forced to be 0, but the variance (i.e., the uncertainty about the
estimate itself) is kept. By modifying the messages this way, we
not only enforce sparsity at the final stage, but also throughout
the algorithm.
The inputs to the algorithm contain a message-passing

schedule , which turns out to be important for achieving
the maximum performance. To this end, we develop a mes-
sage-passing schedule that attains such good performance and
we describe this schedule in detail in the Appendix. For all
our simulations, we use this fixed schedule. Simulation results
indicate that with this fixed schedule, the algorithm is robust in
various different scenarios. We note that the noise level is
an optional input to the algorithm. Our simulations indicate that
the algorithm works without this knowledge also. However,
if this extra statistical information is available, it is easily
incorporated into the algorithm and results in a performance
increase.
SuPrEM algorithm can be implemented with com-

plexity for a fixed number of iterations. For a simple flooding
schedule, the message passing and EM part take

additions, divisions, mul-
tiplications are required per iteration. Also additions and

multiplications are required for the initialization step. The
determination of the largest elements of and . This could
be done with complexity, as described in [18] (Chapter
9). A more straightforward implementation (used in [56]) for
this stage uses sorting of the relevant coefficients, which would
result in a higher complexity of for the overall al-
gorithm. The total complexity of the algorithm per iteration is
given by additions,
divisions, multiplications and 2 thresholding oper-
ations for identifying the largest components of two vectors.
We note that in our simulations and changes based on
and . The exact number of operations may change based

on the message-passing schedule.

C. Reweighted Algorithm

Simulation results show that the SuPrEM algorithm produces
estimates with low distortion even for high ratios. However,
more iterations are needed to achieve very low distortion levels,

which may be undesirable. Thus, we propose a modification to
SuPrEM to speed up the convergence that uses estimates gener-
ated within a few iterations. In compressive sensing, employing
prior estimates to improve the final solution has been used in
the iteratively reweighted (IRL1) technique [16], but this in-
creases the running time by a factor of reweighing steps.
Next, we motivate for our reweighing approach. In our algo-

rithms, the initial choice of is based on the

intuition that must be proportional to . By providing
a better estimate for the initial , the rate of convergence
may be improved. The algorithm is initiated with as above
and is run for iterations. At the end of this stage, we reini-
tialize to be

and the algorithm is run for iterations. This process is re-
peated recursively until convergence or times. We note that

, where is the original number of fixed iter-
ations. Thus, the total number of iterations remains unchanged
when we use reweighing.

IV. SIMULATION DETAILS

A. Simulation Setup

In our simulations, we used LDFs with parameters (3,6),
(3,12) and (3, 24) for and 10 000. We
constructed these frames using the progressive edge growth
algorithm [26], avoiding cycles of length 4 when possible.3

Simulations will be presented for SNR 12, 24, 36 dB, as
well as the noiseless case. For various choices of and SNR,
we ran 1000 Monte Carlo simulations for each value, where
is generated as a signal with nonzero elements that are

picked from a Gaussian distribution. The support of is picked
uniformly at random. Once is generated, it is normalized
such that . Thus, .
Let be the genie decoder that has full information about

. Let the output of this decoder be
obtained by solving the least squares problem

involving and the matrix formed by the columns of specified
by . We define the genie distortion measure

This distortion measure is invariant to the scaling of for a fixed
SNR. For any other recovery algorithm that outputs an estimate
, we let

where the subscript denotes the estimation procedure. We will
be interested in the performance of an estimation procedure with
respect to the genie decoder. To this end, we define

3We also tested LDFs with 4 cycles and this does not seem to have an adverse
effect on the average distortion in the presence of noise.
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Fig. 3. Performance comparison of recovery algorithms for sparse signals with Gaussian nonzero components.

We will be interested in this quantity averaged over Monte-
Carlo simulations, and converted to decibels. The closer this
quantity is to 0 dB means the closer the performance of the
estimation procedure is to the performance of the genie decoder.
In other cases, such as the noiseless case, wewill be interested

in the empirical probability of recovery. For Monte-Carlo
simulations, this is given by

where is the indicator function for (1 if is true, 0
otherwise). We will define the relation to be true only if

, unless otherwise specified.
The convergence criterion we used was the convergence of

. The maximum number of iterations was set
to be , chosen to make sure that the algorithms did not
stop prematurely. The message passing schedule is described

in detail in the Appendix. Finally, for the reweighted algorithm
we use ten reweighings with .

B. Simulation Results

Simulation results are presented in Fig. 3 for exactly sparse
signals, whose nonzero elements are chosen independently from
a Gaussian distribution.
For comparison to our algorithms, we include results for

CoSaMP [35] and based methods [14]–[16], [20], [24].
For these algorithms we used partial Fourier matrices as mea-
surement matrices. The choice of these matrices is based on
their small storage requirements (in comparison to Gaussian
matrices), while still satisfying restricted isometry principles.
For CoSaMP, we used 100 iterations of the algorithm (and
150 iterations of Richardson’s iteration for calculating least
squares solutions). For based methods, we used the
package in the noiseless case. In the noisy case, we used both

, and the package (with Barzilai–Borwein gra-
dient projection with continuation and debiasing). Since these



AKÇAKAYA et al.: A CODING THEORY APPROACH TO NOISY COMPRESSIVE SENSING USING LOW DENSITY FRAMES 5375

two methods approximately perform the same, we include
the results for here. In the implementation of GPSR we
fine-tune the value of and observe that
gives the best performance. For the reweighted approach
we used the package [48]. The use of four reweightings
as suggested in [16] did not result in a drastic performance
increase, however we found that 15 reweightings improved
the performance with respect to minimization. For each
set of weights, the algorithm was run for a maximum of 500
iterations. The stability parameter was chosen as described
in [16]. For SMP, we used the package [9]. We used a
matrix with left degree 50 generated by this package, 500
iterations and convergence factor of 0.1. The left degree and
the convergence factor were fine-tuned by hand for highest
performance. We note that an improved version of SMP, called
sequential SMP (SSMP) may provide better performance for
these simulations [10]. However, this algorithm is not included
in the comparisons, since its code was not available online at
the time of the preparation of this manuscript.
Finally, we note that for the noisy case, the sparsity regu-

larizer corresponding to the Jeffreys’ prior used in this text is
proportional to , which is in one-to-one correspon-
dence with norm of as [51]. Thus, we also compare
our methods to iteratively reweighted least squares (IRLS) al-
gorithm that is used as a heuristic for -norm regularized com-
pressive sensing (with ), as in [17]. We note the latter
does not utilize the sparsity of LDFs in any particular way. We
use the -continuation scheme in the implementation of [17],
however we start with instead of , which was
fine-tuned for the scaling of used in this paper to allow for
convergence within 500 iterations. We emphasize that -norm
regularized IRLS reconstruction was used with LDFs to provide
a clear comparison of the possible improvements our method
(designed for sparse matrices) has over a more general approach
that works with any measurement matrix.
Since the outputs of IRLS and norm based methods are

not sparse, we threshold to its largest coefficients and pos-
tulate these are the locations of the sparse coefficients. For all
methods, we solve the least squares problem involving and
the matrix formed by the columns of specified by the loca-
tions of the sparse coefficients from the final estimate. For par-
tial Fourier matrices we use Richardson’s iteration to calculate
this vector, whereas for LDFs and the SMP matrix we use the
LSQR algorithm which also has complexity [36].

C. Discussion of the Results

The simulation results indicate that the SuPrEM algorithms
outperform the other state-of-the-art algorithms. In the low SNR
regime SNR 12 dB , SuPrEM algorithms, based methods
and -norm regularized IRLS have similar performance. In
high SNR regimes, we see that SuPrEM algorithms outperform
the other algorithms both in terms of distortion and in terms of
the maximum sparsity they can work at. Also IRL1 technique
uniformly outperforms regularization as expected. For accel-
eration rate 8, it also performs close to reweighted SuPrEM, al-
though for rates 2 and 4, it is also outperformed in most cases by
regular SuPrEM. An interesting point is that the -norm regu-
larized IRLS with LDFs outperforms most other methods that
use Fourier matrices for acceleration rate 2. However, for higher
acceleration rates, its performance deteriorates, which may be

because it is not designed for sparse matrices and thus may be
stuck on local minima. We also note that SuPrEM algorithm
generally outperforms the IRLS method in a direct comparison
(since both have a similar objective function and both are tested
with sparse matrices), because the algorithm is specifically de-
signed for LDFs. Furthermore for different values of , the

maximum sparsity scales as , which is the
same scaling as those of other methods.We also observe that the
reweighted SuPrEM algorithm outperforms the regular SuPrEM
algorithm, even though the maximum number of iterations are
the same.
Finally, compared to the other methods for the noiseless

problem, the SuPrEM algorithms can recover signals that
have a higher number of nonzero elements. In this case, the
reweighted algorithm performs the best, and converges faster.
We also note that the results presented for SMP, CoSaMP and
based methods for the noiseless case are optimistic, since we

declare success in recovery if . We needed to
introduce this measure, since these algorithms tend to miss a
small portion of the support of containing elements of small
magnitude.
We also note that for both partial Fourier matrices and LDFs,

the quantity is almost the same for a fixed and
SNR. This means that provides an objective
performance criterion in terms of relative mean-square error
with respect to the genie bound, as well as in terms of abso-
lute distortion error .

D. Simulation Results for Natural Images

For the testing of compressible signals, instead of using arti-
ficially generated signals, we used real-world compressible sig-
nals. In particular, we compressively sensed the wavelet
coefficients of the 256 256 (raw) peppers image using
17 000 measurements. Then we used various recovery algo-
rithms to recover the wavelet coefficients, and we did the in-
verse wavelet transform to recover the original image.
For SuPrEM algorithms, we used a rate (3, 12) LDF with

68 000 (the wavelet coefficients vector was padded with
zeros to match the dimension). We set 8000 (the maximum
sparsity the algorithm converged at) for SuPrEM.We ran the al-
gorithm first with . We also accommodated for noise, and
estimated the per measurement noise to be and
ran the algorithm again. We ran our algorithms for just 50 it-
erations. For the reweighted SuPrEM algorithm, we let
and we reweighed after 5 steps of the algorithm for a total of ten
reweighings. For SMP, we used the package [9]. We used
a matrix with left degree 8 (which performed better than left
degree 50 in this case) generated by this package, 8000,
50 iterations and convergence factor of 0.3. For the remaining
methods, we used partial Fourier matrices whose rows were
chosen randomly. For with equality constraints, we used the

package. For LASSO, we used the package and
, as described previously, and we thresh-

olded the output to 8000 sparse coefficients and solved
the appropriate least squares problem to get the final estimate.
For CoSaMP and Subspace Pursuit, we used 100 iterations of
the algorithm (and 150 iterations for the Richardson’s iteration
for calculating the least square solutions). For these algorithms,
we used 3000 for CoSaMP, and 3500 for Subspace
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Fig. 4. Performance comparison of recovery algorithms with a 256 256 natural image whose wavelet coefficients are compressively sensed with
17 000 measurements.

Pursuit. These are slightly lower than the maximum sparsities
they converged at ( 3500 and 4000, respectively), but
the values we used resulted in better visual quality and PSNR
values. The results are depicted in Fig. 4.
The PSNR values for the methods are as follows: 23.41 dB

for SuPrEM, 23.83 dB for SuPrEM (with nonzero ), 24.79
for SuPrEM (reweighted), 20.18 dB for CoSaMP, 20.28 dB for
SMP, 21.62 dB for , 23.61 dB for LASSO, 21.27 dB for sub-
space pursuit. Among the algorithms that assume no knowl-
edge of noise, we see that SuPrEM outperforms the other al-
gorithms both in terms of PSNR value and in terms of visual
quality. The two algorithms that accommodate noise, SuPrEM
and LASSO have similar PSNR values. Finally, the reweighted
SuPrEM also assumes no knowledge of noise, and outperforms
all other methods by about 1 dB and also in terms of visual
quality, without requiring more running time.

E. Further Results

We studied the effect of the change of degree distributions.
For a given ratio, we need to keep the ratio of fixed how-

ever the values can be varied. Thus, we compared the perfor-
mance of LDFs to LDFs and observed that
the latter actually performed sligthly better. However, having
a higher means more operations are required. We also ob-
served that the number of iterations required for convergence
was higher. Thus, we chose to use LDFs that allowed
faster decoding.We also note that increasing toomuch (while
keeping fixed) results in performance deterioration, since the
graph becomes less sparse, and we run into shorter cycles which
affect the performance of SPA.
We also tested the performance of our constructions and al-

gorithms at 100 000. With and fixed, interestingly
the performance improves as for Gaussian sparse sig-
nals for a fixed maximum number of 500 iterations. This is in
line with intuitions drawn from Shannon theory [3]. Another in-
teresting observation is that the number of iterations remain un-
changed in this setting. In general, we observed that the number
of iterations required for convergence is only a function of
and does not change with .
Finally, we also ran the simulations of Section IV-A

for sparse signals whose nonzero coefficients have equal
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Fig. 5. Performance comparison of recovery algorithms for sparse signals whose nonzero coefficients have equal magnitude.

magnitude. These signals were generated to have nonzero
coefficients with values, and then normalized as described
in Section IV-A for SNR values of 24 and 36 dB. Since even
missing a single element in the support results in a large value of

we have used
(where is true only if ) as our
performance measure. The comparison algorithms were imple-
mented as described in Section IV-B. The results are depicted
in Fig. 5.
We note that there is an overall performance decrease for

all methods at rates 2 and 4. In this setting, the SuPrEM al-
gorithms are outperformed by CoSaMP and regularization,
which perform very close to each other. As with Gaussian
signals, IRL1 outperforms regularization as expected. The
performance deterioration in SuPrEM is interesting for two
reasons. First, sparse signals whose nonzero coefficients have
equal magnitude correspond to finite alphabet signals, which
is the standard setting in coding theory. If this information is
present for the decoder, simply running SPA may result in a
performance increase. Second, we note that the LDFs are binary
as opposed to the Fourier transform matrices used for most of
the other algorithms. This proves to be particularly challenging
for the SuPrEM algorithms, since some check nodes will be
equal (or very close) to zero, even though they are connected
to nonzero components. This creates a problem on short cycles
involving multiple nonzero variable nodes, since , and
the messages on at least two incoming edges will be likely to
declare these variable nodes to be close to zero. This may also
be a reason why SuPrEM performs worse than IRLS in this
setting. Further gains may be achieved by choosing the nonzero
components of the LDFs over a continuous alphabet, for in-
stance taking complex measurements, where the nonzero
entries of the LDFs are chosen uniformly on the unit circle.
We note this would also increase the storage requirements, and
such modifications need further study.

V. CONCLUSION

In this paper, we constructed an ensemble of measurement
matrices with small storage requirements.We denoted the mem-
bers of this ensemble as LDFs. For these frames, we provided
sparse reconstruction algorithms that have complexity
and that are Bayesian in nature. We evaluated the performance
of this ensemble of matrices and their decoding algorithms, and
compared their performance to other state-of-the-art recovery
algorithms and their associated measurement matrices. We
observed that in various cases of interest, SuPrEM algorithms
with LDFs provide excellent performance as noted in [25],
outperforming other reconstruction algorithms with partial
Fourier matrices. In particular, for Gaussian sparse signals and
Gaussian noise, we are within 2-dB range of the theoretical
lower bound in most cases.
There are various interesting research problems in this area.

One is to find a deterministic message-passing schedule that
performs as well as (or better than) our probabilistic message-
passing schedule and that is amenable to analysis. The good em-
pirical performance of LDFs, which are sparse matrices, and the
associated SuPrEM algorithm may be used in sparse dictionary
design algorithms, such as [38]. Adaptive measurements using
the soft information available about the estimates, as well as on-
line decoding (similar to Raptor codes [43]) is another open re-
search area. Finally, if further information is available about the
statistical properties of a class of signals (such as block-sparse
signals or images represented on wavelet trees as in [6]), the
decoding algorithms may be changed accordingly to improve
performance.
A limitation of our study is that we are unable to analyze the

performance of the iterative decoding algorithms for the LDFs
theoretically. Such an analysis may in turn lead to useful de-
sign tools (like density evolution [39]) that might help with the
construction of LDFs with irregular degree distributions. Along
these lines, we also note the excellent works of [54], [55] that
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provide a density evolution-type analysis for noiseless compres-
sive sensing of exactly sparse signals.

APPENDIX
DETAILS ON THE MESSAGE-PASSING SCHEDULES

A message-passing schedule determines the order of
messages passed between variable and check nodes of a
factor graph. Traditionally, with LDPC codes, the so-called
“flooding” schedule is used. In this schedule, at each iteration,
all the variable nodes pass messages to their neighboring check
nodes. Subsequently, all the check nodes pass messages to their
neighboring variable nodes. For a cycle-free graph, SPA with
a flooding schedule correctly computes a posteriori probabili-
ties [13], [52]. An alternative schedule is the “serial” schedule,
where we go through each variable node serially and compute
the messages to the neighboring nodes. The order in which we
go through variable nodes could be lexicographic, random or
based on reliabilities.
In this section, we propose the following schedule based

on the intuition derived from our simulations and results from
LDPC codes [32], [52]: For the first iteration, all the check
nodes send messages to variable nodes and vice-versa in a
flooding schedule. After this iteration, with probability each
check node is “on” or “off”. If a check node is off, it marks the
edges connected to itself as an “inactive”, and sends back the
messages it received to the variable nodes. If a check node is on,
it marks the edges connected to itself as “active” and computes
a new message. At the variable nodes, when calculating the
new , we only use the information coming from active edges.
That is for , let be the indices
of the check nodes connected to the variable node . Let
the incoming message from the check node to the variable

node at the iteration be for .
We will have

and

Thus, when there is no active edge, we do not perform a
update. For the special case when there is only one active edge

, we let . This is because the intrinsic infor-

mation is more valuable, and the estimate on tends to be
not as reliable. When we calculate the point estimate, we use all
the information at the node, including the reliable and unreliable
edges, i.e.,

It is noteworthy that the flooding schedule and serial sched-
ules tend to converge to local minima and they do not perform
as well as this schedule we proposed.
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