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A disadvantage of three-dimensional (3D) isotropic acquisition in
whole-heart coronary MRI is the prolonged data acquisition

time. Isotropic 3D radial trajectories allow undersampling of k-
space data in all three spatial dimensions, enabling accelerated

acquisition of the volumetric data. Compressed sensing (CS)
reconstruction can provide further acceleration in the acquisition
by removing the incoherent artifacts due to undersampling and

improving the image quality. However, the heavy computational
overhead of the CS reconstruction has been a limiting factor for

its application. In this article, a parallelized implementation of an
iterative CS reconstruction method for 3D radial acquisitions
using a commercial graphics processing unit is presented. The

execution time of the graphics processing unit-implemented CS
reconstruction was compared with that of the C11 implemen-

tation, and the efficacy of the undersampled 3D radial acquisi-
tion with CS reconstruction was investigated in both phantom
and whole-heart coronary data sets. Subsequently, the efficacy

of CS in suppressing streaking artifacts in 3D whole-heart coro-
nary MRI with 3D radial imaging and its convergence properties
were studied. The CS reconstruction provides improved image

quality (in terms of vessel sharpness and suppression of noise-
like artifacts) compared with the conventional 3D gridding algo-

rithm, and the graphics processing unit implementation greatly
reduces the execution time of CS reconstruction yielding 34–54
times speed-up compared with C11 implementation. Magn
Reson Med 69:91–102, 2013. VC 2012 Wiley Periodicals, Inc.
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Cardiac MR data are typically acquired using multiple
two-dimensional (2D) slices. Imaging using a single large
three-dimensional (3D) slab covering the whole heart
from the base to the apex can significantly simplify

image prescription. Whole-heart coronary MRI, analo-
gous to coronary multidetector computed tomography
(CT), has replaced multiple small-slab targeted acquisi-
tions for the individual coronary arteries (1–3). A single
breath-hold accelerated 3D cine scan has been previously
investigated for the evaluation of cardiac function (4–6).
Free-breathing, 3D late gadolinium enhancement imaging
has been used to identify fibrosis/scar with improved
spatial resolution or coverage (7,8). Recently, 3D perfu-
sion has also been applied to improve the spatial cover-
age (9,10). The advantages of a 3D acquisition include
superior spatial resolution, especially through-plane,
ease of image prescription, superior signal-to-noise ratio,
and easy reformatting of the image in any desired plane.
However, one major disadvantage of 3D imaging is the
long data acquisition time. For coronary MRI, a longer
scan time usually makes the scan more susceptible to re-
spiratory motion. For late gadolinium enhancement, it
results in imaging artifacts due to changes in optimal
inversion time as the contrast washes out. For cine and
perfusion, it typically results in lower temporal or spatial
resolution. Therefore, methods to reduce scan time in 3D
imaging could significantly improve the clinical utiliza-
tion of 3D cardiac MR.

3D whole-heart data are commonly acquired using Car-
tesian k-space sampling; however, non-Cartesian sam-
pling schemes, e.g., radial or spiral, have better data ac-
quisition efficiency (11,12). Both 3D stack-of-radials and
3D radial (kooshball) acquisitions with isotropic spatial
resolution have been previously used in 3D cardiac MR
(11,13,14). In these sampling schemes, a Nyquist sam-
pling rate is not necessary because undersampling does
not yield distinct fold-over artifacts; instead, it typically
results in streaking artifacts. This allows high undersam-
pling rates with less pronounced imaging artifacts com-
pared with Cartesian acquisitions at the same sampling
density. These potential benefits have been previously
exploited to achieve whole-heart coronary MRI with iso-
tropic spatial resolution (15). It has also been extensively
investigated to improve the dynamic imaging such as
phase contrast, MR angiography, and cine imaging (16–
18).

For single-phase anatomical imaging such as coronary
MRI, a gridding algorithm is commonly used in the
reconstruction of 3D radial acquisitions (19). Although
the gridding algorithm can efficiently reconstruct data
acquired using a 3D radial trajectory, its performance
deteriorates significantly for highly undersampled data
due to significant undersampling of outer k-space
regions (20). Parallel imaging methods including sensi-
tivity encoding (SENSE) (21) and generalized
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autocalibrating partially parallel acquisitions (GRAPPA)
(22) have been previously applied for 2D radial acquisi-
tions to reduce the streaking artifacts (23,24). Recently,
compressed sensing (CS) has been applied to remove the
streaking artifacts for 2D radial acquisitions (20,25). In this
approach, additional constraints based on image proper-
ties are used to improve the image reconstruction. The CS
reconstruction techniques are usually implemented with
iterative procedures that solve the optimization problem
with relatively computationally cheap matrix-vector multi-
plications (26). The CS reconstruction for 3D radial acqui-
sition has been recently demonstrated for imaging of the
hand using 512 radial profiles on a matrix size of 1283

(27). The computational overhead of the iterative CS
reconstruction increases as the size of the 3D k-space
increases, resulting in prolonged reconstruction time.

Recently, graphics processing units (GPUs) have
become available for high computation-intensive applica-
tions. Hardware manufacturers provide parallel computing
architectures [such as Compute Unified Device Architec-
ture (CUDA) and FireStream] that enable researchers to
implement GPU programs using high-level programming
languages without knowledge of the GPU hardware struc-
ture. Recent studies have shown that GPU-accelerated
reconstructions can be used to achieve reduced and low-
latency reconstruction times for various MR applications
(28–30). GPU-accelerated reconstructions for 2D radial
acquisitions were demonstrated with � 6–32 times speed-
up in reconstruction time compared with central process-
ing unit implementations (28,31). GPU implementations
have been shown to greatly accelerate CS reconstructions
of 3D non-Cartesian trajectories such as stack-of-radials
and stack-of-spirals (30,32), where the k-space samples are
equidistantly spaced along one k-space dimension. How-
ever, GPU implementation for a true 3D non-Cartesian tra-
jectory such as 3D radial sampling is not straightforward
from those for stack-of-radials/spirals trajectories and has
not been previously reported because of the large size of
the 3D sampling data and GPU hardware limitations.

In this article, we propose to implement and evalu-
ate the performance of a GPU-accelerated reconstruc-
tion for 3D radial reconstruction using the latest
commercially available GPU hardware. Subsequently,
we will investigate the efficacy of a 3D radial acqui-
sition with CS reconstruction for whole-heart coro-
nary MRI.

METHODS

All phantom and volunteer data were obtained using
1.5 T Achieva magnet (Philips Healthcare, Best, The
Netherlands) with a five-channel phased-array coil. The
acquired MR data were transferred to a stand-alone com-
puter, and the image reconstruction was performed off-
line. All in vivo studies were approved by our institu-
tional review board, and all subjects provided consent
before participation in the study.

3D Radial Acquisition and Reconstruction

In this section, we will review and present the formula-
tion for 3D radial image acquisition and reconstruction

using CS. The 3D radial sampling trajectory consists of
Ni interleaves, where each interleaf has Np projection
lines with Ns sample points (15). Each interleaf is the
rotated version of the first interleaf around the kz-axis.
The isotropy (or uniformity) of the sampling point distri-
bution can be quantified by the standard deviation of the
distance between adjacent sampling points on the k-
space sphere and is kept at <10% of the mean distance
when the total number of projections Np � Ni is between
100 and 10,000 (33). The sampling density of a 3D radial
acquisition is defined as the ratio of the total number of
k-space samples of the 3D radial acquisition over that of
a Nyquist-sampled 3D Cartesian acquisition with the
same resolution and the same field-of-view (FOV). A
gridding algorithm (19) is commonly used to reconstruct
3D radial data. In the conventional gridding algorithm,
each data point is compensated for its nonuniform sam-
pling density by the density compensation function,
which is calculated based on the sampling trajectory
(34–36). The data point is convolved with a gridding ker-
nel and resampled onto the Cartesian grid. The regridded
k-space samples are then inverse Fourier transformed to
obtain the desired image. Deapodization is performed af-
ter the inverse Fourier transform by dividing the image
by the apodization function, which is given by the Fou-
rier transform of the gridding kernel function (19). As all
of the operations are linear, this procedure can be
expressed in a matrix-vector format:

x̂ ¼ DF�SPy; ½1�

where x̂ is the reconstructed image, y is the measured
3D radial k-space data, P is a diagonal matrix performing
the density compensation, S denotes the convolution
matrix for the gridding operator, F* denotes the inverse
fast Fourier transform (IFFT), and D is a diagonal matrix
performing the deapodization. We note that all the vox-
els of the 3D image are represented in a single column
vector x̂ for mathematical convenience.

As an alternative approach, the acquired k-space sig-
nals can be formulated in an encoding matrix format as
y ¼ Ax, where A denotes the encoding matrix and x
denotes the actual image. A can be considered as taking
the reverse steps of the conventional gridding algorithm
without the density compensation:

y ¼ Ax ¼ S�FDx; ½2�

where D is a diagonal matrix performing the deapodiza-
tion, F denotes the fast Fourier transform (FFT) matrix,
and S* denotes the convolution matrix from Cartesian to
radial sample points. x is deapodized and Fourier trans-
formed into the k-space, and then the Cartesian k-space
samples are regridded onto the 3D radial sample points
using the gridding kernel. Unlike the conventional gridd-
ing algorithm, the density compensation is not required
before the regridding because the density of the Cartesian
grid is uniform (37). Equation 2 holds regardless of the
Nyquist criterion, but the encoding matrix is not inverti-
ble for undersampled data, as Eq. 2 is underdetermined
and there are multiple solutions that will satisfy the sys-
tem equation. CS reconstruction uses the sparsity of the
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image to reconstruct the undersampled data using a con-
strained minimization problem:

arg min
x

1

2
jjAx� yjj22 þ ljjCxjj1; ½3�

where l is a regularization parameter that determines the
tradeoff between the data consistency and the sparsity
level of the image, jj�jjp denotes the lp norm of the vector,
which is defined by jjsjjp ¼

Pn
i¼1 jsij

p� �1=p
, and W is a

sparsifying transform matrix such as a wavelet transform
or total variation operator.

To solve Eq. 3, we adopt an iterative method that alter-
nately enforces the data consistency and sparsity of the
image estimate at each iteration (38). The image update
at the (t þ 1)-th iteration is given by solving the follow-
ing two subproblems:

ut ¼ xt þ 1

at
A�ðy�AxtÞ ½4�

and

xtþ1 ¼ arg min
x

1

2
jjx� utjj22 þ

l

at
jjCxjj1: ½5�

Equation 4 is called the data consistency step as the solu-
tion tends to decrease the l2-norm error between the meas-
ured data and the k-space of the image estimate. For any
unitary sparsifying transform C, Eq. 5 can be reexpressed
with respect to the transform domain vector zt ¼ Cxt as

ztþ1 ¼ arg min
z

1

2
jjC�z� utjj22 þ

l

at
jjzjj1

¼ arg min
z

1

2
jjz�Cutjj22 þ

l

at
jjzjj1

: ½6�

Equation 6 can be solved by a simple coefficient-wise
thresholding function as follows:

ztþ1
i ¼ wt

i

jwt
i j
max jwt

i j �
l

at
;0

� �
½7�

where ztþ1
i and wt

i denote the ith coefficient of the trans-
form domain vector zt and wt ¼ Cut of the solution of

the first subproblem in Eq. 4, respectively. The second
subproblem is called the thresholding step. For at, we
adopt the step size from (39), where at is determined so
that atI approximates the Hessian of the data consistency
term r2jjAxt � yjj22 as below:

at ¼
jjAxt �Axt�1jj22
jjxt � xt�1jj22

½8�

The overall iterative reconstruction procedure is sum-
marized in Fig. 1. The reconstruction starts from an ini-
tial image estimate, which in our experiments was cho-
sen to be the gridding reconstruction. The image is
deapodized, Fourier transformed into k-space, and then
regridded onto the radial sample points. The estimated
radial samples are subtracted from the actual measure-
ment data, convolved onto the Cartesian k-space grid,
inverse Fourier transformed, and an image estimate is
obtained after deapodization. The image estimate is com-
bined with the intermediate image from the previous
iteration. The combined image is then thresholded in the
transform domain to produce a new image estimate, and
the intermediate image is updated. The final image esti-
mate is obtained as the result of the iterative procedures.

GPU-Accelerated CS Reconstruction for 3D Radial
Trajectory

The computational burden of a 3D radial trajectory with
CS reconstruction is a major drawback, and its feasibility
has not been studied in the literature. In this section, we
will present our implementation of a GPU-based recon-
struction of a 3D radial acquisition that allows us to fur-
ther explore the utility of this reconstruction for 3D
whole-heart cardiac MR.

The reconstruction algorithm in this article was imple-
mented using an NVIDIA (Santa Clara, CA) graphics card
and parallel computing architecture, CUDA. The CUDA
program consists of two parts: host code that is executed
on the central processing unit and device code that is ex-
ecuted on the GPU. The code that has little or no paral-
lelism in computation is written in host code using
ANSI C language, and the code that has a large amount
of parallelism in computation is written in device code

FIG. 1. 3D radial reconstruction using CS. The iterative process consists of two steps of data consistency and thresholding. The image
is updated to reduce the l2-norm error between the measured data and the k-space of the image estimate in the data consistency step

and to enforce the sparsity of the image estimate in the transform domain in the thresholding step. The final image is obtained as the
result of the iterative process.
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using a slightly modified C-like language. The functions
written in the device code are called kernels, and each
kernel generates a large number of threads as a result of
data parallelism once the kernel is invoked. All the
threads generated by a kernel invocation are called a
grid. The threads in a grid are grouped into blocks,
which are the basic allocation unit for the execution
resources on the hardware. All the blocks in the same
grid must have the same number of threads.

The gridding and regridding operations are the most
computationally intensive part of the iterative CS recon-
struction. As the width of the convolution window is
much smaller than the size of the entire k-space, the
gridding/regridding can be performed in a parallel man-
ner for each measured radial point and are well suited
for CUDA implementation. In this article, we assigned
each 3D radial data point to one CUDA thread. Each pro-
jection line corresponds to one block, which consists of
Ns threads. The grid has a 2D block structure (Np and Ni)
to represent all the projection lines and interleaves of
the 3D radial trajectory. Figure 2 shows a simplified
example of a grid hierarchy and thread assignment of
our implementation, where we have eight sample points
in one projection, three projection lines per interleaf,
and two interleaves. In the gridding operation, contribu-
tions from adjacent radial samples are accumulated to a
Cartesian sample point as illustrated in Fig. 3a, which
results in cumulative memory writes during the parallel-
ized execution. The cumulative memory writes can pro-
duce incorrect results if more than two threads try to
access the same memory simultaneously. This is pre-
vented using CUDA’s atomic operation, which is capable
of reading and writing on a memory address without
interruption by other threads, allowing concurrent
threads to correctly perform the required memory access.
The performance of atomic operation in CUDA is greatly
improved on recent ‘‘Fermi"-based GPUs offered by NVI-
DIA, which provide up to 20 times faster atomic opera-
tion compared with their former generation GPUs (40).

Besides the gridding/regridding operations, most of the
CS reconstruction procedures including FFT/IFFT, wave-
let/inverse-wavelet transforms, deapodization, and
thresholding were parallelized and written in device
code. cuFFT and cuBLAS packages were used for FFT/
IFFT and other arithmetic operations. Because of the lim-
ited global memory size of current GPU hardware, we

FIG. 2. CUDA grid hierarchy and thread assignment: A grid,
which consists of multiple threads, is generated once the device

kernel is invoked. Each projection line of the 3D radial trajectory is
assigned to one block of threads. Each thread in a block corre-
sponds to a 3D radial sample point in the same projection line.

The total number of projections is equal to the total number of
blocks. This example shows a thread assignment of a 3D radial

trajectory with (Ns, Np, Ni) ¼ (8,3,2).

FIG. 3. Thread assignment strategies for implementation of a gridding algorithm in CUDA programming: (a) radial point driven assign-

ment and (b) Cartesian point driven assignment. Cumulative memory writes can be observed in the radial point driven assignment. The
central grid point has a larger workload than the outer grid point in the Cartesian point driven assignment.
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could not parallelize the reconstruction for the multiple
coil elements. The reconstruction was performed sequen-
tially for each coil, and the final reconstructed image
was obtained as the root-sum-square of the individual
coil images. The CS reconstruction was also imple-
mented in standard Cþþ environment for the compari-
son of the reconstruction time. The FFTw package (41)
was used for FFT/IFFT operations. The GPU and Cþþ
implementations of the CS reconstruction were based on
single precision floating point arithmetic, and they were
executed on a PC with Intel (Santa Clara, CA) Core2
Quad Q9400 central processing unit (2.66 GHz), 8.0 GB
memory, and NVIDIA GeForce GTX 480 Graphics card
(480 cores, 1.5 GB memory) running on a 64-bit Win-
dows 7 operating system.

Phantom Study

Two experiments were performed for the phantom study.
The first experiment is to demonstrate the capability of
improving the reconstruction quality of 3D radial acquis-
itions using the CS reconstruction method. The second
experiment is to investigate the convergence properties
of the CS reconstruction method over different numbers
of iterations.

For the first experiment, a high-resolution phantom
was scanned with a steady-state free precession sequence
using 3D radial trajectories with Ns ¼ 344 and Ni ¼ 10
for six different sampling densities 7.5, 10, 20, 30, 40,
and 100%, which correspond to the number of projec-
tions per interleaf Np of 221, 289, 576, 896, 1184, and
2954, respectively. The scan parameters were as follows:
repetition time/echo time/a ¼ 3.90/1.94/60�, FOV ¼ 240
� 240 � 240 mm3, and spatial resolution ¼ 1.4 � 1.4 �
1.4 mm3. The acquired 3D radial data were reconstructed
using the iterative CS reconstruction method and the
conventional 3D gridding algorithm with density com-
pensation, and the reconstructed images were compared.
We used both the identity transform and Daubechies 4
(42) discrete wavelet transform for the sparsity regulari-
zation term of the CS reconstruction. We varied the regu-
larization parameter, l, from 0.01||A*y||1 to 0.1||A*y||1
as in (39,43) and manually selected it to get the best
image qualities; l ¼ 0.05||A*y||1 gave satisfactory
results for most of the cases with both sparsity regulari-
zations. The density compensation function for the
gridding algorithm was calculated using the iterative
procedure proposed in Ref. 34. For both the CS recon-
struction and the gridding algorithm, a Kaiser-Bessel
function with window size 4.0 was used for the convolu-
tion kernel (44).

For the second experiment on convergence properties
of the reconstruction algorithm, iterative CS reconstruc-
tions with both image and wavelet domain regulariza-
tions were performed on the phantom data set with
7.5% sampling density, and the intermediate images
were stored for different numbers of iterations.

Whole-Heart Coronary MRI

Whole-heart coronary MR images were acquired on nine
healthy volunteers (two males, 26 6 11 years). 3D free-

breathing ECG-triggered steady-state free precession
sequences were used for imaging the heart with 3D ra-
dial trajectories. A respiratory navigator with 7 mm gat-
ing window was used for gating and tracking the respira-
tory motion (45). The k-space data acquired within the
gating window were accepted, and the k-space data
acquired outside the gating window were rejected and
reacquired until acquired within the gating window.
Within the 7-mm gating window, the position of the
imaging volume was adaptively adjusted using a tracking
factor of 0.6. The data sets were acquired with Ns ¼ 392
and Ni ¼ 10 for various sampling densities: two data sets
with 6.8, 12.1, 24.2, and 36.3%; seven data sets with 10,
20, 30, and 40%. The scan parameters were as follows:
repetition time/echo time/a ¼ 3.9/1.9/60�, FOV ¼ 256 �
256 � 256 mm3, and spatial resolution ¼ 1.3 � 1.3 � 1.3
mm3. The nominal scan time for the data set with sam-
pling density of 40% was reported to be 5 min 13 s
assuming 100% navigator efficiency. For one volunteer,
an additional scan with spatial resolution of 1.0 � 1.0 �
1.0 mm3 and sampling density of 40% was acquired.
The acquired 3D radial data were reconstructed by the
three reconstruction methods (i.e., gridding, CS with
image domain regularization, and CS with wavelet do-
main regularization), and the reconstructed image quality
was compared. We used l ¼ 0.05||A*y||1 as the regula-
rization parameter for both sparsity regularizations. The
density compensation function for the gridding algo-
rithm was calculated by the same method used in the
phantom study, and the Kaiser-Bessel function with win-
dow size 4.0 was used for the convolution kernel.

The empirical convergence properties of the CS recon-
structions were also observed similar to the phantom
study. The vessel sharpness and the vessel length of the
right coronary artery (RCA) were measured using Soap-
Bubble software (46) for quantitative assessment of the
quality of the CS reconstruction method. The vessel
sharpness is measured using a Deriche algorithm (47) as
previously described (48), where vessel sharpness of 1.0
refers to a maximum signal intensity change at the vessel
border. The sharpness and the length of the vessels with
CS reconstruction were compared with the gridding algo-
rithm using a paired t-test. A P value less than 0.05 was
considered to be statistically significant.

RESULTS

GPU Implementation of the CS Reconstruction

Table 1 shows the average time required for the comple-
tion of one iteration of the iterative CS reconstruction
with CUDA and Cþþ implementations. The reconstruc-
tion was performed on the in vivo data for four different
sampling densities (10, 20, 30, and 40%), which corre-
spond to the sampling parameters (Ns, Np, Ni) ¼ (392,
396, 10), (392, 768, 10), (392, 1152, 10), and (392, 1536,
10), respectively. The measured time is averaged over
100 iterations. The most time-consuming parts of the
Cþþ implementation are the gridding and regridding
operations, amounting to 67.1, 79.5, 85.3, and 88.5% of
the total reconstruction time for 10, 20, 30, and 40%
sampling densities, respectively. The speed-up gains of
the GPU implementation over the Cþþ implementation
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are also the largest for the gridding and regridding opera-
tions: 56.5–58.8 times speed-up for the gridding operation
and 111.5–111.8 speed-up for the regridding operation.
As the proportion of the gridding and regridding opera-
tions in the total reconstruction time of the Cþþ imple-
mentation increases, the total speed-up gain of the GPU
implementation increases as well. Overall, the speed-up
of the CUDA implementation of the CS reconstruction
with image domain regularization was 34.3, 43.7, 50.2,
and 53.9 for 10, 20, 30, and 40% sampling densities,
respectively. The speed-up of the CS reconstruction with
the wavelet domain regularization was 35.4, 42.7, 48.4,
and 51.9 for 10, 20, 30, and 40% sampling densities,
respectively. The execution time of the gridding operation
was about twice as long as the execution time of the
regridding operation in CUDA implementation for a given
sampling density, whereas the execution time of the
gridding and regridding operations was nearly the same
for Cþþ implementation. The gridding operation in
CUDA is hampered by the cumulative memory writes,
which is not present in the regridding operation; this
results in an increased execution time even if gridding
and regridding operations have the same thread configura-
tion. The execution time of FFT/IFFT was kept almost
constant over different sampling densities for both CUDA
and Cþþ implementations, as the size of reconstruction
matrix was the same for all data sets (392 � 392 � 392).

The total execution time of the CS reconstruction with
image domain regularization for 20% sampled data is
85.74 s in Cþþ implementation and 1.96 s in CUDA
implementation, yielding 43.7 times speed-up. With a five-
channel phased-array coil and 1000 iterations, the recon-
struction of a 3D radial acquisition will take around 5 days
in Cþþ implementation, whereas it takes around 2½ h in
CUDA implementation. The images reconstructed with the
CUDA implementation were visually identical to those
reconstructed with the Cþþ implementation, and the nor-
malized mean-squared errors between the two reconstruc-
tions were kept less than 10�5 for tested 3D radial datasets.

Phantom Experiment

Figure 4 shows the reconstruction results of an example
slice of the 3D radial acquisition using the aforemen-

tioned algorithms with different sampling densities of
7.5, 10, 20, 30, and 40%. At the bottom left of each
image, a selected region of the phantom is shown at a
larger scale. The normalized mean-squared error from
the reference image with 100% sampling density is also
included at the bottom right of each image, calculated as
MSE ¼ jjxref � xunderjj22=jjxref jj

2
2, where xref denotes the ref-

erence image from 100% sampled k-space data and xun-
der denotes the reconstructed image from the under-
sampled k-space data. Both of the CS reconstructions
show improved image quality compared with the con-
ventional gridding reconstruction, and the improvement
is more distinct with lower sampling densities. The
streaking artifacts degrade the image quality of the con-
ventional gridding reconstructions for lower sampling
densities (20, 10, and 7.5%), whereas most of the streak-
ing artifacts are removed on the CS reconstructed images
for the same sampling densities. Overall, the CS recon-
structions have less visible artifacts and improved image
homogeneity compared with the gridding reconstruc-
tions. In particular, the image domain regularization pro-
vides better image quality at sharp edges, whereas the
wavelet domain regularization is generally better at
removing streaking artifacts. The CS reconstruction with
image domain regularization provides the least normal-
ized mean-squared error values at all sampling densities.

Figure 5 depicts the resulting images generated by the CS
reconstruction with image domain regularization for differ-
ent numbers of iterations. The streaking artifacts in the ear-
lier iterations are gradually removed as the number of itera-
tions increases, whereas the image loses the sharpness at
the edges of the phantom object and becomes slightly more
blurry up to 500 iterations. After additional 2500 iterations,
the sharpness of the object is improved and the image looks
more refined with preserved edges. A similar trend in the
convergence of the CS algorithm is observed for the recon-
structions with the wavelet transform as the regularization
term. However, no improvement in the image quality was
observed after 500 iterations in this case.

In Vivo Experiment

Figures 6 and 7 show the example slices of axial and
reformatted sagittal views from 3D whole-heart

Table 1
Average Time (s) Required for Performing Main Operations in One Iteration of the CS Reconstruction for Each Coil with CUDA and Cþþ
Implementations for a 3D Radial Data of Size (Ns ¼ # sample, Np ¼ # projection, and Ni ¼ # interleaves) and Associated Speed-Up (SU)

(Ns, Np, Ni)

(392, 396, 10) (392, 768, 10) (392, 1152, 10) (392, 1536, 10)

CUDA Cþþ SU CUDA Cþþ SU CUDA Cþþ SU CUDA Cþþ SU

FFT 0.27 s 5.00 s 18.5 0.26 s 5.01 s 18.7 0.27 s 4.99 s 18.5 0.27 s 4.99 s 18.2
IFFT 0.27 s 5.04 s 18.6 0.26 s 5.06 s 18.8 0.27 s 5.04 s 18.7 0.27 s 5.06 s 18.6

Gridding 0.31 s 17.59 s 56.5 0.58 s 34.04 s 58.1 0.86 s 51.00 s 58.7 1.15 s 67.84 s 58.8
Regridding 0.15 s 17.64 s 111.5 0.30 s 34.12 s 111.8 0.45 s 51.11 s 111.8 0.60 s 67.99 s 111.6
Thresholding 0.01 s 1.10 s 69.1 0.01 s 1.10 s 68.6 0.01 s 1.10 s 68.7 0.01 s 1.09 s 67.1

Etc. 0.50 s 6.07 s - 0.51 s 6.39 s - 0.50 s 6.41 s - 0.52 s 6.45 s -
Total (cs-image) 1.52 s 52.48 s 34.3 1.96 s 85.74 s 43.7 2.38 s 119.68 s 50.2 2.84 s 153.44 s 53.9

DWT 0.24 s 8.51 s 35.5 0.24 s 8.51 s 35.5 0.24 s 8.53 s 35.5 0.24 s 8.51 s 35.5
IDWT 0.21 s 8.72 s 41.5 0.21 s 8.74 s 41.6 0.21 s 8.74 s 41.6 0.21 s 8.74 s 41.6
Total (cs-wavelet) 1.97 s 69.71 s 35.4 2.41 s 102.99 s 42.7 2.83 s 136.95 s 48.4 3.29 s 170.69 s 51.9

DWT, discrete wavelet transform; IDWT, inverse discrete wavelet transform.
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FIG. 4. Comparison of conventional 3D gridding reconstruction vs. 3D iterative CS reconstruction with different sparsity regularization
(image domain and wavelet domain) for a 3D radial acquisition using five different sampling densities (40, 30, 20, 10, and 7.5%). The
number of iterations was 3000 and 500 for CS with image domain sparsity and wavelet domain sparsity, respectively. For high sampling

densities all three reconstruction methods yield comparable image qualities. For lower densities, both CS reconstructions provide supe-
rior image qualities compared with the gridding algorithm, whereas CS with image domain sparsity shows better results at sharp edges

and CS with wavelet domain sparsity is better at smooth surfaces. The normalized mean-squared errors are also included at the right
bottom of the images.

FIG. 5. CS reconstruction with
image domain regularization for a

phantom imaged with 3D radial with
sampling density of 7.5% at differ-
ent numbers of iterations, initiated

with the conventional gridding
reconstruction. The streaking arti-
facts are gradually removed with

some blurring up to 500 iterations;
however, with additional iterations

the streaking artifacts are sup-
pressed with improved sharpness.
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acquisitions with isotropic 1.3-mm spatial resolution
reconstructed with the gridding reconstruction as well as
iterative CS reconstruction with image and wavelet do-
main regularizations for four different sampling densities
(6.8, 12.1, 24.2, and 36.3%). The images reconstructed
with gridding present streaking artifacts and high-fre-
quency noise-like artifacts, especially at lower sampling
densities. Both CS reconstructions were able to substan-
tially suppress these artifacts at lower densities.
Although the wavelet domain regularization provides
cleaner and more homogeneous results in the blood
pool, the image domain regularization provides more
detailed and sharper edges. The wavelet domain regula-
rization results in checkerboard-like artifacts in the
reconstructed image with 6.8% sampling density.

Figure 8 illustrates the resulting images of the CS recon-
struction with image domain regularization for different
numbers of iterations. The artifacts associated with under-
sampling are gradually removed, and the image quality
improves as the number of iterations increases. The blur-
ring of the image during the iterations shown in the phan-
tom (Fig. 5) was not observed in the in vivo result.
Between 500 and 3000 iterations, there is a slight
improvement in the image quality but it was less promi-
nent than the phantom case. Similar trends were observed
for the wavelet domain regularized CS reconstruction, but
no visual improvement was observed after 500 iterations.

Figure 9 depicts the reformatted RCA images from
3D whole-heart data with a spatial resolution of 1.0 �
1.0 � 1.0 mm3 and sampling density of 40%, recon-
structed by the iterative CS reconstruction with the
image domain regularization. The data set is retrospec-
tively undersampled to get 10 and 20% sampling den-
sities, and the reconstructed images are shown.
Because of the isotropic resolution of the 3D radial ac-
quisition in all three dimensions, the image can be
reformatted retrospectively in an arbitrary angle to
obtain a desirable imaging plane for visualizing the
vessels. Table 2 summarizes the quantitative results of
the 3D whole-heart images from six complete data sets
with sampling densities of 10, 20, 30, and 40%. The
measured vessel lengths increase as the sampling den-
sity increases for all the reconstruction methods, but
the vessel lengths are not significantly different among
the three reconstruction methods. The CS reconstruc-
tion with image domain regularization provides higher
vessel sharpness for all sampling densities, and the
improvements are statistically significant for sampling
densities of 10, 20, and 30% compared with the gridd-
ing reconstruction. The CS reconstruction with wave-
let domain regularization, however, does not show sig-
nificant improvement in the vessel sharpness over the
gridding reconstruction for any of the sampling
densities.

FIG. 6. Example slices of axial views from 3D whole-heart images reconstructed with the conventional 3D gridding reconstruction and

iterative CS reconstruction (with 1000 iterations for image domain regularization and 500 iterations for wavelet domain regularization) for
different sampling densities. For all sampling densities, CS reconstructions have less high-frequency streaking artifacts, and the
improvement in the image quality is more distinct at lower sampling densities.
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FIG. 8. An example slice from 3D data set (sampling density ¼ 6.8%) of the coronary arteries reconstructed using CS with image do-

main regularization at different iterations. The high-frequency artifacts are gradually removed throughout the iterations up to 500 itera-
tions. Slight improvement was observed after 500 iterations, but it was less prominent than the phantom case (Fig. 5).

FIG. 7. Example slices of sagittal views from 3D whole-heart images reconstructed by conventional 3D gridding reconstruction and iter-
ative CS reconstruction (with 1000 iterations for image domain regularization and 500 iterations for wavelet domain regularization) for

different sampling densities. For all the sampling densities, CS reconstructions have less high-frequency streaking artifacts, and the
improvement in the image quality is more distinct at lower sampling densities.
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DISCUSSION

In this study, we have evaluated the implementation of a
GPU-accelerated CS reconstruction for 3D radial imaging.
GPU allows substantial reduction of the reconstruction
time for 3D radial imaging. Phantom and in vivo whole-
heart coronary MRI studies demonstrated the efficacy of
CS reconstruction in removing the streaking artifacts,
especially at high acceleration rates.

For CUDA implementation of the CS reconstruction,
the computations in gridding/regridding operations can
be assigned to the device code either by dividing the 3D
radial data points among threads (radial point driven) or
by dividing the Cartesian grid points among threads (Car-
tesian point driven). The radial point driven assignment
is a simple and intuitive approach and has a minimum
number of memory reads (writes) in gridding (regrid-
ding), but results in a large amount of data sharing
among threads and cumulative memory writes in gridd-
ing as illustrated in Fig. 3a. Each CUDA thread assigned
to the radial data point will read the memory to get the
measured k-space value for the sample point and distrib-
ute the value to the neighboring Cartesian grid points
inside the convolution window. The Cartesian grid point
will have different contributions from different radial
sample points, resulting in cumulative memory access
among different CUDA threads. In our experiment, the
execution time of the gridding operation was only twice
as long as the regridding operation despite the massive
cumulative memory access and atomic operations. On
the other hand, the Cartesian point driven assignment
has minimum number of memory writes (reads) in gridd-
ing (regridding). However, one must compute the list of
the radial points associated with the Cartesian grid point
within the convolution window for every thread, which
requires additional computations and/or additional
memory usage. The Cartesian point driven assignment is
illustrated in Fig. 3b. Each CUDA thread assigned to the
Cartesian grid point will read the memory to get the
measured k-space values from neighboring radial sample
points inside the convolution window, combine the val-

ues, and write on the memory for the Cartesian point
only once. The Cartesian point driven assignment has an
uneven workload distribution over different threads and
causes poor compute to global memory access ratio for
outer k-space points, especially at low sampling den-
sities. Each thread assignment strategy has its advantages
and disadvantages, and it is not simple to determine
which one is superior to the other. In this article, we
used radial point driven assignment; more study and
optimization on the thread allocation and memory man-
agement can be done in the future for further speed-up
of the parallel implementation.

The proposed implementation of the 3D radial acquisi-
tion still takes a long time to be clinically feasible. For
example, we have used 3000 iterations for the CS recon-
struction of the phantom data (3443 voxels) and 1000

FIG. 9. Reformatted images of the RCA with isotropic resolution of (1.0 mm)3 from whole-heart 3D radial data with three sampling den-

sities (40, 20, and 10%) by the iterative CS reconstruction with image domain regularization and 1000 iterations on GPU. The actual
scan time with sampling density of 40% was 7 min 28 s with the navigator gating efficiency of 54%. The RCA is clearly visualized with

the CS reconstruction for all sampling densities, while slight blurring of the image and residual artifacts are observed at low sampling
density (10%).

Table 2
Mean 6 Standard Deviation of Normalized Vessel Sharpness

and Vessel Length (cm) Measured for Conventional Gridding
Reconstruction and Iterative CS Reconstructions

Sampling
density

Reconstruction
method

RCA
sharpness

RCA
length (cm)

10% CS-image 0.65 6 0.05*,# 7.29 6 3.02
CS-wavelet 0.52 6 0.06 7.35 6 2.95

Gridding 0.53 6 0.03 6.99 6 2.82
20% CS-image 0.61 6 0.03*,# 7.32 6 4.10

CS-wavelet 0.54 6 0.04 7.08 6 3.91
Gridding 0.51 6 0.04 6.89 6 3.61

30% CS-image 0.60 6 0.05* 8.41 6 2.82

CS-wavelet 0.54 6 0.03 8.50 6 2.76
Gridding 0.54 6 0.02 8.52 6 2.86

40% CS-image 0.64 6 0.04 9.07 6 3.28
CS-wavelet 0.59 6 0.06 9.13 6 3.26
Gridding 0.58 6 0.05 8.78 6 3.40

CS reconstruction with image domain regularization improves the

vessel sharpness for sampling densities 10, 20, and 30% com-
pared with the gridding reconstruction.
*P < 0.05 compared with the gridding reconstruction.
#P < 0.05 compared with the CS reconstruction with wavelet
domain regularization.
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iterations for the in vivo data (3923 voxels), and the final
reconstruction times for the data with 20% sampling
density were around 5 and 2.5 h, whereas the conven-
tional gridding algorithm takes a few minutes with the
Cþþ implementation for any case. However, CS recon-
struction with fewer iterations (e.g., 100 iterations) still
provides improved image quality compared with the
gridding algorithm, and the reconstruction time in this
case is around 10–16 min with 20% sampling density
with the GPU implementation.

Multiple GPUs can be used for further speed-up as the
reconstruction of the individual coil images can also be
parallelized among the GPUs. In this article, the pro-
posed CS algorithm only uses the sparsity property of
the image for the reconstruction of the undersampled
k-space data and does not exploit the coil sensitivity
information from multiple coils, which may potentially
enable further undersampling. Techniques aiming to
combine parallel imaging and CS for even higher acceler-
ation rates have been proposed (10,49–51), and GPU
implementations were also proposed for some of the
approaches (52,53). The 3D radial CS reconstruction may
also be combined with such techniques for further accel-
eration. The main issue of combining parallel imaging
for the reconstruction of the 3D radial acquisition is the
huge amount of the data and the limited size of the
GPU’s global memory. The data from multiple coils can-
not be stored on the GPU’s global memory at the same
time, and the reconstruction process needs to be divided
into smaller jobs to fit on the GPU’s memory. This will
result in frequent memory access between the main sys-
tem memory and the GPU’s memory, serial execution of
the divided processes, and additional handling of the
shared data between the divided processes. As GPU
hardware is fast developing for general purpose comput-
ing, it is expected that these limitations will be resolved,
enabling efficient implementation of more advanced
reconstruction methods without complicated designing
and optimization for GPU programming.

We have used the identity transform and the Daube-
chies 4 wavelets as the sparsifying transforms for the CS
reconstruction. The baseline assumption for successful
CS reconstruction is that the MR images are sparse in
these transform domains. Wavelets have been applied in
many MR reconstruction studies (50,54), but the use of
image domain sparsity has been limited to applications
such as MR angiography (55,56). The 3D radial trajecto-
ries are generally oversampled in the read-out direction,
and this results in an increased FOV larger than the pre-
scribed FOV. The 3D image then contains redundant
areas where there is not much signal, making the image
sparse in the image domain itself. Both image domain
and wavelet domain regularizations have provided
improved image quality compared with the conventional
gridding algorithm, but exhibited some issues that need
to be improved. The CS reconstruction with image do-
main regularization has a slow convergence speed with
the iterative algorithm described in this article. The CS
reconstruction with wavelet domain regularization pro-
vides a better convergence speed than the image domain
regularization, but shows checkerboard-like and blocky
artifacts at low sampling densities. The two-step iterative

CS reconstruction algorithm used in this article enables
simple and efficient coefficient-wise thresholding for the
thresholding step in Eq. 5 only when the sparsifying
transform is given by a unitary matrix. The image do-
main (identity transform) and Daubechies wavelet trans-
form satisfy this condition, whereas the well-known and
commonly used total variation regularization does not.
The use of other sparsifying transforms or more
advanced techniques that can adaptively capture object-
specific sparsity nature (57,58) can improve the CS
reconstruction, which requires further investigation.

CONCLUSION

We have implemented a GPU-accelerated iterative CS
reconstruction method for 3D radial acquisitions and
evaluated its performance in 3D whole-heart coronary
MRI. The CS reconstruction method improved the image
quality of highly undersampled 3D radial data sets com-
pared with the conventional gridding reconstruction,
and the GPU implementation was able to substantially
reduce the reconstruction time.

ACKNOWLEDGMENT

The authors thank Jaime Shaw for help with
proofreading.

REFERENCES

1. Weber OM, Martin AJ, Higgins CB. Whole-heart steady-state free pre-

cession coronary artery magnetic resonance angiography. Magn

Reson Med 2003;50:1223–1228.

2. Nehrke K, Bornert P, Mazurkewitz P, Winkelmann R, Grasslin I.

Free-breathing whole-heart coronary MR angiography on a clinical

scanner in four minutes. J Magn Reson Imaging 2006;23:752–756.

3. Bi X, Carr JC, Li D. Whole-heart coronary magnetic resonance angiog-

raphy at 3 Tesla in 5 minutes with slow infusion of Gd-BOPTA, a

high-relaxivity clinical contrast agent. Magn Reson Med 2007;58:1–7.

4. Alley MT, Napel S, Amano Y, Paik DS, Shifrin RY, Shimakawa A,

Pelc NJ, Herfkens RJ. Fast 3D cardiac cine MR imaging. J Magn Reson

Imaging 1999;9:751–755.

5. Barger AV, Grist TM, Block WF, Mistretta CA. Single breath-hold 3D

contrast-enhanced method for assessment of cardiac function. Magn

Reson Med 2000;44:821–824.

6. Kozerke S, Tsao J, Razavi R, Boesiger P. Accelerating cardiac cine 3D

imaging using k-t BLAST. Magn Reson Med 2004;52:19–26.

7. Nguyen TD, Spincemaille P, Weinsaft JW, Ho BY, Cham MD, Prince

MR, Wang Y. A fast navigator-gated 3D sequence for delayed

enhancement MRI of the myocardium: comparison with breathhold

2D imaging. J Magn Reson Imaging 2008;27:802–808.

8. Peters DC, Appelbaum EA, Nezafat R, Dokhan B, Han Y, Kissinger

KV, Goddu B, Manning WJ. Left ventricular infarct size, peri-infarct

zone, and papillary scar measurements: a comparison of high-resolu-

tion 3D and conventional 2D late gadolinium enhancement cardiac

MR. J Magn Reson Imaging 2009;30:794–800.

9. Shin T, Hu HH, Pohost GM, Nayak KS. Three dimensional first-pass

myocardial perfusion imaging at 3T: feasibility study. J Cardiovasc

Magn Reson 2008;10:57.

10. Otazo R, Xu J, Axel L, Sodickson D. Combination of compressed

sensing and parallel imaging for highly-accelerated 3D first-pass car-

diac perfusion MRI. In: Proceedings of the 18th Scientific Meeting of

ISMRM, Stockholm, 2010. p344.

11. Peters DC, Korosec FR, Grist TM, Block WF, Holden JE, Vigen KK,

Mistretta CA. Undersampled projection reconstruction applied to MR

angiography. Magn Reson Med 2000;43:91–101.

12. Thedens DR, Irarrazaval P, Sachs TS, Meyer CH, Nishimura DG. Fast

magnetic resonance coronary angiography with a three-dimensional

stack of spirals trajectory. Magn Reson Med 1999;41:1170–1179.

Accelerated 3D Radial Imaging for Whole Heart 101



13. Bhat H, Yang Q, Zuehlsdorff S, Li K, Li D. Contrast-enhanced whole-

heart coronary magnetic resonance angiography at 3T with radial

EPI. Magn Reson Med 2011;66:82–91.

14. Bhat H, Ge L, Nielles-Vallespin S, Zuehlsdorff S, Li D. 3D radial

sampling and 3D affine transform-based respiratory motion correc-

tion technique for free-breathing whole-heart coronary MRA with

100% imaging efficiency. Magn Reson Med 2011;65:1269–1277.

15. Stehning C, B€ornert P, Nehrke K, Eggers H, D€ossel O. Fast isotropic

volumetric coronary MR angiography using free-breathing 3D radial

balanced FFE acquisition. Magn Reson Med 2004;52:197–203.

16. Barger AV, Block WF, Toropov Y, Grist TM, Mistretta CA. Time-

resolved contrast-enhanced imaging with isotropic resolution and

broad coverage using an undersampled 3D projection trajectory.

Magn Reson Med 2002;48:297–305.

17. Lai P, Huang F, Li Y, Nielles-Vallespin S, Bi X, Jerecic R, Li D. Con-

trast-kinetics-resolved whole-heart coronary MRA using 3DPR. Magn

Reson Med 2010;63:970–978.

18. Gu T, Korosec FR, Block WF, Fain SB, Turk Q, Lum D, Zhou Y, Grist

TM, Haughton V, Mistretta CA. PC VIPR: a high-speed 3D phase-con-

trast method for flow quantification and high-resolution angiography.

AJNR Am J Neuroradiol 2005;26:743–749.

19. O’Sullivan JD. A fast sinc function gridding algorithm for fourier

inversion in computer tomography. IEEE Trans Med Imaging 1985;4:

200–207.

20. Block KT, Uecker M, Frahm J. Undersampled radial MRI with multi-

ple coils. Iterative image reconstruction using a total variation con-

straint. Magn Reson Med 2007;57:1086–1098.

21. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sen-

sitivity encoding for fast MRI. Magn Reson Med 1999;42:952–962.

22. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J,

Kiefer B, Haase A. Generalized autocalibrating partially parallel

acquisitions (GRAPPA). Magn Reson Med 2002;47:1202–1210.

23. Pruessmann KP, Weiger M, B€ornert P, Boesiger P. Advances in sensi-

tivity encoding with arbitrary k-space trajectories. Magn Reson Med

2001;46:638–651.

24. Seiberlich N, Breuer FA, Blaimer M, Barkauskas K, Jakob PM, Gris-

wold MA. Non-Cartesian data reconstruction using GRAPPA operator

gridding (GROG). Magn Reson Med 2007;58:1257–1265.

25. Chang T, He L, Fang T. MR image reconstruction from sparse radial

samples using Bregman iteration. In: Proceedings of the 13th Scien-

tfic Meeting of ISMRM, Seattle, 2006. p696.

26. Beck A, Teboulle M. A fast iterative shrinkage-thresholding algo-

rithm for linear inverse problems. SIAM J Imaging Sci 2009;2:

183–202.

27. Doneva M, Eggers H, Rahmer J, B€ornert P, Mertins A. Highly under-

sampled 3D golden ratio radial imaging with iterative reconstruction.

In: Proceedings of the 16th Scientific Meeting of ISMRM, Toronto,

Canada, 2008. p336.

28. Sorensen TS, Schaeffter T, Noe KO, Hansen MS. Accelerating the

nonequispaced fast fourier transform on commodity graphics hard-

ware. IEEE Trans Med Imaging 2008;27:538–547.

29. Sorensen TS, Atkinson D, Schaeffter T, Hansen MS. Real-time recon-

struction of sensitivity encoded radial magnetic resonance imaging

using a graphics processing unit. IEEE Trans Med Imaging 2009;28:

1974–1985.

30. Knoll F, Unger M, Diwoky C, Clason C, Pock T, Stollberger R. Fast

reduction of undersampling artifacts in radial MR angiography with

3D total variation on graphics hardware. Magn Reson Mater Phys

Biol Med 2010;23:103–114.

31. Buchgraber G, Knoll F, Freiberger M, Clason C, Grabner M, Stoll-

berger R. Fast regridding using LSQR on graphics hardware. In: Pro-

ceedings of the 18th Scientific Meeting of ISMRM, Stockholm, 2010.

p4959.

32. Stone SS, Haldar JP, Tsao SC, Hwu WmW, Sutton BP, Liang ZP.

Accelerating advanced MRI reconstructions on GPUs. J Parallel Dis-

trib Comput 2008;68:1307–1318.

33. Wong STS, Roos MS. A strategy for sampling on a sphere applied to

3D selective RF pulse design. Magn Reson Med 1994;32:778–784.

34. Pipe JG, Menon P. Sampling density compensation in MRI: rationale

and an iterative numerical solution. Magn Reson Med 1999;41:

179–186.

35. Johnson KO, Pipe JG. Convolution kernel design and efficient algo-

rithm for sampling density correction. Magn Reson Med 2009;61:

439–447.

36. Zwart NR, Johnson KO, Pipe JG. Efficient sample density estimation

by combining gridding and an optimized kernel. Magn Reson Med

2012;67;707–710.

37. Rasche V, Proksa R, Sinkus R, Bornert P, Eggers H. Resampling of

data between arbitrary grids using convolution interpolation. IEEE

Trans Med Imaging 1999;18:385–392.

38. Daubechies I, Defrise M, De Mol C. An iterative thresholding algo-

rithm for linear inverse problems with a sparsity constraint. Commun

Pure Appl Math 2004;57:1413–1457.

39. Wright SJ, Nowak RD, Figueiredo MAT. Sparse reconstruction by

separable approximation. IEEE Trans Signal Process 2009;57:

2479–2493.

40. NVIDIA Corporation. NVIDIA’s next generation CUDA compute

architecture: Fermi. white paper. Santa Clara, CA: NVIDIA Corpora-

tion; 2009.

41. Frigo M, Johnson SG. The design and implementation of FFTW3.

Proc IEEE 2005;93:216–231.

42. Daubechies I. Ten lectures on wavelets. Philadelphia, PA: Society for

Industrial and Applied Mathematics;1992.

43. Kim S, Koh K, Lustig M, Boyd S, Gorinvesky D. An interior-point

method for large-scale l1-Regularized Least Squares. IEEE J Select

Top Signal Process 2007;1:606–617.

44. Jackson JI, Meyer CH, Nishimura DG, Macovski A. Selection of a con-

volution function for Fourier inversion using gridding [computerised

tomography application]. IEEE Trans Med Imaging 1991;10:473–478.

45. Scott AD, Keegan J, Firmin DN. Motion in cardiovascular MR imag-

ing. Radiology 2009;250:331–351.

46. Etienne A, Botnar RM, van Muiswinkel AMC, Boesiger P, Manning

WJ, Stuber M. ‘‘Soap-Bubble’’ visualization and quantitative analysis

of 3D coronary magnetic resonance angiograms. Magn Reson Med

2002;48:658–666.

47. Deriche R. Fast algorithms for low-level vision. IEEE Trans Pattern

Anal Mach Intell 1990;12:78–87.

48. Botnar RM, Stuber M, Danias PG, Kissinger KV, Manning WJ.

Improved coronary artery definition with T2-weighted, free-breathing,

three-dimensional coronary MRA. Circulation 1999;99:3139–3148.

49. Liang D, Liu B, Wang J, Ying L. Accelerating SENSE using com-

pressed sensing. Magn Reson Med 2009;62:1574–1584.

50. Lustig M, Pauly JM. SPIRiT: iterative self-consistent parallel imaging

reconstruction from arbitrary k-space. Magn Reson Med 2010;64:

457–471.

51. Knoll F, Clason C, Bredies K, Uecker M, Stollberger R. Parallel imag-

ing with nonlinear reconstruction using variational penalties. Magn

Reson Med 2012;67;34–41.

52. Uecker M, Zhang S, Frahm J. Nonlinear inverse reconstruction for

real-time MRI of the human heart using undersampled radial FLASH.

Magn Reson Med 2010;63:1456–1462.

53. Murphy M, Keutzer K, Vasanawala S, Lustig M. Clinically feasible

reconstruction time for L1-SPIRiT parallel imaging and compressed

sensing MRI. In: Proceedings of the 18th Scientific Meeting of

ISMRM, Stockholm, 2010. p4854.

54. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of com-

pressed sensing for rapid MR imaging. Magn Reson Med 2007;58:

1182–1195.

55. Cukur T, Lustig M, Nishimura DG. Improving non-contrast-enhanced

steady-state free precession angiography with compressed sensing.

Magn Reson Med 2009;61:1122–1131.

56. Akcakaya M, Hu P, Chuang ML, Hauser TH, Ngo LH, Manning WJ,

Tarokh V, Nezafat R. Accelerated noncontrast-enhanced pulmonary

vein MRA with distributed compressed sensing. J Magn Reson Imag-

ing 2011;33:1248–1255.

57. Doneva M, Bornert P, Eggers H, Stehning C, Senegas J, Mertins A.

Compressed sensing reconstruction for magnetic resonance parameter

mapping. Magn Reson Med 2010;64:1114–1120.

58. Akcakaya M, Basha TA, Goddu B, Goepfert LA, Kissinger KV, Tarokh

V, Manning WJ, Nezafat R. Low-dimensional-structure self-learning

and thresholding: regularization beyond compressed sensing for MRI

reconstruction. Magn Reson Med 2011;66:756–767.

102 Nam et al.


