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A Frame Construction and a Universal Distortion
Bound for Sparse Representations

Mehmet Akçakaya and Vahid Tarokh

Abstract—We consider approximations of signals by the ele-
ments of a frame in a complex vector space of dimension and
formulate both the noiseless and the noisy sparse representation
problems. The noiseless representation problem is to find sparse
representations of a signal � given that such representations exist.
In this case, we explicitly construct a frame, referred to as the
Vandermonde frame, for which the noiseless sparse representation
problem can be solved uniquely using � �� operations, as long
as the number of non-zero coefficients in the sparse representation
of � is for some � � �. It is known that � �
cannot be relaxed without violating uniqueness. The noisy sparse
representation problem is to find sparse representations of a signal
� satisfying a distortion criterion. In this case, we establish a lower
bound on the tradeoff between the sparsity of the representation,
the underlying distortion and the redundancy of any given frame.

Index Terms—Distortion, frames, redundancy, sparse represen-
tations, sparsity.

I. INTODUCTION

LET be a complex -dimensional signal and be a basis
for . Then it is well-known that has a unique expan-

sion in terms of the elements of this basis. In particular, if is
the Fourier basis, then fast algorithms for computing the expan-
sion coefficients of are very well known.

Consider now a set of nonzero signals in an -di-
mensional complex vector space such that spans . We
refer to as a frame or a dictionary for . For there
are possibly infinite ways to represent as a linear combination
of the elements of . In this paper, we are interested in sparse
representations of with the lowest number of nonzero coeffi-
cients (referred to as the norm of the representation vector).
In fact, sparse representations have recently received wide at-
tention because of their numerous potential applications. Such
applications include magnetic resonance imaging, where only a
partial set of measurements are available to describe an object
[1]; compression using overcomplete dictionaries; separation of
images into disjoint signal types, etc. (Please see [5] and the ref-
erences therein).

If the signal to be represented is known to have a sparse
representation, the question of interest is to find the exact
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sparsest representation in terms of the dictionary elements. This
problem will be referred to as the noiseless sparse representa-
tion problem. The difficulty of this problem has caused many
researchers to look for approximations to the solution. Two
most commonly used methods are the orthogonal matching
pursuit (OMP) and basis pursuit (BP). OMP is a greedy al-
gorithm, which generalizes the classical orthonormal basis
algorithm. The OMP algorithm starts with the residual signal
at step zero set to be the original signal . Then at each step ,
the dictionary element that has the highest correlation with the
residual signal is selected. The residual signal at time
is then updated to be the projection of the residual signal at
time on the orthogonal complement space of the subspace
spanned by the dictionary elements chosen up to and including
the stage [14]. In contrast, the BP algorithm is based on
a linear programming approach to the sparse representation
problem, where instead of minimizing the number of nonzero
coefficients in the approximation, minimization of the sum of
the absolute values of the coefficients (i.e., the norm of the
representation vector) is the objective [4]. Both algorithms can
be applied to arbitrary dictionaries, and little attention has been
paid to the construction of dictionaries that support simple
algorithms for the computation of sparse representations. How-
ever, the construction of such dictionaries and their importance
may be evident from various applications [5]. This motivates
our studies in this paper, where we consider two important
cases of this problem namely the noiseless and noisy sparse
representation problems.

The noiseless sparse representation problem considers the
case when and it is known in advance that the signal
has a sparse representation in terms of the elements of the frame

. In this case, the goal is to find a solution to the sparse rep-
resentation problem in real time. This is a problem commonly
encountered in signal theory. For instance, when the underlying
frame is the Fourier basis, then the classical problem of finding
the Fourier expansion coefficients is of immense interest. In this
case, a question of fundamental importance is the fundamental
limits on sparsity of for which a unique noiseless representa-
tion exists, and the construction of the frames that achieve these
fundamental bounds and support real time solutions. We will
provide a solution to this problem in this paper.

The noisy sparse representation problem considers the case
when is not known to have an exact sparse representa-
tion. In this case, the signal cannot necessarily be represented
in terms of the elements of the frame in a sparse manner,
and any such sparse representation suffers from some distor-
tion. The objective in this case is to tradeoff sparsity for distor-
tion. Let the redundancy of be , where . We
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will study the tradeoff between sparsity, distortion, and redun-
dancy, a problem of fundamental importance. Another impor-
tant problem is to construct frames for which not only these
tradeoffs can be achieved, but also the underlying sparse repre-
sentations can be found in real time, and this is currently being
investigated.

The outline of this paper is given next. In Section II, we pro-
vide a solution to the noiseless sparse representation problem.
We will construct an explicit frame, which we refer to as the
Vandermonde frame, for which the noiseless sparse representa-
tion problem can be found uniquely using operations, as
long as the number of nonzero coefficients of the sparsest repre-
sentation of over the frame is for . We will also
argue that cannot be relaxed, without violating unique-
ness. In Section III, we consider the noisy sparse representation
problem and propose a statistical approach to this problem. We
compute a lower bound on the tradeoff between sparsity, dis-
tortion and redundancy for any frame . Finally, in Section IV,
we will make our conclusions and provide directions for future
research.

II. NOISELESS SPARSE REPRESENTATION PROBLEM

As in Section I, consider a frame of
nonzero vectors that span an -dimensional subspace

. Any vector in can be written in (possibly a
non-unique) way as the sum of the elements of . Let

be such a representation. We define to be the
smallest number of nonzero coefficients of any such expansion.
Also, for an arbitrary vector , we
define to be the number of nonzero elements of . Thus,

is simply the over all possible expansions
of as above. A main problem of interest follows.

• Most Compact Representation (MCR) Problem: Given
a frame spanning and find an expansion

for which has minimum
.

Let be the matrix whose rows are the elements of the frame
. Then the MCR Problem can be restated as

s.t. (1)

This optimization problem is in general difficult to solve. In
this light, much attention has been paid to solutions minimizing

instead, and then establishing criteria under
which the minimizing also solves the MCR Problem [1], [9].

In this section, we will take a different approach. We will
construct an explicit frame for which we have the following
problem.

• Decoding Problem: Whenever has a representation with
, for , then find ;

can be solved with a unique answer in running time .

A. Connection With Error Correcting Codes

In solving the MCR problem using the previous approach,
we make a simple albeit fundamental connection between so-
lutions to the MCR Problem and error correcting coding/de-
coding. Such connections have also been made by a number
of other authors who have realized connections between frames

and linear codes defined over the field of complex numbers [9].
Inspired by this connection and the theory of algebraic coding/
decoding, we construct frames that generalize Reed–Solomon
codes using Vandermonde matrices. Under the assumption that

, a generalized Reed–Solomon decoding algo-
rithm (which corrects up to half of the minimum distance bound)
can find the solution to the decoding problem and the MCR
problem. Such decoding algorithms and their improvements are
well known in the coding theory literature.

Consider a frame of nonzero vec-
tors that span an -dimensional subspace as above.
Consider

The vector space is clearly an -dimensional subspace
of . If can be represented by with respect to the pre-
vious frame , then all possible representations of are given
by . Thus, the problem of finding
the sparsest representation of is equivalent to finding
which minimizes . If one thinks of as a linear code
defined over the field of complex numbers, and of as the re-
ceived word, the MCR Problem is equivalent to finding the error
vector of minimum (Hamming weight) over
all the codewords . Problems of this nature have been
widely studied in the language of coding theory, however, these
codes are typically defined over finite fields. The main contri-
bution of this paper is the observation that complex analogues
of the Reed–Solomon codes can be constructed from Vander-
monde matrices and the associated sparse representations can
be computed using many well-known Reed–Solomon-type de-
coding algorithms.

B. Vandermonde Frames

Consider the matrix given as follows:

...
...

. . .
. . .

. . .
...

(2)

where , are distinct, nonzero complex num-
bers. Note the following.

• Condition I: Any arbitrary set of distinct rows of are
linearly independent holds. This is clear since any such
rows form a Vandermonde matrix with nonzero determi-
nant.

We define our frame to consist of the rows of , i.e.,

for (3)

and refer to it as a Vandermonde frame.
Let be the -dimensional subspace spanned by the ele-

ments of . The subspace , as defined previously, is given by
the vectors for which

(4)
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where

(5)

Clearly, the subspace is -dimensional. The subspace
has the following interesting property.
Lemma 2.1: For any nonzero vector , we have
. Moreover, there exist vectors with .

Proof: Suppose that is nonzero and . Let
the nonzero elements of occur in locations ,
where . Then rows of matrix
are dependent. This violates Condition I. To observe that there
are vectors with , we have to only exhibit
a linear dependence between rows of . This is trivial
since any arbitrary rows of are linearly dependent.

In the language of algebraic coding theory, the subspace is
a maximum distance separable (MDS) linear code of length ,
dimension and minimum distance . In fact, as we
will see from our decoding algorithm, this subspace provides
complex analogues of the Reed–Solomon codes.

C. Uniqueness of The Sparsest Representation

Next, let a vector be given and we are given that
. The following Lemma is also given in [3]. For

completeness, we present another proof here.
Lemma 2.2: Given that , the solution to the

decoding problem is unique.
Proof: Let and be two

solutions to the decoding problem with
and . Then, and

. By Lemma 2.1, and
.

The importance of Lemma 2.2 follows from the following
obvious albeit fundamental observation. If in the decoding al-
gorithm, we were interested in finding all the representations
of with , then the solution was not nec-
essarily unique. This non-uniqueness can be seen from Lemma
2.1. Because there exists with , one can
easily construct two distinct representations of the same vector
in both having nonzero coefficients (provided
that is an integer). Thus, the bound in the Decoding
Problem cannot be improved assuming that the algorithm is to
output a unique solution.

We note that the uniqueness of the solution to the Decoding
Problem is not necessary when considered from the point of
view of frame theory. In fact, our proposed decoding framework
may be readily generalized using well-known methods in coding
theory to design algorithms that list all possible compact repre-
sentations of a given vector . Such algorithms are known
as list decoding algorithms in the literature [11].

D. Decoding Algorithm

We next provide a polynomial time algorithm that outputs the
sparsest representation of under the assumption that

. Let be an arbitrary representation of in
this frame. A candidate can be easily computed using
operations. For example, if we let , then

can be computed by multiplying the inverse of
a Vandermonde matrix (that can be once computed offline) by
, requiring at most operations. We fix the representation

of and seek to compute the most compact
description of in this frame
with . Clearly

(6)

where . For any , let

and

(7)

(8)

then by (4), we have

(9)

for . Thus, can be computed
using at most operations.

Let the nonzero elements of be in
, where . For , let

and . The following Lemma gives the
analogue of the key equation in Reed–Solomon decoding [7].

Lemma 2.3: Define

(10)

(11)

(12)

then

(13)

anywhere in the disk .
Proof: Although the proof is given in [7], for completeness,

we repeat the proof here. Clearly

(14)

Under the assumption of , we have

Replacing this in (14), we have

(15)
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Clearly, . Thus, the result follows.
Since and

only are needed to compute and
from the previous (for instance by solving a linear system of

equations for the coefficients of and ). It is well known
that this task can be achieved more efficiently using the Euclid
division algorithm [7]. In fact, letting
one can write

for all . The computation of and can be per-
formed using the Euclid division algorithm as described for in-
stance in [7, Sec. 9, Ch. 12]. The number of operations required
for the execution of this algorithm is clearly .

Once and are found, we first compute for
. This step only requires compu-

tations (since the required powers of ,
must only be once computed offline). In this way, the roots

of (and hence the locations of nonzero
elements of ) can be found. The values can then
be found using the formula (attributed to Forney)

(16)

where is the derivative of .
In conclusion, the vector giving the most compact represen-

tation of can be computed with complexity .
We note that the explicit construction in Section II achieves

the maximum sparsity factor (under uniqueness) for the MCR
problem. However, unlike the basis pursuit and OMP algo-
rithms, the decoding algorithm for this construction does not
immediately generalize to the noisy sparse representation
problem and this topic is currently being investigated.

III. NOISY SPARSE REPRESENTATION PROBLEM

The noisy sparse representation problem considers the case
when is not known to have an exact sparse represen-
tation. Then cannot necessarily be represented in terms of the
elements of the frame in a sparse manner, and any such sparse
representation suffers from some distortion. In addressing this
distortion, since any scaling of by a factor of changes
the distortion in a sparse representation of in terms of a set of
given vectors by a factor of and does not affect the sparsity,
it can be assumed without loss of generality, that .

Two classes of noisy representation problems have been con-
sidered in the literature, namely error constrained sparse ap-
proximation (ECSA) and sparsity constrained approximation
(SCA) [12]. These are formulated as

s.t. (17)

or

s.t. (18)

Both ECSA and SCA problems have been studied in an set-
ting [2], [5] or by using OMP methods [13]. Almost all the ex-
isting research are based on a worst case criterion, where the
maximum distortion over all vectors is the underlying mea-
sure of performance.

The SCA and ECSA problems are intimately related. In par-
ticular, if the SCA problem can be solved in polynomial time,
then so can the ECSA problem. In fact the threshold on the value
of can be decreased from to 0 in applications (or in

applications, with a binary search) of the polynomial
time algorithm for the SCA problem, until the minimum distor-
tion exceeds the required threshold for the ECSA problem.

A. Statistical Model

We are interested in the theoretical limits of the tradeoff be-
tween sparsity, redundancy, and distortion. Therefore, we as-
sume that a decoder, which solves the appropriate minimiza-
tion problem is being used. Such a decoder might not be imple-
mentable in practice, but it provides a theoretical understanding
to the limits of the representations.

For a given , the decoder for the SCA problem finds the
closest (in the Euclidean distance sense) sparse representation

(with ). In order to quantify the perfor-
mance of SCA, we propose an average distortion approach.
Such measures are motivated by information theory and by the
fact that we seek frames for which the SCA works well for typ-
ical signals. In fact, if a given vector is selected according to a
given distribution on the hypersphere of radius , an appro-
priate frame must be designed to reduce the average distortion
of SCA. If no knowledge of is at hand, it is natural to assume
that is distributed uniformly on the complex hypersphere of
radius centered at the origin, and this assumption will be
used throughout the rest of this paper. In formal words, for any
frame , and sparsity factor , our measure of perfor-
mance of is given by

where the minimum is taken over all representations of with
and the expectation is for uniformly distributed

on the -dimensional complex hypersphere of radius cen-
tered at the origin.

We also note that this uniform distribution assumption is a
worst case characterization for the distribution of . If any infor-
mation was known about the distribution of then the elements
of would be chosen accordingly. For instance, in the extreme
case, where has a discrete distribution concentrated at a finite
number of points, could be chosen to guarantee a distortion-
less representation for .

B. Tradeoff Between Sparsity, Redundancy, and Distortion

Let , where is the redundancy, and let ,
where is the required sparsity. Let .

Consider all the -dimensional subspaces of that are
spanned by all subsets of size of . There are

distinct -dimensional such subspaces denoted
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by . Given a vector on the -di-
mensional complex hypersphere, the SCA decoder finds the
closest to . In other words, it minimizes

, where is the projection operator onto .
Using this geometric interpretation, we will find a lower

bound on the distortion as a function of sparsity and redundancy
of any frame . To this end, we define an -dimensional com-
plex generalized cap of radius around an -dimensional
plane as

(19)

where is the -dimensional complex unit hypersphere

If we are only interested in the radius of the generalized cap, but
not the specific plane, we will use the notation .

In order to calculate the quantity of interest,
for uni-

formly distributed on , we need to know the distribution of
, where and is

uniformly distributed on . Clearly, for any given ,
we have

There exists a plane within distance of

is in the area covered by the generalized

caps of radius

Since

(20)

where denotes the surface area of . Thus

and

(21)
In order to bound

we will establish a lower bound on the right-hand side of in-
equality (21), by estimating the value of for which

.

Fig. 1. Generalized cap in with � � �, � � �.

Clearly, satisfies: and . It is well
known that the projection matrix can be diagonalized as

, where is a unitary matrix and is a diagonal
matrix with 1’s as the first and 0’s as the rest of

diagonal entries. Also, we note that
, and is just a unitary transformation of

that has the same uniform distribution as .
Let be a vector uniformly distributed on the unit hyper-

sphere. One way to generate is to take a complex zero-mean
Gaussian vector , where is the identity ma-
trix, and let [8, Thm 1.5.6]. Clearly, has the same
distribution as , and thus has the same dis-
tribution as .

It is easy to see that

where each is a complex Gaussian random vari-
able. It is well known [8, Th. 1.5.7] that this fraction has

type distribution. Thus

where . But also

Therefore, for an -dimensional generalized cap in we
have

(22)
We now prove a number of technical lemmas.

Lemma 3.1:

Proof:
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Hence, we have

Substituting this to the integral gives the desired result.
Lemma 3.2: Let ,

then attains its maximum for at .
Proof: By direct computation, we have

for . Thus, is an increasing continuous function
that attains it maximum at .

Since , we conclude from the previous lemma that

Lemma 3.3:

Proof:

By combining these results, we obtain the following bound:

(23)

We define

(24)

then we have the following Lemma.
Lemma 3.4: For any frame of dimension and size

over , and for a sparse representation over for uniformly
distributed on the unit hypersphere , with at most
nonzero coefficients, we have the following.

• For , for any
.

• For , the equality is attained
at

(25)

where

and .
• For , at

• For , for any
.

Proof: The results for and are obvious.
Thus, without loss of generality, we can assume .
Hence, . For , we first claim that

(26)

Clearly

thus

The claim is proven since ,
, and

. The value of and the fact that
now follows from (23). Since

we have and thus as
claimed.

For , we directly calculate

Therefore, becomes 1 at

and .
We now prove the main result of this section.
Theorem 3.5: For any frame over of dimension , re-

dundancy , for sparsity factor , and
for uniformly distributed on the -dimensional hypersphere
of radius , we have the following.

• For , we have .
• For , we have

where
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and

• For

where

• For , we have .
Proof: The results for and are obvious. Let

, then

and we have previously proved that

By applying inequality (23), we have

Combining the previous and by applying Lemma 3.4, we have

for and

for . Thus, for

(27)

We will next bound the last integral. Let

(28)

where is defined as in (24). Clearly, ranges from 0 to
1 in this case. Also

(29)

Since by (26), , and
, the denominator of the previous is not equal to 0 within

the region of integration. Now we note that

(30)

Also

(31)

since for . Thus, the last integral in (27) is
bounded above by

(32)

which gives us

(33)

and the result for .
For

and the result follows easily by direct integration.
We note that all the bounds attain values in [0,1], since we

have integrated a function that takes values in [0,1] over a region
. Theorem 3.5 gives a fundamental limit on

average distortion that any frame over has to satisfy. We now
fix and and let . The following asymptotic result
follows.
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Corollary 3.6: For any frame over of dimension ,
redundancy , for sparsity factor and
for uniformly distributed on the -dimensional hypersphere
of radius , as , we have

(34)

where

(35)

Proof: The result follows by replacing and
in the statement of Theorem 3.5 and using

and

It is noteworthy that the above asymptotic corollary can be
proven by combining a result of Sakrison [10] with the proof
method of [6], although the setting and the topic of our paper is
very different from these papers.

IV. CONCLUSION

In this paper, we considered approximations of signals by the
elements of a frame in a complex vector space of dimension .
We formulated both the noiseless and the noisy sparse repre-
sentation problems. For the noiseless representation problem, it
is known in advance that the signal has a sparse representa-
tion in terms of the elements of the frame . In this case, the
goal is to find a solution to the sparse representation problem in
real time. We provided a solution to this problem, by explicitly
constructing a frame, which we referred to as the Vandermonde
frame, for which the noiseless sparse representation problem
can be solved uniquely using operations, as long as the
number of nonzero coefficients in the sparse representation of

is for some . We also showed that
cannot be relaxed without violating uniqueness.

For the noisy sparse representation problem, we considered
the case when the signal cannot be represented in terms of
the elements of the frame in a sparse manner and noted that
any such representation suffers from distortion. In this case, we
established a lower bound on the tradeoff between sparsity, dis-
tortion, and redundancy. While these bounds do not lead to a
constructive frame or an algorithm, they can be used for perfor-
mance comparison of other frames and associated decoding al-
gorithms. Our future research will focus on constructing frames
for which not only these tradeoffs can be achieved, but also the
underlying sparse representations can be found in real time.
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