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Mehmet Akçakaya, Tamer A. Basha, Silvio Pflugi, Murilo Foppa,

Kraig V. Kissinger, Thomas H. Hauser, and Reza Nezafat*

Purpose: To develop and evaluate an image reconstruction
technique for cardiac MRI (CMR) perfusion that uses localized

spatio-temporal constraints.
Methods: CMR perfusion plays an important role in detecting
myocardial ischemia in patients with coronary artery disease.

Breath-hold k-t–based image acceleration techniques are typi-
cally used in CMR perfusion for superior spatial/temporal reso-

lution and improved coverage. In this study, we propose a
novel compressed sensing-based image reconstruction tech-
nique for CMR perfusion, with applicability to free-breathing

examinations. This technique uses local spatio-temporal con-
straints by regularizing image patches across a small number

of dynamics. The technique was compared with conventional
dynamic-by-dynamic reconstruction, and sparsity regulariza-
tion using a temporal principal-component (pc) basis, as well

as zero-filled data in multislice two-dimensional (2D) and
three-dimensional (3D) CMR perfusion. Qualitative image
scores were used (1 ¼ poor, 4 ¼ excellent) to evaluate the

technique in 3D perfusion in 10 patients and five healthy sub-
jects. On four healthy subjects, the proposed technique was

also compared with a breath-hold multislice 2D acquisition
with parallel imaging in terms of signal intensity curves.
Results: The proposed technique produced images that were

superior in terms of spatial and temporal blurring compared
with the other techniques, even in free-breathing datasets. The

image scores indicated a significant improvement compared
with other techniques in 3D perfusion (x-pc regularization,
2.8 6 0.5 versus 2.3 6 0.5; dynamic-by-dynamic, 1.7 6 0.5;

zero-filled, 1.1 6 0.2). Signal intensity curves indicate similar
dynamics of uptake between the proposed method with 3D

acquisition and the breath-hold multislice 2D acquisition with
parallel imaging.
Conclusion: The proposed reconstruction uses sparsity regu-

larization based on localized information in both spatial and
temporal domains for highly accelerated CMR perfusion with

potential use in free-breathing 3D acquisitions. Magn Reson
Med 000:000–000, 2013. VC 2013 Wiley Periodicals, Inc.
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INTRODUCTION

Cardiac MRI (CMR) perfusion enables detection of myo-
cardial ischemia in patients with suspected coronary
artery disease (CAD) by providing an assessment of
regional myocardial blood flow (1–3). Clinically, two-
dimensional (2D) multislice saturation-prepared imaging
is often used for evaluation of left ventricular (LV) perfu-
sion with two to four short-axis slices acquired every R-
R interval (4). Parallel imaging techniques (5–7) have
been used to improve the coverage, spatial resolution,
and/or temporal resolution in these acquisitions.

To improve the spatio-temporal resolution and cover-
age further, k-t–based acceleration techniques, such as k-
t sensitivity encoding (SENSE) (8) and k-t principal com-
ponent analysis (PCA) (9), which use correlations across
the temporal dimension, have been applied to perfusion
CMR. These techniques use a uniform undersampling of
the k-space, which varies across different dynamics,
resulting in a point-spread-function with lattice structure
that leads to a periodic replication of the underlying
image (8). The reconstruction then unfolds the resulting
overlap of the image in the x-f domain (Fourier transform
of images along the time direction) using adaptive tem-
poral filtering, with signal correlation information
derived from low-resolution training data, as well as
multicoil information (9). For perfusion imaging, the cen-
tral part of k-space is fully sampled in each dynamic to
generate the training data. These techniques were used
to acquire multislice 2D images with five-fold accelera-
tion and 1.4 � 1.4 mm2 in-plane resolution, with four
slices acquired over two R-R intervals (10). Compressed
sensing (CS), which uses the compressibility of images
in a transform domain for reconstruction from incoher-
ently undersampled data (achieved by random under-
sampling for Cartesian acquisition) has also been applied
to perfusion CMR (11). By employing a B1-weighted
approach using multicoil information and sparsity in the
x-f domain, up to eight-fold acceleration was achieved
for the acquisition of 10 slices covering the LV (11).
Other advanced reconstruction techniques based on a
combination of low-rank regularization and total varia-
tion (TV) norm regularization (12), as well as group spar-
sity (13) have also been used in this context.

Although the aforementioned k-t–based techniques can
be used for high acceleration rates, the use of temporal
correlations require that the subsequent dynamics be
spatially aligned. This necessitates a prolonged breath-
hold acquisition, which may be difficult for many
patients. Translational respiratory motion correction
based on an initial reconstruction and generated by x-f
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space regularization has been proposed as a way of facil-
itating free-breathing 2D perfusion acquisitions (14).
However, the reliance on an initial estimate generated by
x-f space regularization may reduce the applicability of
this technique to highly accelerated acquisitions, espe-
cially in patients with irregular breathing patterns. Rank-
based regularization has also been used in acquisitions
with breath-holding at the time of injection and free-
breathing in later dynamics (12).

Larger coverage of the LV is necessary to fully evaluate
the extent of ischemia, which is a strong predictor of
outcome (15). Three-dimensional (3D) CMR perfusion
has been proposed for its superior contiguous coverage
and higher signal-to-noise ratio (SNR) to potentially
improve the estimation of the extent of hypoperfused tis-
sue (16,17). The contiguous coverage reduces slice misre-
gistration errors compared with 2D imaging, facilitating
accurate quantification. However, for adequate spatio-
temporal resolution in 3D perfusion CMR, accelerated
imaging is required. Due to the enhanced SNR, parallel
imaging techniques that are commonly used for 2D mul-
tislice imaging can be applied with higher acceleration
factors. Kellman et al. (16) used a six-fold acceleration
factor with adaptive sensitivity encoding (6,18) in which
time-varying coil sensitivity maps are generated using
sliding-window reconstructions to achieve a spatial reso-
lution of 2.3 � 3.6 � 10 mm3 with a 312-ms acquisition
window on a 1.5T scanner. Shin et al. (17) used an
acceleration factor of six with 2D sensitivity encoding
(19) and adaptive sensitivity encoding (18) to achieve a
spatial resolution of 3.0 � 4.3 � 10 mm3 in a 304-ms
acquisition window at 3T. However, it was noted that
such resolution may be insufficient for visualizing sub-
endocardial defects.

To further improve the spatio-temporal resolution, k-t–
based acceleration techniques have been applied to 3D
perfusion. Vitanis et al. (20) reported that an improved
k-t principal PCA reconstruction technique enabled 3D
perfusion acquisitions with a spatial resolution of 2.3 �
2.3 � 10 mm3 in a 225-ms acquisition window at 3T.
The improved reconstruction accuracy was due to the
use of a compartment-based approach in which different
spatio-temporal basis functions were derived for distinct
spatial compartments of the heart. A combination of k-t
SENSE (8) reconstruction and dual-density stack-of-spi-
rals acquisition was used to achieve 2.4 � 2.4 � 9 mm3

spatial resolution and 230-ms temporal resolution (21) at
1.5T. B1-weighted CS with x-f domain sparsity has also
been reported in a feasibility study for 3D perfusion
CMR (22). All of these k-t–based approaches for 3D per-
fusion CMR have been implemented for breath-hold
acquisitions.

In this study, we sought to develop and evaluate a
novel CS-based image reconstruction technique for accel-
erated perfusion CMR with randomly undersampled
acquisitions, with applicability to free-breathing exami-
nations. Our reconstruction relies on recently described
approaches to accelerated MRI reconstruction, which
demonstrate that the use of localized image features,
such as compartments across temporal dynamics (20) or
image patches across different parts of the volume (23),
improves reconstruction quality. We hypothesized that

2D image patches in the imaging volume are varying
gradually across a small number of consecutive heart-
beats, even for free-breathing acquisitions, instead of the
whole volume varying gradually across all dynamics as
in traditional k-t techniques. We used these local spatio-
temporal correlations to generate distinct sparsifying
bases for different parts of the image volume. This spar-
sity is then used to regularize a B1-weighted least
squares problem. The performance of the proposed tech-
nique was first established with free-breathing multislice
2D acquisitions. The technique was evaluated in a num-
ber of subsequent patients, both with breath-hold and
free-breathing 3D acquisitions.

METHODS

Proposed Reconstruction Technique

Randomly undersampled data with incoherent aliasing
artifacts can be reconstructed using CS techniques. CS
reconstruction solves a regularized least-squares prob-
lem, enforcing data consistency with the measured k-
space locations, also allowing for the incorporation of
coil sensitivities in a B1-weighted approach, and using a
sparsifying transform for exploiting the compressibility
of the image volume. For perfusion, conventional CS
algorithms use the x-f space or the x-pc space for sparsi-
fication in which the principal components (pc) are
derived for the whole volume.

The proposed reconstruction approach uses distinct
spatio-temporal sparsifying functions based on PCA for
different parts of the imaging volume to compensate for
various physiological changes. The use of a distinct pc
basis for different parts of the imaging volume is
depicted in Figure 1. In perfusion imaging, different
anatomies exhibit different contrast uptake, resulting in
distinct temporal correlations. In compartment-based k-t
PCA, this was exploited by defining compartments of
interest for the right ventricle (RV), LV, myocardium,
and others. In the proposed algorithm, we extend the use
of compartments to Nb � Nb 2D image patches. This
allows us to consider overlapping image patches within
the same slice, leading to an overcomplete representa-
tion, which was shown to improve reconstruction quality
in CS (23). It further facilitates the use of this technique
with free-breathing data, since the correct determination
of individual compartments for distinct structures such
as RV, LV, or myocardium as described by Vitanis et al.
(20) requires the alignment of different dynamics. The
second component of the proposed approach is that only
Ndyn-consequent dynamics are considered when generat-
ing the sparsifying transforms, instead of all of the
dynamics, as in traditional k-t methods. This is based on
the hypothesis that even with moderate free-breathing,
the displacement over a small number of consecutive
heartbeats will be regular and not severe. Consequent
dynamics is used in an overlapping fashion to lead to an
overcomplete representation.

The algorithm was implemented in two stages using a
bootstrap method (24) in which an initial reconstruction
is used to generate the distinct principal components for
each Nb � Nb � 1 � Ndyn overlapping image volumes, as
in Figure 1. These bases are subsequently used to
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sparsify the overlapping image volumes for regulariza-
tion in the second and final stage of the reconstruction.

Both stages of reconstruction rely on a B1-weighted
approach in which the coil sensitivity information is
used for data consistency during the reconstruction
(11,25). Based on iterative soft thresholding (26), every
iteration of the B1-weighted algorithm can be summar-
ized as follows:

1. the current combined-coil image estimate is
denoised using the regularization function (e.g., TV
regularization);

2. the combined image is mapped to individual coils
via voxel-wise multiplication with the sensitivity
map of that coil;

3. data consistency with the measured data is enforced
by Fourier transforming the coil images, replacing
the acquired k-space locations with the acquired
lines, and inverse Fourier transforming to acquire
data-consistent images; and

4. the data-consistent coil images are combined using
the coil sensitivity maps, where the voxel-wise
product of the coil images and conjugate of the coil
sensitivity maps were summed across the coil
dimension, to generate the next image estimate.

Normalized relative coil sensitivity maps were gener-
ated for each dynamic by Hanning filtering the fully
sampled central k-space of each dynamic in the ky-kz

direction, inverse Fourier transforming these filtered k-
space data to get a low-resolution image for each coil,
and normalizing each coil image by the root-sum-squares
combination of all coil images.

For the first stage of the algorithm, a basic estimate of
the images was generated, which was then used to
derive distinct pc bases for each Nb � Nb � 1 � Ndyn

overlapping image volumes. For the proposed implemen-
tation, Nb was chosen to be 10, and Ndyn was set to 5.
Two types of basic estimates were compared visually in
a pilot study: 1) A CS reconstruction with spatial TV reg-
ularization (with TV term weight ¼ �10�4 the maximum

absolute voxel intensity value of the zero-filled data) for
reconstructing each dynamic individually and 2) a low-
resolution image generated from the fully sampled cen-
tral k-space lines. Subsequently, the preferred way of
generating the basic estimate was used for all the pro-
posed reconstructions.

In the second stage, these distinct pc bases were used
for regularization in the B1-weighted algorithm (with the
regularization term weight ¼ 10�3 times the maximum
absolute voxel intensity value of the zero-filled data) as
described previously. Hence, the first stage of each itera-
tion of the B1-weighted algorithm was modified as fol-
lows: each Nb � Nb � 1 � Ndyn overlapping image
volume of the current combined-coil image estimate was
sparsified using the corresponding pc basis for that vol-
ume, thresholded using soft thresholding, and inverse-
transformed. These overlapping thresholded volumes
were combined by simple averaging to generate the
thresholded estimate. The proposed reconstruction was
implemented using MATLAB software (version 7.6,
MathWorks, Natick, Massachusetts, USA).

In Vivo Imaging

All imaging was performed on a 1.5T Philips Achieva
(Philips Healthcare, Best, The Netherlands) system with
a 32-channel cardiac phased-array receiver coil and with-
out vasodilator stress. For this HIPAA-compliant study,
the imaging protocol was approved by our institutional
review board. Written informed consent was obtained
from all participants.

Accelerated 2D Perfusion

2D multislice perfusion images were acquired on a
healthy 21-year-old female subject without contraindica-
tions to MRI. After the first few heartbeats, 0.05 mmol/kg
gadobenate dimeglumine (MultiHance, Bracco, Rome,
Italy) was intravenously injected with a power injector at
a rate of 4 mL/s, followed by a 10-mL saline flush. An
electrocardiogram-triggered, saturation recovery gradient-

FIG. 1. Process of generating the distinct temporal pc basis for each 10 � 10 � 1 � 5 volume (in x-y-z-t space). An initial dynamic-by-
dynamic TV-regularized estimate was used to localize each such overlapping volume (e.g., those with blue or red patches). The patches
were combined together into a 100 � 5 matrix, and the right singular vectors were used as the temporal pc basis for that volume in the

proposed reconstruction. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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echo (GRE) perfusion sequence was used for acquisition
on the LV short axis with anterior–posterior phase
encoding. The imaging parameters were as follows: repe-
tition time/echo time ¼ 3.2/1.6 ms; flip angle ¼ 20�; spa-
tial resolution ¼ 1.6 � 1.6 mm2; slice thickness ¼ 10
mm; number of slices ¼ 5; field-of-view ¼ 320 � 320
mm2; saturation prepulse delay ¼ 100 ms. The acquisi-
tion was prospectively accelerated by a rate of 4 by keep-
ing the central 22 k-space lines and randomly
undersampling the outer k-space, resulting in an acquisi-
tion window of 155 ms per 2D slice. The acquisition was
performed with free-breathing and no breath-holding
instructions.

Accelerated 3D Perfusion

Ten patients (46.7 6 14.1 years; 7 men) referred for clini-
cal CMR and five healthy subjects (41.6 6 26.4 years, 2
men) without contraindications to MRI were recruited
for 3D rest perfusion CMR. An electrocardiogram-
triggered, saturation recovery gradient-echo perfusion
sequence was used for acquisition. After the first few
heartbeats, 0.05 mmol/kg gadobenate dimeglumine (Mul-
tiHance) was intravenously injected with a power injec-
tor at a rate of 4 mL/s, followed by a 10-mL saline flush.
A truncated RF excitation pulse (flip angle ¼ 20�) was
used for a reduced repetition time/echo time of 2.1/1.2
ms. Images were acquired in the LV short axis with foot–
head phase encoding (spatial resolution ¼ 2.3 � 2.3 �
10.0 mm3; field of view ¼ 340 � 340 � 80 mm3) where
the two edge slices were discarded to generate six sec-
tional slices. A saturation prepulse delay of 100 ms was
used with an acquisition time of 250 ms per heart beat.
Six of the acquisitions were acquired during a breath-
hold at the time of injection; the remaining acquisitions
were acquired with free-breathing throughout the scan.
The acquisition was performed for 30 seconds, which
corresponded to an average number of dynamics of 38 6

11 (range, 17–57). Data acquisition was prospectively
accelerated by a rate of 7.5 with respect to an elliptical
window (10-fold with respect to the whole k-space) in
ky-kz using a pseudorandomly generated undersampling
pattern. A central k-space of size 11 � 3 in ky-kz, corre-
sponding to 3.5% of the k-space, was fully sampled, and
the outer k-space was randomly undersampled. A modi-
fied radial ky-kz phase reordering scheme in which the
centermost k-space line was allowed to be sampled first
was used to mitigate flow artifacts and eddy currents by
reducing gradient switching (27). Additionally, breath-
hold multislice 2D perfusion was acquired in four
healthy subjects (age, 46.5 6 27.8 years; 2 men) using
the same sequence parameters as the aforementioned 2D
sequence, but with SENSE rate 2.7 for accelerated imag-
ing. The order of the breath-hold multislice 2D and the
3D acquisitions were randomized, with a 40–50 minute
wait between the two perfusion scans.

Image Reconstruction

The k-space data were exported and transferred to a
stand-alone workstation for further analysis. The pro-
posed reconstruction was performed off-line as described
above. Comparison images were generated via three dif-

ferent B1-weighted reconstructions using the same coil
sensitivity maps:

1. zero-filling of the measured data, where the k-space
lines that were not acquired were replaced with
zero, and an inverse Fourier transform was applied
for the zero-filled images;

2. each dynamic was reconstructed individually using
TV regularization, referred to as dynamic-by-
dynamic reconstruction; and

3. deriving a principal component basis for the whole
volume from the central k-space lines as in conven-
tional PCA-based techniques (9,24) and using this
x-pc sparsity for regularization.

A flowchart for a single iteration of the B1-weighted
algorithms and a summary of the thresholding techni-
ques are shown in Figure 2. For the B1-weighted recon-
structions of the 3D datasets, the data from the edge
coils, where folding artifacts may occur due to the lim-
ited FOV in the foot–head phase encoding direction,
were not included in the B1-weighting. The typical
reconstruction times for the MATLAB-only implementa-
tion of these techniques were: �20 minutes for the
dynamic-by-dynamic TV reconstruction, �45 minutes for
the x-pc regularized CS reconstruction, and �90 minutes
for the proposed reconstruction (110 minutes including
the first TV reconstruction).

Image and Statistical Analysis

A qualitative assessment of image quality was performed
for all 3D reconstructions. All reconstructions were writ-
ten into DICOM format and imported into ViewForum
software (version R4.2V1L2, Philips Healthcare) for qual-
itative evaluation by two experienced blinded reviewers
independently using a four-point scale system: 1, poor or
uninterpretable (myocardium, RV, and LV boundaries
not visible or with markedly blurred borders and edges);
2, fair (myocardium, RV, and LV visible, with moder-
ately blurred borders and edges); 3, good (myocardium,
RV, and LV visible, with mildly blurred borders and
edges); 4, excellent (myocardium, RV, and LV visible,
with sharply defined borders and edges). Imaging scores
are presented as the mean 6 one standard deviation. A
signed rank test was used for imaging scores in pair-wise
fashion to test for the null hypothesis that the central
tendency of the difference was zero for the proposed and
other reconstructions. All statistical analyses were per-
formed using SAS software (version 9.3, SAS Institute,
Cary, North Carolina, USA); P < 0.05 was considered
significant.

For the four healthy volunteers, for which both an
accelerated 3D acquisition and a breath-hold multislice
2D perfusion with parallel imaging were acquired,
region-based time intensity curve analyses were per-
formed. The analysis was performed on the mid-short-
axis slice of the 3D volume and the 2D stack (21), using
QMASS MR software (version 7.2, Medis, Leiden, The
Netherlands). The endocardial and epicardial contours
were drawn on each dynamic several pixels from the
outer and inner borders to limit signal contamination.
The contrast uptake curves were then generated for the
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LV blood pool and the myocardium for the commercially
available SENSE reconstruction for the multislice 2D
acquisition and the proposed reconstruction for the 3D
acquisition.

RESULTS

Rest first-pass perfusion CMR was successfully com-
pleted in all subjects without complications. Figure 3
shows the results of the pilot study in a 3D dataset to
determine the first-stage estimate, which would be used
to generate the distinct pc bases for the proposed regula-
rization, comparing a dynamic-by-dynamic spatial TV
reconstruction with a low-resolution image generated
from the central k-space. The starting images based on
the two techniques are shown in Figure 3a, where signif-
icant partial voluming effects are observed for the low-
resolution image. The corresponding reconstructions

using the proposed regularization based on the pc bases
derived from these images are shown in Figure 3b.
Improvement in reconstruction quality is visualized
when the pc bases are derived from the spatial TV regu-
larized reconstruction, which is used for the first stage of
the algorithm in all subsequent reconstructions.

Figure 4 shows various reconstructions of all the slices
of the multislice 2D acquisition in an example dynamic
after the contrast arrival in the LV. Reconstructions using
the dynamic-by-dynamic TV reconstruction (second row)
removes a substantial amount of the ghosting artifacts
along the phase encoding direction apparent in the
acquired data (first row); however, it is still blurry due to
the high undersampling rate. The x-pc reconstruction
(third row) and the proposed reconstruction (fourth row)
both yield sharper images. The proposed reconstruction
shows more signal homogeneity in the LV and RV blood
pools compared with the x-pc reconstruction, potentially

FIG. 2. Flowchart for a single iteration of the B1-weighted algorithms used in this study. At every iteration, the current image estimate

was mapped to individual coil images by voxel-wise multiplication with sensitivity maps. Data consistency was enforced by replacing
the acquired k-space lines study (3D k-space is depicted here). A combined image was generated by summing the voxel-wise product
of data-consistent coil images and conjugate of coil sensitivity maps across the coil dimension. This image was then thresholded using

one of the three techniques described (dynamic-by-dynamic, x-pc, or the proposed regularization). (FFT ¼ fast Fourier transform, IFFT
¼ inverse FFT). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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FIG. 3. Comparison of a low-resolution image from fully sampled central k-space with spatial TV-regularized reconstruction to generate
the distinct pc bases for the proposed reconstruction in a 3D dataset. a: Low-resolution images show significant partial voluming effects

due to small center size (11 � 3 in ky-kz) compared with TV reconstruction. b: The corresponding reconstructions using the proposed
regularization indicate visual improvement when the TV reconstruction is used to generate distinct pc bases for each 10 � 10 � 1 � 5
volume.

FIG. 4. All slices of the multislice 2D acquisition from a healthy subject in a dynamic after the contrast arrival in the left ventricle (LV) dur-
ing free-breathing. The acquired (zero-filled) data are shown in the first row; the blurriness and aliasing artifacts are due to the rate-4
undersampling. The second row shows reconstructions using the dynamic-by-dynamic TV method, which removes a substantial amount

of the ghosting artifacts but is still blurry due to the high undersampling rate (yellow arrows). The x-pc reconstruction (third row) and the
proposed reconstruction (fourth row) both have sharper edges. The proposed reconstruction shows more signal homogeneity in the LV

and RV blood pools compared with the x-pc reconstruction (white arrows).
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due to a reduction in the reconstruction artifacts based
on the regularization, in view of the free-breathing nature
of the acquisition.

Figure 5 shows slices of a highly undersampled 3D
acquisition from a patient in a dynamic after contrast
arrival. The dataset was acquired with breath-holding at
the time of injection, hence it includes both free-breathing
and breath-hold dynamics. The dynamic-by-dynamic TV
reconstruction has limited use in removing the aliasing,
and incurs spatial blurring artifacts due to the high under-
sampling rate. The x-pc regularized reconstruction is
sharper compared with the TV reconstruction, but there
are residual artifacts due to the free-breathing dynamics.
The proposed reconstruction shows good temporal fidelity
with clearly defined blood–myocardium borders. Figure 6
shows slices of a 3D dataset from another subject. This
dataset was also acquired with a mix of free-breathing and
breath-hold dynamics, with breath-holding at the time of
injection. The TV reconstruction removes some of the ali-
asing artifacts from the acquired image. Sharper images
are obtained with the x-pc regularized reconstruction,
although residual artifacts are apparent. The proposed
reconstruction leads to a sharp and less noisy image com-
pared with the other reconstructions.

Figure 7 shows dynamics of the middle slices of the
3D volume from a subject in which the acquisition was
free-breathing throughout the scan. Due to the high
undersampling rate, the dynamic-by-dynamic TV recon-
struction suffers from spatial blurring, even though some
of the aliasing artifacts have been suppressed compared
with the zero-filled acquisition data. The x-pc recon-
struction suffers from residual respiratory motion due to
temporal blurring. The proposed method offers a clearer

visualization of the LV and RV, as well as the myocar-
dium even in the presence of respiratory motion. Overall
qualitative image scores demonstrate that the proposed
method (2.8 6 0.5) is significantly better than x-pc regu-
larized CS (2.3 6 0.5, P < 0.01), dynamic-by-dynamic
TV-regularized CS (1.7 6 0.5, P < 0.01), and zero-filled
images (1.1 6 0.2, P < 0.01).

Figure 8 shows images that correspond to the peak RV,
LV, and myocardial enhancement across all slices, using
the 7.5-fold accelerated 3D acquisition with the proposed
reconstruction (Fig. 8a), and 2.7-fold accelerated multi-
slice breath-hold 2D acquisition using the commercially
available SENSE reconstruction (Fig. 8b) in a healthy
subject. The corresponding signal intensity curves indi-
cate similar dynamics of contrast uptake both in the LV
blood pool (Fig. 8c) and across the myocardium
(Fig. 8d).

DISCUSSION

In this study, we proposed and evaluated a CS-based
reconstruction technique for CMR perfusion that uses
local information in both spatial and temporal domains,
and that can be applied to highly accelerated free-
breathing multislice 2D and 3D myocardial perfusion.
The proposed reconstruction uses coil sensitivity infor-
mation and sparsity regularization based on an overcom-
plete representation obtained by deriving distinct
principal component bases for each Nb � Nb � 1 � Ndyn

overlapping image volume in the B1-weighted image.
The feasibility of the proposed reconstruction method

was first evaluated in multislice 2D perfusion, and its
efficacy was subsequently implemented in 3D perfusion.

FIG. 5. Slices of a 3D dataset from a subject in a dynamic after the contrast arrival. The acquired (zero-filled) data are shown in the first

row. Reconstructions using the proposed method (fourth row) have good temporal fidelity and are sharper compared with dynamic-by-
dynamic CS reconstruction (second row) and x-pc CS reconstruction (third row), both of which show blurred artifacts.
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The nature of these acquisitions is vastly different. In
multislice 2D, a four-fold acceleration is sufficient to
acquire each slice with a sufficient temporal window of

�150 ms for the given imaging parameters. For 3D imag-
ing, however, a substantially higher acceleration rate of
7.5-fold is necessary to acquire the volume in a temporal

FIG. 7. Dynamics of a middle-section slice from a 3D dataset acquired in free-breathing. The LV, RV, and myocardium are delineated

using the proposed method even in the presence of respiratory motion (fourth row). The x-pc reconstruction shows residual respiratory
motion due to temporal blurring (third row). The dynamic-by-dynamic reconstruction shows spatial blurring due to the high undersam-

pling rate (second row).

FIG. 6. Slices of a 3D dataset from a subject in a dynamic after the contrast arrival. The blood–myocardium border is more clearly
visualized using the proposed method (fourth row), whereas residual aliasing artifacts are present in the other reconstructions.
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window of 250 ms. Even in the presence of higher SNR
for 3D acquisitions, this higher rate may hinder the
reconstruction progress. The effects of the higher acceler-
ation rate were apparent in the reconstructions pre-
sented. Whereas in multislice 2D the difference between
x-pc and the proposed reconstruction was most apparent
in signal homogeneity, the difference was larger in 3D
acquisitions, where the proposed method provided
shaper borders, which at times were not visualized with
the other reconstructions.

Previous applications of CS to randomly under-
sampled 3D perfusion imaging have been limited to regu-
larization using x-f sparsity or spatio-temporal TV norm
(22,28). For 2D datasets acquired with a combination of
breath-holds and free-breathing, these regularization
techniques tend to suffer from respiratory artifacts (12).
In this study, by using a technique that uses localized
spatio-temporal acquisition, the feasibility of randomly
undersampled 3D perfusion with free-breathing acquisi-
tions was established.

The proposed technique uses a two-step procedure of
first generating a basic estimate and then using this esti-
mate for generating the principal component bases for
each localized spatio-temporal volume. The two-step
procedure has been previously used in dynamic MRI,
where the initial estimate has been generated using x-f
space sparsity (14,24,29). In this study, we chose to use

TV norm regularization for each dynamic individually to
avoid possible temporal blurring artifacts due to the use
of a spatio-temporal regularizer. The dynamic-by-
dynamic TV reconstruction sufficiently suppresses ghost-
ing artifacts related to random undersampling at the cost
of spatial blurring for the acceleration rates used in this
study. However, if higher acceleration rates are used, a
dynamic-by-dynamic TV reconstruction may not suffi-
ciently suppress the aliasing artifacts. An alternative is
to use low-resolution images generated from the central
k-space as described by Vitanis et al. (20). However, our
results indicate that for the small center size used in this
study for 3D datasets, these low-resolution images suffer
from partial voluming artifacts and hence do not have
sufficient spatial resolution to generate principal compo-
nent bases of adequate quality for effective use of the
spatio-temporal localization. Further studies are needed
to determine the use of low-resolution images with larger
central k-space sampling in determining the principal
component bases for higher acceleration rates.

An alternative technique for the two-step procedure
is the use of low-rank constraints for reconstruction of
dynamic MRI (12,30). These techniques vectorize each
time frame and arrange these time frames into a matrix,
which may have low-rank properties. The rank of such
a matrix is upper-bounded by the number of dynamics
used in the formation of the matrix. The low-rank

FIG. 8. Images generated using the 7.5-fold accelerated 3D acquisition with the proposed reconstruction (a), and 2.7-fold accelerated
multislice breath-hold 2D acquisition using the commercially available SENSE reconstruction (b) in a healthy subject, depicting the peak

RV, LV, and myocardial enhancement across all slices. The signal intensity curves show similar dynamics of contrast uptake in the LV
blood pool (c) and the myocardium (d). There are differences due to the order of imaging (3D acquisition was performed first during the

same examination), contrast differences between reconstructions using commercially available software, and raw data reconstruction.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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assumption further assumes that there exists a matrix
that closely approximates this matrix with a much
smaller rank. In our case, we use matrices of 100 � 5,
as determined by the choice of block size for the 2D
patches and the temporal extent to which correlations
are exploited. These matrices inherently have a rank of
5 at most, even in the presence of aliasing artifacts. Due
to this low rank, the low-rank techniques were found to
be not applicable to this problem in a preliminary
study (data not shown). However, the rank regulariza-
tion techniques have the advantage of not relying on
previous estimates, as well as the use of singular vec-
tors in both spatial and temporal directions. Hence, the
use of rank regularization techniques for smaller block
sizes or larger temporal windows warrant further
investigation.

A possible extension to the proposed algorithm is to
use different patch sizes according to the image content.
For relatively uniform areas such as the blood pools, a
larger patch size can be used, whereas smaller patches
can be used for the myocardium. Use of shape-adaptive
patches may further improve the adaptability of the algo-
rithm (31). These approaches might be useful in reduc-
ing the reconstruction time or increasing the
reconstruction quality by incorporating further prior
information. However, this was not studied in the cur-
rent study.

In our study, the size of the fully acquired central k-
space was not systematically studied, which is especially
important in accelerated 3D perfusion. In our previous
experience with CS in segmented 3D acquisitions, we
have developed an empirical rule-of-thumb of sampling
the central k-space corresponding to �4%–5% of the
whole k-space. However, with an undersampling rate of
7.5 for the 3D acquisitions and an elliptical shutter, this
would require approximately half of the acquired lines
to be sampled from the center of k-space. Hence, based
on our initial reconstructions, we have opted to acquire
30% of our data from the central k-space, which may be
insufficient. Alternatively, an elliptical shutter might be
applied to the central lines as well instead of acquiring a
fully sampled rectangle. However, this approach was not
implemented for this study.

For the CS reconstructions in this study, the weights
of the regularization terms and thus the corresponding
thresholding parameters were chosen empirically as in
other CS studies (11,23,24,29). Furthermore, for the pro-
posed algorithm, there are additional parameters, Nb and
Ndyn, that need to be chosen a priori. The effects of vary-
ing this parameter were studied by varying Nb among {5,
10, 20} and Ndyn among {3, 5, 10} and performing the
proposed reconstruction for each of these nine pairs of
(Nb, Ndyn). Based on this study (results not shown), for
small Nb or Ndyn, it is difficult to remove aliasing arti-
facts leading to blurrier images. Similarly, for large Nb or
Ndyn, the reconstruction introduces spatial or temporal
blurring, respectively, with the x-pc CS reconstruction
representing the limiting case of using the whole vol-
ume. Thus, we have empirically set these parameters for
an adequate trade-off between removing aliasing artifacts
and avoiding spatio-temporal blurring due to signal
averaging.

Our study has limitations. More spatial coverage of the
LV and improved spatial resolution may be necessary for
the identification of perfusion defects or to avoid dark
rim artifacts (32). The temporal resolution of the 3D
acquisitions may still be longer than the quiescent period
of the heart, thus these acquisitions may be susceptible
to cardiac motion. We have not provided comparisons
against the currently used compartment-based k-t PCA
reconstruction. This reconstruction is designed to work
with uniform undersampling, which conflicts with the
random undersampling used in this study, and hence
requires an extra acquisition. We have not provided SNR
measurements because CS algorithms inherently thresh-
old the noise, making it difficult to locally characterize
the noise in the reconstructions. Further clinical studies
are needed to assess its diagnostic value in patients with
suspected coronary artery disease, as well as in subjects
with highly irregular breathing patterns or in the pres-
ence of exercise stress.

CONCLUSION

We have demonstrated a reconstruction technique that
uses coil sensitivity information and sparsity regulariza-
tion based on localized information in both spatial and
temporal domains for highly accelerated CMR perfusion
with potential use in free-breathing 3D acquisitions.
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