
1220 IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 9, SEPTEMBER 2015

Sparse Signal Recovery from a Mixture of Linear and
Magnitude-Only Measurements
Mehmet Akçakaya, Member, IEEE, and Vahid Tarokh, Fellow, IEEE

Abstract—We consider the problem of exact sparse signal re-
covery from a combination of linear and magnitude-only (phase-
less) measurements. A -sparse signal is measured as

and , where and
are measurement matrices and is the element-wise absolute
value. We show that if , then a set
of generic measurements are sufficient to recover every -sparse
exactly, establishing the trade-off between the number of linear

and magnitude-only measurements.

Index Terms—Compressed sensing, phase retrieval, sparse
phase retrieval, sparse signals.

I. INTRODUCTION

L ET be a sparse signal, where the number of non-
zero coefficients of , denoted , is .

Compressed (or compressive) sensing has emerged as a
method for reconstructing sparse signals from linear
measurements acquired as:

(1)

where is a sensing matrix. For exact sparse recon-
struction, it is well-understood that is necessary and
sufficient [1]. Moreover, this bound can be achieved with poly-
nomial-time reconstruction algorithms for Vandermonde-based
measurement matrix designs (which also include partial Fourier
transforms that sample only the low-frequency components)
[2]. Stability guarantees are possible when is chosen ran-
domly from the Gaussian ensemble, where
measurements suffice for reconstructing the sparse signal ex-
actly (with no measurement noise), or with distortion scaling
with the noise level (with measurement noise) when using
reconstruction techniques based on minimizing the norm
[3]–[6]. Compressed sensing has been successfully used in a
number of applications, including magnetic resonance imaging
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(MRI) [7], [8], sub-Nyquist sampling [9], radar imaging [10],
and others (please see [11] and the references therein).
Recently, there has also been interest in reconstructing sparse

signals from only the magnitude of the measurements. This
process, referred to as sparse phase retrieval aims to estimate
sparse signals from phaseless (magnitude-only) measurements

(2)

where denotes element-wise absolute value. These measure-
ments can be used to model problems in diffractive imaging
[12], astronomical imaging [13], x-ray crystallography [14]
and medical imaging [15], where the measurement matrix is
typically the Fourier matrix. Sparsity of signals has been shown
to reduce the number of measurements in practice [16], [17].
Sparse phase retrieval has also been studied theoretically in cer-
tain scenarios, e. g. measurements were shown
to be sufficient for stable sparse phase retrieval over [18],
matching the order of measurements in compressed sensing
[4], [5]. More recently, the problem of exact reconstruction
for noiseless sparse phase retrieval for complex signals has
been studied [19], [20], where it was shown that
phaseless measurements suffice to guarantee uniqueness of
the sparsest solution. It was also shown that measurements
suffice in the real case, matching the bound from compressed
sensing, where linear measurements are available. We note that
these latter studies [18]–[20] characterize when the measure-
ments are injective, and are not algorithmic in nature, i.e. they
do not provide tractable algorithms that can actually perform
(robust) sparse phase retrieval.
In practice, there are a number of applications, including as-

tronomical and medical imaging [15], where a mixture of linear
and phaseless measurements are available as follows:

(3)

For instance, in MRI, where the measurements are taken in the
Fourier domain, a translational motion of the scanned object
during the examination does not affect the magnitude of the
measurements [15], [21]. Hence, in a scan where translational
motion has occurred, we have both motion-free (linear) mea-
surements and motion-corrupted (phaseless) measurements.
Typically, the motion-corrupted measurements would be
re-acquired. However, the measurement model of (3) allows
(using the transform-domain sparsity of MR images) for re-
construction from these motion-corrupted data, along with the
motion-free data, thus reducing scan time.
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In this note, we study the exact recovery of a -sparse
from a combination of linear and phaseless measure-
ments. We show that if the rows of and are a generic choice
of vectors in , then measure-
ments are sufficient to recover every -sparse signal uniquely
(up to global phase if ). The outline of the paper is given
next. We state our result in Section II. We provide the proof of
our main result in Section III.

II. MAIN RESULTS

For sparse reconstruction with a mixture of linear and
phaseless measurements (referred to as a “mixed measurement
system”), the reconstructor solves

(4)

where and .
We aim to characterize the number of sufficient measure-

ments, , as well as the trade-off between the
number of linear and phaseless measurement, and re-
spectively, in terms of the sparsity (and possibly the dimen-
sionality of the sparse signal ) for which there is a unique so-
lution to the optimization problem in (4) (up to global phase if

). Our main result for -sparse is as follows:
Theorem 1: For and , whose rows

are a generic choice of vectors in ,
measurements are sufficient to guarantee unique signal

recovery (up to global phase if ) for every –sparse
signal .
Here, a generic choice of vectors indicate a dense open set

in [22]. Intuitively, this suggests that a complex linear mea-
surement is twice as important as a phaseless measurement. The
trade-off between the number of linear and phaseless measure-
ments, and the achievability region are depicted in Fig. 1. We
also state the results for the real case for completeness:
Theorem 2: For and , whose rows

are a generic choice of vectors in , measure-
ments are sufficient to guarantee unique signal recovery (up to
global sign if ) for every –sparse signal . Fur-
thermore, measurements are necessary.

Proof: This follows from the results in [1], [4], [19].

III. PROOF OF THE MAIN RESULT

A. Notation

We define . The space of diagonal
phase matrices is defined as

where is the th element of .
For any matrix , let be the th element of , be

the th column of , and be the th row. Let be ma-
trix whose columns are , and be the matrix
whose rows are . We let for
any positive integer . Let and denote the transpose and

Fig. 1. The region characterizing the sufficient number of measurements for
exactly reconstructing a -sparse signal from a mixture of linear and phaseless
measurements, as well as the trade-off between the number of linear and phase-
less measurements.

conjugate transpose of . Finally, denotes the Grass-
mannian manifold of -dimensional subspaces of , endowed
with the projection Frobenius (chordal) distance.

B. Proof of Theorem 1

We modify and extend the proof technique in [22]. We con-
sider different regions of and :
1) : Let the rows of with

be a generic choice of vectors in . We note
that any submatrix of is invertible. Let , be
two index sets of cardinality Let and

.
Suppose there are two distinct k-sparse vectors, , ,

with supports respectively, such that

(5)

In other words,

(6)

for and for some . We first note that
since with , is uniquely determined as

. Thus would imply , or
. We also note that has at least ( non-
zero elements, otherwise this would imply the existence of a
rank-deficient submatrix of . Hence, without loss of
generality we assume . Since the optimization in (4)
is scale-invariant, we can divide both sides by , thus we
assume . We now re-write this set of equations as:

(7)

(8)

and

(9)

(10)
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where is the identity matrix. We note and .
We say two distinct -planes ( ), both in sat-

isfy the distinct-( )-mapping property if there are distinct
non-parallel vectors and with

and , such that for
.

From Equations (7) and (8), for

where and are the th elements of and
respectively. Similarly from Equations (9) and (10):

where and are the th elements of and
respectively.
Hence if ( ) satisfies the distinct-( )-mapping

property, there exists (since ) such that

(11)

for , and

(12)

for .
We consider the following variety of all tuples

(13)

Let , and note since . The va-
riety in (13) is locally isomorphic to

, corresponding to a real dimension
. Next, we note that the set of 2-tuples in
that satisfy the distinct-( )-map-

ping property is the image of the projection onto the first factor
of the variety in (13) subject to the equations in (11) and
the equations in (12) [22].
The measurements are generic, and ,

thus each of the equations in (11) and (12) are non-degen-
erate. Since the variables and

appear in exactly one equa-
tion, the equations in (11) define a subspace of real codimension

, whereas the equations in (12) define a subspace
of real codimension . This is true for all choices, implying
the equations are independent [22]. Therefore, the set of 2-tu-
ples with an -dimensional intersection in

that satisfy the distinct-( )-mapping property have
real dimension

.
Thus, if and , then this set

of 2-tuples cannot be the whole set of 2-tuples in
with an -dimensional intersection, since this space

has dimension . In fact, if
, and the measurements are generic, then the

set of 2-tuples with an -dimensional intersection in
that satisfy the distinct-( )-mapping property

has measure 0. There are finitely many choices for and
(and thus ), hence the results extend to all possible choices of
columns of , using a union bound argument. Thus, if the

rows of (equivalently and
) are a generic choice of vectors, and

, no two sparse vectors with norm
map to the same mixed measurements acquired using and .
We note that for ,

phaseless equations suffice. Thus, we next consider the region
.

2) : Suppose there are two distinct (or non-
parallel if ) vectors , , with supports ,
respectively, mapping to the same mixed measurements, as in
Equation (5). In other words,

(14)

for and for some .1Similar to
Section III-B1, has at least ( non-zero
elements, thus we assume are non-zero and that

. We now re-write Equation (14) as:

(15)

(16)

and

(17)

(18)

We note and .
Similar to Section III-B1, ( ) satisfy the dis-

tinct-( )-mapping property, if there exists
for and (since ) such that

(19)

for , and

(20)

1For the case and , we have
, where is the identity matrix, since one can only

guarantee uniquness up to global phase.
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for , where , , and are the th
elements of , , and respectively.
We consider the following variety of all tuples

(21)

For , with , the variety in (21) is locally
isomorphic to ,
corresponding to a real dimension of

. The set of 2-tuples in that
satisfy the distinct-( )-mapping property is the image of
the projection onto the first factor of the variety in (21) sub-
ject to the equations in (20) and the equations in
(19). Since , and since is not a multiple of
identity when and , these equations are non-de-
generate. They are also independent, similar to Section III-B1.
Thus, Equations (19) and (20) define subspaces of real codimen-
sions and respectively.
Therefore, the set of 2-tuples with an -dimensional

intersection in that satisfy the dis-
tinct-( )-mapping property have real dimension

.
Finally, we also note that if , then can be set to 1
without loss of generality, since uniqueness is guaranteed only
up to global phase in this case. Hence, for , the 2-tuples
will have real dimension

.
Thus if and
, then this set of 2-tuples cannot be the whole set of 2-tuples
in with an -dimensional intersection.
Furthermore, if the measurements are generic, then this set has
measure 0, similar to Section III-B1. A union bound argument
over finitely many choices of and (and thus ) shows that if
the rows of (equivalently and

) are a generic choice of vectors, and
, no two sparse vectors with

norm map to the same mixed measurements acquired using
and .
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