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Abstract—Coronary magnetic resonance imaging (MRI) is a
noninvasive imaging modality for diagnosis of coronary artery
disease. One of the limitations of coronary MRI is its long acqui-
sition time due to the need of imaging with high spatial resolution
and constraints on respiratory and cardiac motions. Compressed
sensing (CS) has been recently utilized to accelerate image ac-
quisition in MRI. In this paper, we develop an improved CS
reconstruction method, Bayesian least squares-Gaussian scale
mixture (BLS-GSM), that uses dependencies of wavelet domain
coefficients to reduce the observed blurring and reconstruction
artifacts in coronary MRI using traditional � regularization.
Images of left and right coronary MRI was acquired in 7 healthy
subjects with fully-sampled k-space data. The data was retro-
spectively undersampled using acceleration rates of 2, 4, 6, and
8 and reconstructed using � thresholding, � minimization and
BLS-GSM thresholding. Reconstructed right and left coronary
images were compared with fully-sampled reconstructions in
vessel sharpness and subjective image quality (1–4 for poor-ex-
cellent). Mean square error (MSE) was also calculated for each
reconstruction. There were no significant differences between the
fully sampled image score versus rate 2, 4, or 6 for BLS-GSM for
both right and left coronaries �� � � �. However, for � thresh-
olding significant differences � � ��� were observed for rates
higher than 2 and 4 for right and left coronaries respectively. �

minimization also yields images with lower scores compared to the
reference for rates higher than 4 for both coronaries. These results
were consistent with the quantitative vessel sharpness readings.
BLS-GSM allows acceleration of coronary MRI with acceleration
rates beyond what can be achieved with � regularization.
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I. INTRODUCTION

C ORONARY artery disease (CAD) caused approximately
1 of every 6 deaths in the United States in 2006 [26]. In

2010, an estimated 785 000 Americans will have a new coronary
attack, and approximately 470 000 will have a recurrent attack.
Catheter based, diagnostic invasive X-ray coronary angiography
remains the clinical “gold standard” for the diagnosis of sig-
nificant ( 50\% diameter stenosis) CAD with over a million
catheter based X-ray coronary angiograms performed annually
in the United States. Although numerous noninvasive tests are
available to help discriminate among those with and without sig-
nificant angiographic disease, up to 35% of patients referred for
their initial elective catheter based X-ray coronary angiography
are found to have no significant stenosis. Therefore, a nonin-
vasive imaging alternative to diagnostic X-ray angiography is
desirable.

Alternatives for noninvasive coronary artery imaging include
multidetector computed tomography (MDCT) and magnetic
resonance imaging (MRI). Advantages of coronary MDCT
include rapid image acquisition as well as superior isotropic
spatial resolution. Advantages of coronary MRI include the lack
of ionizing radiation or need for iodinated contrast (thereby fa-
cilitating repeated or follow-up scanning) and smaller artifacts
related to epicardial calcium. Despite considerable advances
in the past decade in coronary MRI, long data acquisition
time of coronary MRI has been one of the main limitations
of this technique. Several approaches such as partial Fourier,
non-Cartesian sampling [29], [30], parallel imaging [20], [31],
[32], [35], [40], use of exogenous contrast with efficient sam-
pling [3], [4] have been used to accelerate image acquisition
in coronary MRI. With all these efforts, the acquisition time
for coronary MRI still remains long (5–10 min). Therefore,
developments of methods to reduce data acquisition time in
coronary MRI are appealing.

Compressed (or compressive) sensing (CS) is a novel ap-
proach that allows reconstruction of an image from a partially
sampled k-space data [5], [27]. CS exploits the sparsity (or more
generally the compressibility) of the image in a transform do-
main to reduce the required minimal data for reconstruction
of an artifact-free image. CS reconstruction aims to minimize
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Fig. 1. (a) Wavelet coefficients (Haar) of a 2D slice of a coronary image ����� � ��. (b) Random permutation of the same coefficients shown in (a). Both data
have equivalent � norm, which suggests � norm regularizers do not take into account the clustering and correlation of information in the wavelet domain, as
exhibited in (a). (c) The log marginal histogram of wavelet coefficients from one subband (magnitude image), and (d) shows the conditional histogram for two
adjacent wavelet coefficients. The empirical distributions have similar characteristics as the Gaussian Scale Mixture model.

the sparsity of the reconstructed image in a transform domain
subject to data consistency constraints comparing the estimate
to the acquired k-space data. Minimization of the number of
nonzero coefficients, which is a direct measure of sparsity, is
NP-hard in general. Thus alternative measures, such as the
norm of the transform domain coefficients have been used in-
stead [7], [14].

There have been recent investigations of feasibility of CS
in improving the imaging contrast in non-contrast enhanced
steady-state free precession (SSFP) angiography [11], accel-
erating image acquisition in dynamic MRI [19] and first-pass
cardiac perfusion MRI [33], and three-dimensional imaging
of upper airways [23]. In all these studies, the reconstruction
method has been based on minimizing an objective func-
tion. This objective function results in blurring of the vessel
boundaries that could limit its use in high resolution coronary
imaging.

In this study, we sought to develop and investigate an im-
proved CS reconstruction method that uses the dependencies of
the wavelet domain coefficients and demonstrate its utility in ac-
celerating coronary MRI data acquisition.

II. THEORY

A. Compressed Sensing via Regularization

Let be the imaging data of size and be the
Fourier transform. Let denote the undersampling operator
that keeps a subset of the k-space and rearranges it to a vector,
where . When the k-space is undersampled
using the sampling pattern , the measurement in the th coil is
given by

where is the coil sensitivity map of the th coil and is an
additive noise vector.

Conventional CS reconstruction solves a minimization
problem based on an objective function

(1)

where the first term is a fidelity measure of image consistency
(i.e., the difference between the measured k-space data and the
undersampled k-space of the estimated image) and the second
term is a sparsity regularizer with weight . Typically is
chosen as the ( th power of) norm of transform
domain coefficients (e.g., wavelet or finite differences), which
captures the sparsity of the image in a transform domain [5],
[9], [27], [43]. From a Bayesian perspective, this regularization
can be expressed as a maximum a posteriori (MAP) estimation

(2)

In the presence of Gaussian measurement noise, the first
term, corresponds to the data fidelity term in
(1). The second term, corresponds to the weighted
sparsity regularizer in (1), and after appropriate scaling (with
the noise variance) it can be shown to correspond to using

as the probability density function
of the -transform coefficients [17]. Thus, regularizers based
on norms correspond to independent and identically dis-
tributed (i.i.d.) transform domain coefficients.

B. Modeling Wavelet Domain Sparsity and Dependencies

norm regularizers in CS reconstruction treat wavelet
domain coefficients as independent variables without consid-
ering additional information from the neighboring coefficients.
However, there is correlation between the wavelet coefficients
of a given neighborhood that includes surrounding coefficients
from the same subband, as well as neighboring coefficients
from nearby scales [34]. There is also dependency between
parent and child wavelet coefficients [2], [38]. Fig. 1(a) shows



1092 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 30, NO. 5, MAY 2011

Fig. 2. The proposed reconstruction algorithm for coronary MRI. In the data consistency stage, the acquired k-space lines replaces the corresponding k-space
lines of the estimate. In the thresholding stage, we use our proposed BLS-GSM thresholding, instead of conventional � soft thresholding strategy. We note that
the sampling pattern depicted here is a simple example for visualization purposes, and the actual 3D undersampling patterns are described in Section III-A.

the Haar wavelet coefficients of a 2D slice of a coronary image,
which shows that a large wavelet coefficient in a given subband
is likely to have large wavelet coefficients surrounding it. If a
random permutation is applied to these wavelet coefficients,
this structure is lost, yet the norm is preserved. This suggests
that an independent coefficient model for the wavelet trans-
form may not be capturing optimal information about the MR
images. In this study, we investigate if additional information
about the dependencies of the wavelet coefficients can improve
image reconstruction for coronary MRI. Therefore, we will use
a Gaussian scale mixture (GSM) model that can simultane-
ously capture the correlation and the sparseness of the wavelet
transform [34] for reconstruction of coronary MRI.

The wavelet transform of an image consists of coef-
ficients where , and specify the orientation of the sub-
band, its scale and the location of the coefficient within the sub-
band respectively. In the GSM model, the neighborhood of the
wavelet transform coefficients surrounding can be ex-
pressed as a zero-mean Gaussian vector weighted by a scalar
random variable with Jeffrey’s prior [1], [34]:

where the sparsity is modeled by , as discussed in Appendix A,
and the correlation between the neighboring coefficients is mod-
eled using the local covariance of the subband at scale and ori-
entation , [34].

C. CS Image Reconstruction

Fig. 2 shows the proposed coronary MRI reconstruction algo-
rithm, which is based on the iterative soft thresholding (IST) al-
gorithm [10], [12], [17]. It alternates between enforcing k-space
data consistency and de-aliasing, as follows. The current image
estimate is weighted by coil sensitivity map of each
individual coil elements. This weighted imaging data sets

are then transformed to the Fourier space and in a data consis-
tency step, the estimated k-space lines corresponding to the ones
that were acquired during acquisition are replaced with the ac-
quired k-space lines. The k-space data is then transformed into
the image space using inverse Fourier transform and weighted
by the conjugate of each individual coil maps and combined
into a single image . In the de-aliasing stage, the estimated
image is thresholded using the proposed Bayesian least
squares (BLS)-GSM method [34] depicted in Fig. 3.

In the first step of the Bayesian least squares-Gaussian scale
mixture (BLS-GSM) thresholding, the current aliased image es-
timate is transformed to wavelet domain using a full steer-
able pyramids [34], [39] for complex data. The wavelet domain
neighborhood surrounding in the current aliased estimate
is defined as a 3 3 neighborhood of in the same subband,
and the parent wavelet coefficient from the adjacent subband.
is modeled as , by the corresponding
neighborhood from the original unaliased image perturbed by
a noise term that only depends on the measurement noise
[17]. Each undergoes a thresholding step that results in a
new estimate according to

(3)

where is the expectation operator. This new estimate,
, can be calculated numerically as described below.

As described in Section II-B, the wavelet dependencies are
exhibited for neighboring coefficients in the same sub-band, and
for parent-children wavelet coefficients, hence each subband is
handled separately. First, the sample covariance for each
subband of the wavelet transform of the current image esti-
mate is calculated, followed by the computation of noise
covariance for the power spectral density corresponding
to white Gaussian noise with mean 0 and variance 1 [34]. The
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Fig. 3. The proposed BLS-GSM thresholding algorithm for coronary MRI. For each of the� subbands of the wavelet transform, the sample covariance matrix of
the current image estimate,� is calculated over neighborhoods�. Using the precomputed sample noise covariance matrix of the same subband, the neighborhood
covariance is calculated by keeping the positive semi-definite part of the noise-adjusted covariance matrix� � �� ��� � . Using these covariance matrices,
the Wiener estimate of each neighborhood of the subband is calculated by �� ��� � �� � � for every � in the integration range. The probability density
function ������ for the subband is also calculated for the integration range of � via Bayes’ rule. The thresholded estimate for each coefficient in the subband is
then calculated by numerical integration with respect to � of the corresponding coefficient of the Wiener estimate multiplied by ������.

neighborhood covariance is also estimated using the noise-
compensated sample covariance matrix from the aliased data as

, where only the positive semi-definite part is
preserved. For a given , the first term in the integration can then
be expressed as

which is the Wiener estimate, where the expectation is over the
Gaussian noise . For a given value of , is a Gaussian
probability density function with mean 0 and covariance matrix

. Hence, using the distribution of ,
can be calculated via Bayes’ rule numerically, for all in the
integration range [34]. The new thresholded estimate,
can then be calculated using the coordinate corresponding to
the neighborhood center in the Wiener estimate vector (i.e.,

), and by numerical integration over .
The which are calculated for each neighborhood

are then replaced and a new image estimate is obtained using

an inverse wavelet transform. The new estimated image is then
used as an input to the CS data consistency algorithm outlined in
Fig. 2. The reconstruction method was iterated for 30–100 times
based on acceleration rates, although empirical convergence of

was typically observed sooner.

III. MATERIALS AND METHODS

The proposed method was implemented in MATLAB (Math-
Works, Natick, MA) for offline reconstruction on a workstation
(Lenovo, Beijing, China) with a 2.66-GHz central processing
unit and 8-GB random-access memory.

Written informed consent was obtained from all subjects and
the imaging protocol was approved by our Institutional Review
Board. All subjects were scanned using a 1.5 T Achieva magnet
(Philips Healthcare, Best, The Netherlands) with a 5 channel
phased-array coil.
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Fig. 4. An example slice of a 3D right coronary MR image from fully-sampled data (reference), and from � thresholded (top row), BLS-GSM thresholded (middle
row) and � minimized (bottom row) reconstructions for accelerated acquisition rates of 4, 6, and 8. RCA can be readily visualized in all images, although more
artifacts are visible at higher rates and for � norm-regularized CS (AO: Aortic Root, RV: Right Ventricle, LV: Left Ventricle).

A. In Vivo Imaging

Our imaging study was performed for both the left anterior
descending (LAD) and the right coronary artery (RCA). Coro-
nary images for right and left coronary MRI was acquired in two
different subject cohorts. For each anatomy, 7 healthy adult sub-
ject (4 men, 24.4 10.6 years for the RCA; 2 men, 34.7 21.7
years for the LAD) without contraindications to MR imaging
were included. Scout images were acquired with a SSFP se-
quence with in-plane resolution and 10 mm
slice thickness. A reference image set was acquired by using
the body and phased array coils so that each individual coil sen-
sitivity map could be calculated. This coil map was used only
for cine acquisition and was not used in CS reconstruction. This
was followed by an image set acquired with an axial breath-hold
cine SSFP sequence ( ; temporal
resolution, 48 ms; spatial resolution, ; acceler-
ation rate, two) to visually identify the quiescent period of the
RCA and the LAD. The corresponding trigger delay was used
for coronary acquisition. A low-resolution coronary survey 3D
volume was then acquired for localization and assignment of the
appropriate imaging slab orientation. A free-breathing 3D elec-
trocardiographically (ECG) gated SSFP sequence (

; field of view, ; flip angle,
90 ; spatial resolution, ) was used to image the
RCA and the LAD. A spectrally-selective fat saturation and a

magnetization preparation [6] was used to improve the con-
trast. A two-dimensional spiral navigator echo, positioned on
the right hemi-diaphragm [42], was used for respiratory motion
gating with a gating window of 5 mm. The raw k-space data
were recorded for all acquisitions. The nominal scan times com-
puted by the scanner for our acquisition parameters and a heart
rate of 60 beats/min are 3 min 57 s and 3 min 43 s for the RCA
and LAD scans respectively. The actual scan times are higher

based on the respiratory gating efficiency, which is usually in
the range of 30%–50%.

The k-space data was exported and transferred to a stand-
alone workstation to allow retrospective undersampling by fac-
tors of 2, 4, 6, and 8. The central 10–16 phase encode lines
in the central slices were kept. The edges of the k-space were
randomly discarded based on a Gaussian distribution [11], [27].
The choice for the size of central k-space was done experimen-
tally, with a reduced size for higher rates to guarantee enough
edge information is included. The relative coil maps were
reconstructed from the fully-sampled data by dividing each in-
dividual coil data to the root sum square of all the coil data [21].
As a comparison with the proposed BLS-GSM CS reconstruc-
tion, images were also reconstructed using soft thresholding
in IST [17], as well as minimization via basis pursuit using
the SPGL1 [44].

B. Image Analysis

Both subjective and objective image analysis were performed
to evaluate the three CS reconstruction at different rates. For
each patient, 13 imaging datasets were reconstructed from the
original raw k-space data, which consisted of one from a fully-
sampled k-space, 4 datasets reconstructed using BLS-GSM CS
for different rates of 2, 4, 6, and 8, 4 datasets using thresh-
olded CS reconstruction for the same rates, and finally 4 datasets
using minimization for these rates.

The SoapBubble [16] tool was used to quantitatively evaluate
the vessel definition utilizing a Deriche algorithm [13] on the
RCA. Vessel sharpness scores were calculated for both sides of
the vessel. Final normalized sharpness was defined as the av-
erage score of both sides normalized by the center of vessel in-
tensity. A sharpness score closer to 1 represents a sharper vessel
border.
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Fig. 5. Multiple slices of a 3D coronary MR image from fully-sampled data (reference), and from reconstructions using the proposed BLS-GSM method for
accelerated acquisition rates of 4, 6, and 8.

The mean square error (MSE) of each reconstruction was cal-
culated as

where only the magnitude of the reconstructed images were
used for comparison to the root-sum-squares reference image.
The normalized MSE was then calculated by dividing each in-
dividual MSE to the squared norm of the reference image.

Qualitative assessment of coronary artery image quality was
performed by two experienced independent blinded readers
with 10 years coronary MRI experience using a four-point
scale system [22]: 1, indicating poor or uninterpretable (coro-
nary artery visible, with markedly blurred borders or edges); 2,
good (coronary artery visible, with moderately blurred borders
or edges); 3, very good (coronary artery visible, with mildly
blurred borders or edges); or 4, excellent (coronary artery
visible, with sharply defined borders or edges). For each image,
separate scores were given for the proximal, mid and distal
segments of RCA for the right coronary scans, and left main,
proximal, mid LAD and left circumflex artery (LCX) for the
left coronary scans. These scores were combined for the right
and left systems respectively for statistical analysis.

C. Statistical Analysis

All measurements are presented as mean one standard de-
viation. Due to the small sample size, and the statistical signif-
icance of the Shapiro-Wilk test for normality of the paired dif-
ferences of the scores (person-specific difference between each
technique and the reference which is a fully sampled k-space
acquisition), the nonparametric signed rank test was used to test
for the null hypothesis that the central tendency of the difference
was zero at different acceleration rates. Bonferroni correction
was performed to account for multiple comparisons. All statis-
tical analyses were performed using SAS (v9.2, SAS Institute

Inc., Cary, NC). A Bonferroni-corrected type-I error of 0.004
(0.05 divided by 12 comparisons) was used to consider for sta-
tistical significance.

IV. RESULTS

The top row of Fig. 4 shows a sample 2D slice from a 3D right
coronary MRI data set reconstructed using norm thresholding
for fully sampled k-space data, and acceleration rates of 4, 6 and
8. The corresponding slice reconstructed using BLS-GSM ap-
proach is shown in the middle row, and that for minimization
is shown in the bottom row. RCA can be readily visualized in
all images. At higher rates of 6 and 8 the images reconstructed
using norm thresholding and minimization suffer from
higher level of artifacts. Thus, BLS-GSM allows improved vi-
sualization of the coronaries. Fig. 5 shows three different slices
from the 3D coronary data set of a different subject reconstucted
using BLS-GSM technique for fully sampled k-space data as
well as CS acceleration rates of 4, 6 and 8. At acceleration rates
of 4 and 6, this approach yield images with image quality com-
parable to the fully sampled images. There is a degradation of
image quality at rate 8, however no distinct visual artifact can be
seen. A reduced SNR and increased blurring may impact inter-
pretation of the images even without a distinct artifact at such
a high acceleration rate. Fig. 6 depicts reformatted images of
LAD, LCX, and proximal RCA from a 3D left coronary MRI
data set reconstructed using the three approaches. The visibility
at higher rates are better compared to right coronary data sets,
but the degradation at higher rates is still visible. Both norm
approaches suffer from blurring at high rates, although this is
manifested differently for each technique. BLS-GSM allows for
improved visualization at higher rates, but also has artifacts.

Fig. 7 summarizes the imaging scores and MSE of the
reconstructed RCA and LAD images using thresholding,
BLS-GSM thresholding, and minimization. Additionally,
sharpness results are included for the RCA. For the RCA, the
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Fig. 6. Reformatted axial images of RCA, LAD, and LCX from fully-sampled 3D left coronary MRI data (reference), and from � thresholded (top row), BLS-GSM
thresholded (middle row), and � minimized (bottom row) reconstructions for accelerated acquisition rates of 4, 6, and 8. The coronaries can be readily visualized
in all images, although blurring is apparent at higher rates for � norm-regularized CS.

images reconstructed using BLS-GSM with acceleration rate
8 was scored significantly lower than the fully
sampled images. There was no statistically significant differ-
ence between acceleration rates of 2 and 6 with BLS-GSM.
For thresholding CS reconstruction, there was significant
degradation of image quality for rates 4 and higher, and at rates
6 and higher for minimization. For the LAD, there was no
statistically significant difference between acceleration rates of
2 and 6 with BLS-GSM. Both -based techniques exhibited
significant degradation at rates higher than 4.

The mean value of MSE for BLS-GSM CS was lower than
based techniques for rates 4 and higher for the RCA, with
minimization having a smaller MSE than thresholding.

Similarly, BLS-GSM had the highest sharpness score among
the three reconstruction methods. minimization had a slightly
higher sharpness score than thresholding. For the LAD, the
lowest MSE was consistently achieved by minimization, fol-
lowed by BLS-GSM CS, and thresholding.

V. DISCUSSION

We have developed a novel CS reconstruction technique
based on exploiting the wavelet domain dependencies of coro-
nary MR images, in addition to wavelet domain sparsity. The
reconstruction algorithm alternates between data consistency
and thresholding stages. In the thresholding stage, it utilizes a
probabilistic model that captures both wavelet domain sparsity
and the dependencies of the magnitudes of wavelet domain
coefficients in a given neighborhood.

Constraints such as an assumption of deterministic model on
the sparsity structure (e.g., assuming the data fits a wavelet-tree
model) results in reduction of the the number of measurements
required for reconstruction [2]. In our model, we impose a prob-
abilistic model on the sparsity structure using the GSM model,
which may allow similar gains, while not limiting the algorithms

to a reduced search space containing only signals that fit the pro-
posed model.

There have been several recent works aimed at combining
parallel imaging and CS [18], [25], [28]. The proposed approach
can be used instead of the conventional thresholding in the
implementation of the CS step of these algorithms. It may also
improve image reconstruction in other anatomical or functional
imaging, which requires further investigation.

We have chosen the steerable pyramids as the choice of the
wavelet transform. However, the GSM model for neighborhoods
applies to any wavelet transform. The wavelet dependencies are
more pronounced for over-complete or oriented wavelet trans-
forms, such as undecimated discrete wavelet transforms [24],
the dual-tree complex wavelet transforms [37] or curvelets [41].

In terms of computational complexity, the data consistency
stages complexity is dominated by an FFT and an IFFT, both of

, which is standard in many recon-
struction algorithms. The thresholding stage for a fixed neigh-
borhood size scales linearly in the transform domain dimen-
sions. However, two numerical integrations are carried out for
each wavelet domain coefficient, thus the constant overhead is
quite high. On a standard Lenovo workstation with a 2.66-GHz
central processing unit and 8-GB random-access memory, the
thresholding of a volume takes about 5 min
per iteration using a MATLAB-only implementation. Thus, al-
though the scaling properties of the algorithm are well-behaved,
the running time is longer than iterative methods, but still less
than linear programming based methods [7]. Furthermore, the
use of overlapping neighborhoods around each central coeffi-
cient implies that a given coefficient will be in multiple neigh-
borhoods. Exact global inference on such a model is highly in-
tractable [34], and our sparsity regularizer simply thresholds the
central coefficient for each neighborhood separately. Thus, the
thresholding no longer corresponds to a MAP estimate. Even
though convergence is observed empirically, we do not have
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Fig. 7. The imaging score and associated �-value, normalized mean square error (MSE) and normalized sharpness for all reconstruction rates using BLS-GSM
thresholding, � thresholding, and � minimization.

a proof of convergence for the IST algorithm with BLS-GSM
thresholding.

In our study, we have used a fully sampled data to generate
the coil maps, which was used during the reconstruction. In
a prospective acquisition, fully-sampled data is not available,
therefore a low resolution coil map should be used with proper
processing. There are several approaches to better estimate the
coil map from low resolution images for parallel imaging re-
construction [21], [35]. These methods could be applied to im-
prove estimation of the coil map for CS reconstruction. Addi-
tionally, in coronary MRI, data is acquired only in a short pe-
riod of cardiac cycle, therefore, a fully sampled data can be ac-
quired with the penalty of potential respiratory motion artifacts
in cases where the acquisition window is increased or acquired
in different heart phases. The issue of estimating the optimal
coil map was not studied and requires further investigation, es-
pecially in an iterative reconstruction where errors of estimation
can easily propagate through reconstruction steps.

Our study has limitations. Only a small number of young
healthy adult subjects were studied. Further studies are needed
to study the clinical evaluation of the proposed coronary MRI
for diagnosis of coronary artery disease. We have also not com-
pared our method to total variation based methods. Addition-
ally, all undersampling experiments were performed retrospec-
tively. This study used a retrospective approach as the first step
to evaluate the feasibility of CS in coronary MRI. Therefore
the achievable acceleration rates in a prospective study might
be lower. Furthermore, other factors such as optimal undersam-
pling pattern, eddy current due to random jumps in k-space, op-
timal phase ordering scheme, considering its impact on contrast
and signal to noise ratio as well as flow, needs to be fully inves-
tigated prior to a prospective acquisition. The choice of neigh-
borhood size was determined experimentally, and was fixed for
the duration of the study. The choice of thresholding parameter
was not automated and was selected empirically.

VI. CONCLUSION

We have developed and evaluated an improved CS recon-
struction method for accelerating coronary MRI by exploiting
the dependencies of the wavelet coefficients in addition to their
sparsity.

APPENDIX A
SPARSITY MODELING WITH JEFFREY’S PRIOR

Consider the sparsity model, where each transform domain
coefficient is assumed to be i.i.d., i.e., the GSM neighborhoods
are one-dimensional. Since orientation and scale are not impor-
tant in this discussion, we will index the wavelet coefficients as

for ease of notation, where indexes through the whole
wavelet space. With , the single-wavelet-do-
main-voxel probability density function in the GSM model
is [36]. In the Bayesian interpreta-
tion, this corresponds to a regularizer .
There is a one-to-one correspondence between the mini-
mizer of (1) with this regularizer and the sparsity regularizer
based on -norm , since and

[45]. Thus Jef-
frey’s prior (with i.i.d. transform domain coefficients) models
sparsity regularization with norm minimization where

.
APPENDIX B

STUDY OF NOISE RESILIENCE

In order to assess the immunity of proposed method against a
range of noise variance levels, the following study was carried
out: A 2D MRI scan of a resolution phantom, with a spatial res-
olution of was performed. A reference image was
generated from this data using root-sum-squares of each coil
image. The SNR of this image was measured, as the ratio of
the signal intensity in a prescribed region-of-interest (ROI), and
the signal standard deviation in a region of noise-only signal.
This SNR was subsequently used as the baseline SNR. Then
Gaussian noise was added to the original k-space data, and an-
other image was generated. The relative SNR (rSNR) was de-
fined as the ratio of the SNR of this image to the the baseline
SNR. The noisy k-space data were then undersampled at an
acceleration rate of four, and reconstructed using the proposed
technique. The normalized MSE (with respect to the reference)
were measured for each reconstruction, as well as for the noisy
image generated from the full noisy k-space data. The results
are depicted in Fig. 8.

The results indicate that the MSE of BLS-GSM increases
with noise. The scaling is roughly linear with the square of the
noise magnitude (or inverse square of the rSNR), as predicted
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Fig. 8. The results of the artificial noise study. The MSE of BLS-GSM recon-
structions increase with noise, but stays bounded. At lower relative SNRs, the
thresholding allows for partial noise removal.

by the CS theory. We note that at very low rSNR, the recon-
structed image has a lower MSE than the image generated from
the fully-sampled noisy k-space, due to the thresholding abili-
ties of the algorithm.
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