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Low-dimensional-Structure Self-Learning and
Thresholding: Regularization Beyond Compressed
Sensing for MRI Reconstruction
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An improved image reconstruction method from undersampled k-
space data, low-dimensional-structure self-learning and thresh-
olding (LOST), which utilizes the structure from the underlying
image is presented. A low-resolution image from the fully sampled
k-space center is reconstructed to learn image patches of similar
anatomical characteristics. These patches are arranged into ‘‘simi-
larity clusters,’’ which are subsequently processed for dealiasing
and artifact removal, using underlying low-dimensional properties.
The efficacy of the proposed method in scan time reduction was
assessed in a pilot coronary MRI study. Initially, in a retrospective
study on 10 healthy adult subjects, we evaluated retrospective
undersampling and reconstruction using LOST, wavelet-based l1-
normminimization, and total variation compressed sensing. Quan-
titative measures of vessel sharpness and mean square error, and
qualitative image scores were used to compare reconstruction for
rates of 2, 3, and 4. Subsequently, in a prospective study, coronary
MRI data were acquired using these rates, and LOST-recon-
structed images were compared with an accelerated data acquisi-
tion using uniform undersampling and sensitivity encoding
reconstruction. Subjective image quality and sharpness data indi-
cate that LOSToutperforms the alternative techniques for all rates.
The prospective LOST yields images with superior quality com-
pared with sensitivity encoding or l1-minimization compressed
sensing. The proposed LOST technique greatly improves image
reconstruction for accelerated coronary MRI acquisitions. Magn
Reson Med 66:756–767, 2011.VC 2011 Wiley-Liss, Inc.
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Over the past two decades, several approaches have been
proposed to improve image acquisition speed (1–9). Partial
Fourier methods use Hermitian symmetry to reduce scan
time (1). Non-Cartesian sampling techniques with more ef-
ficient k-space transversals have incoherent or less visually
significant artifacts compared with Cartesian sampling

(2–6). The local sensitivity of phased array coil elements
are used in parallel imaging either in k-space (simultaneous
acquisition of spatial harmonics, SMASH (7) and general-
ized autocalibrating partially parallel acquisition, GRAPPA
(9)) or image space (sensitivity encoding, SENSE (8)) to
allow accelerated acquisition. Model-based techniques
(10–12) and time-frequency approaches taking advantage of
spatiotemporal correlations (4,13) have also been proposed
to accelerate image acquisition in dynamic imaging. De-
spite all these efforts, long scan time is still a main chal-
lenge, especially in cardiac imaging where alternative
modalities such as multidetector CT benefits from rapid ac-
quisition and high patient throughput.

Compressed (or compressive) sensing (CS) is a recent

image reconstruction approach for incoherent undersam-

pling patterns (achieved by random sampling of k-space
data in Cartesian acquisitions) that exploits the sparsity

(or more generally compressibility) of the image in a

transform domain (14,15) and may be used to surpass

the current rapid acquisition techniques in terms of

acceleration rate (15,16). CS reconstruction aims to maxi-

mize the sparsity of the reconstructed image in a trans-

form domain subject to data consistency constraints com-

paring the estimate to the acquired k-space data. This is

typically done by minimizing the convex l1 norm of the

transform domain coefficients (17,18). This accelerated

technique has already been applied in several cardiac

MRI applications to reduce scan time, which can be

traded off for higher spatial or temporal resolution

(19,20). Furthermore, attempts have been made to com-

bine parallel imaging and CS, via sparsity-regularized

iterative GRAPPA-type approaches (21,22), a concurrent

combination of CS and SENSE where the coil sensitiv-

ities are used to enforce data consistency in addition to

sparsity constraints (20), and a serial combination of CS

and SENSE (23).
Even though image acceleration is possible using these

methods, new reconstruction strategies that address the
limitations of previous methods or enable higher acceler-
ation rate are desirable. Partial Fourier and parallel imag-
ing methods suffer from noise amplification, where the
noise level and artifacts increase with the acceleration
rate, to a level that might hinder clinical use. This is par-
ticularly important for higher spatial resolution applica-
tions, such as coronary MRI. Non-Cartesian techniques
provide image acceleration with less coherent artifacts.
However, improved reconstruction techniques, such as
CS, which exploit the underlying image sparsity, can fur-
ther reduce noise-like artifacts (5,14). Despite, the
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improvement in noise-reduction, CS-based techniques
still suffer from residual artifacts and image smoothing,
because they assume an image has a sufficiently sparse
representation in a preselected transform domain.
Although sparsity is a necessary condition for l1 norm
reconstruction, it is not possible to know whether a
transform can efficiently represent the underlying image
characteristics. For instance, wavelets cannot capture
smooth transitions sparsely, whereas finite differences
have problems with sharp edges. Thus, minimization of
sparsity with a fixed transform domain may result in
blurring and other image artifacts. Even if the transform
dictionary is generated using the computationally expen-
sive dictionary learning algorithms (24), the effectiveness
of such transforms may degrade due to inter- and intra-
patient variability, especially for cardiac MR where con-
trast and signal level varies significantly between differ-
ent acquisitions.

In this study, we sought to develop an improved CS
reconstruction method from undersampled k-space data
that utilizes the structure and anatomical features in
the image being reconstructed. By using the informa-
tion from the image itself, we aim to represent various
features of the image sparsely in an adaptive fashion,
without the need for training data. Once such an
adaptive representation is achieved, aliasing artifacts
and noise can be removed using thresholding
approaches. Furthermore, learning the structure in this
self-contained manner ensures robustness to variations
among patients, exams, and contrast level. After the
introduction of the reconstruction method, we present
a comparative study between wavelet-based l1 minimi-
zation, total variation (TV) regularization, and the pro-
posed method for accelerated coronary MRI in a cohort
of healthy subjects. We will also present results from
prospectively acquired coronary MRI datasets, compar-
ing the proposed method with the aforementioned tech-
niques and with SENSE.

THEORY

Let F denote the unitary Fourier transform and FV be the
operator that undersamples the k-space with the pattern
V. Hence, the jth coil image, mj(x, y, z) is measured as Sj

¼ FV(mj) þ nj, in the presence of additive noise. To esti-
mate the image, CS reconstruction solves a minimization
problem based on an objective function:

m̂ ¼ argmin
m

1

2
S� FV mð Þk k22 þ tF Cmð Þ; ½1�

where the first term is a fidelity measure of image consis-
tency, and the second term is a scalar weight t of the spar-
sity regularizer F with a transform domain C. Typically,
F is chosen as the ‘p (p � 1) norm of the transform domain
coefficients, which captures the sparsity of the image in
transform domain C. This equation is usually solved
using an iterative thresholding algorithm, which alter-
nates between enforcing k-space data consistency and
dealiasing (25). At iteration t, image estimates of individ-

ual coils, m
ðtÞ
j are Fourier transformed, and the estimated

k-space lines are replaced with the acquired k-space lines
Sj. These new k-spaces are subsequently inverse Fourier

transformed to generate v
ðtÞ
J in the data-consistency stage.

In the dealiasing stage, the consistent images v
ðtÞ
j are deal-

iased to generate m
ðtþ1Þ
j . Conventionally, this is done by

transforming v
ðtÞ
j to C domain, thresholding these coeffi-

cients individually and inverse C-transforming to gener-
ate m

ðtþ1Þ
j (14,15,19). In this work, we replace this

technique with an alternative dealiasing strategy, low-
dimensional-structure self-learning and thresholding
(LOST), which is described in detail below.

LOST learns the image areas of similar signal charac-
teristics and uses this information for reconstruction.
In the initial stage of the algorithm, 2D image patches
of similar signal characteristics are grouped together
into ‘‘similarity clusters.’’ These data are arranged into
a 3D structure and processed using a 3D Fourier trans-
form, which achieves high levels of sparsity due to the
similarity of the image patches. Similarly, each 2D
patch in the cluster can be vectorized and arranged
into a matrix, which has low-rank properties, i.e., it
can be represented with minimal error using a small
number of singular values and vectors. Both of these
properties are low-dimensional, since if a high-dimen-
sional dataset has one of these properties, it can be
approximated with high fidelity, using parameters (ei-
ther transform domain coefficients or singular values
and vectors) that have a total number much less than
the dimensionality. Examples of such clusters and their
low-dimensional properties are depicted in Fig. 1 for a
slice containing the right coronary artery (RCA). Thus,
each similarity cluster is highly likely to fit to a low-
dimensional signal model, which allows artifacts due
to undersampling and noise to be represented as per-
turbations to the low-dimensional structure, facilitating
further processing, and preserving information locally.
In the rest of the algorithm, these clusters are nonli-
nearly thresholded based on their low-dimensional
properties to remove the perturbations caused by alias-
ing and artifacts. In the following sections, we describe
the details of the LOST algorithm.

Learning the Anatomical Structure Using
Similarity Clusters

To build clusters of similar anatomical content, we use a
block matching algorithm that has also been used in video
compression standards such as MPEG (26) and in image
denoising (27). For each voxel in the image, we consider
the 2D image block of size Nb � Nb (in the x–y direction),
whose top left corner is located at that voxel location. This
image block, denoted Xref, is then compared with other
Nb � Nb image blocks based on a normalized l2 distance
measure, d Xref ; Xotherð Þ ¼ Xref � Xotherk k22

�
Xrefk k22. If this

distance is less than a specified threshold, kmatch, then
the two blocks are declared similar, and Xother is added
to the similarity cluster of Xref. To reduce the complex-
ity, for any voxel, we only compare with 2D blocks
within a specified search radius (Nsearch in x–y and
Ndepth in z direction), and limit the size of each cluster
to be at most Ncluster. If more image blocks are matched
to the reference block, only the Ncluster blocks with the
highest degree of similarity are considered in the cluster
for further processing.
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Low-Dimensional Properties of Similarity Clusters

The block matching process ensures that the signal char-
acteristics of the blocks in a given cluster are highly
similar. This similarity enables the enhanced use of the
low-dimensional properties for each cluster: transform-
domain sparsity and low-rankedness. In this work, we
concentrate on the transform-domain sparsity due to its
modest computational requirements. How low-ranked-
ness may be used to extend our approach is presented in
Appendix A.

For efficient utilization of transform-domain sparsity,
the 2D blocks in a similarity cluster are stacked into a
3D structure, and a 3D fast Fourier transform (FFT) is
applied. The 2D FFT of each block promotes sparsity,
and similar block-based transforms have been previously
used in the JPEG standard (28). The transform along the
third dimension of the similarity cluster further enhan-
ces sparsity since all the 2D blocks are chosen to have
similar image content. For example, FFT in the third
dimension would only keep the zero-frequency DC com-
ponent if the blocks are equivalent.

If the similarity clusters were learned from a fully
sampled high-resolution image, these properties would
hold for each cluster. However, when dealing with
undersampled k-space data, we only have access to low-
resolution images from central k-space or estimates of
the high-resolution image, which results in imperfections

in the identification of the similarity clusters. Further-
more, aliasing artifacts and noise will also be observed.
Thus, we will deal with clusters, whose sparse compo-
nents are corrupted by artifacts and noise. Therefore,
nonlinear shrinkage has to be applied to each cluster to
extract the desired low-dimensional structure of the
clusters.

Nonlinear Shrinkage of Similarity Clusters

In the LOST de-aliasing strategy, the transform-domain
sparsity of the similarity clusters is used to threshold
noise and aliasing artifacts (Fig. 2). In our approach, we
use shrinkage operators based on hard thresholding (cap-
turing l0 norm) in early iterations to reduce aliasing arti-
facts, and subsequently Wiener filtering (weighted l2
norm) to reduce blurring artifacts, similar to image
denoising algorithms (27).

A 3D FFT is applied to the similarity cluster of each
voxel (xl, yl, zl), denoted by Ll. In the initial hard-thresh-
olding steps, the FFT coefficients, Fl ¼ F (Ll), are set to
zero if their magnitude is below a threshold, tht, and are
unchanged if their magnitude is above the threshold. Af-
ter a number of hard-thresholding iterations, Wiener fil-
tering is applied to reduce the apparent blurring
artifacts. In Wiener filtering, the filter coefficients for the
(i, j, k) location in the Fourier domain are generated from
the current estimate by

FIG. 1. Coronary MRI contain areas of similar signal characteristics at various spatial locations. These similarity clusters can be treated
as a three-dimensional (3D) object that exhibits transform domain sparsity or as a two-dimensional (2D) matrix with low-rank property.

When dealing with undersampled acquisitions, the center of k-space is used to generate a low-resolution image from which these simi-
larity clusters can be approximately identified and used in removing aliasing. The clusters are updated once better higher resolution esti-
mates become available (FFT: fast Fourier transform, SVD: singular value decomposition).
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Wlði; j;kÞ ¼ Flði; j;kÞj j2
Flði; j; kÞj j2 þ t2wie

; ½2�

where twie is the Wiener filtering threshold. These filter
coefficients and the FFT coefficients, Fl are then multi-
plied pointwise to generate the thresholded FFT coeffi-
cients. The thresholded FFT coefficients are
subsequently transformed back to the image domain via
3D inverse FFT (IFFT).

At each iteration, the nonlinear filtering process is
repeated for every similarity cluster, and since the clus-
ters are not necessarily disjoint, there will be multiple
thresholded estimates for 2D image blocks. To generate
the final image estimate, individual block estimates are
combined using weighted averaging (27). The intuition
behind such a weighting scheme is to give smaller
weights to noisier and more aliased blocks. The weights
are generated, as explained below, for each cluster, and
the corresponding blocks from that cluster are weighted
with these weights in the final averaging stage. If hard
thresholding is used, the weights are generated based on
the number of non-zero coefficients remaining after
thresholding, which will be denoted by Nl. In this case,
the weights are given by

wht
l ¼ 1=Nl

1

�
if Nl � 1
if Nl ¼ 0

: ½3�

For Wiener filtering, the weights are generated using

wwie
l ¼ 1

,X
i;j;k

Wlði; j;kÞj j2: ½4�

After normalization, these weights are used to generate
a new estimate for each Nb � Nb image block. The 2D
image blocks themselves, which are also overlapping, are
combined by simple averaging to generate the new image
estimate (Appendix B). A Kaiser window is applied to
each processed 2D block to reduce boundary artifacts.

METHODS

Reconstruction Algorithm: Implementation Details

The proposed reconstruction algorithm was implemented
in two stages. Initially, low-resolution images were gen-
erated from the fully acquired center of k-space, using a
Hanning window. These low-resolution images were
used to learn the similarity clusters for the first stage.
The parameters used for this process are Nb ¼ 8, Nsearch

¼ 8, Ndepth ¼ 1, Ncluster ¼ 16, and kmatch ¼ 0.1. Then for
each coil, the iterative algorithm is applied (initialized to
all-zero image), using hard-thresholding method for 25
iterations, generating m̂1

k . The thresholding parameter for
each coil, sht, is chosen to be 0.05 times the largest (in
absolute value) coefficient of the zero-filled coil image.
This process results in removing the aliasing but results
in certain blocking artifacts. In the second stage, the sim-
ilarity clusters are updated again using m̂1

k , with parame-
ters Nb ¼ 4, Nsearch ¼ 8, Ndepth ¼ 1, Ncluster ¼ 16 and
kmatch ¼ 0.05. The iterative algorithm is applied coil-by-
coil, with initialization m̂1

k , for a total of 15 iterations
alternating between Wiener filtering and hard threshold-
ing, generating the final estimates m̂k . sht and swie are
chosen to be 0.03 times the largest (in absolute value)
coefficient of the previous coil estimate m̂1

k .
The proposed method was implemented in Matlab

(v7.6, MathWorks, Natick, MA), with the learning and
nonlinear shrinkage portions implemented in Cþþ. An
implementation of LOST will be provided online.

In Vivo Imaging

All imaging sequences were implemented on a 1.5-T Phi-
lips Achieva (Philips Healthcare, Best, The Netherlands)
system with a 5-channel cardiac-phased array receiver
coil. The imaging protocol was approved by our institu-
tional review board, and written informed consent was
obtained from all participants.

A free-breathing 3D electrocardiographically gated
steady state free precession (SSFP) sequence (echo time/
pulse sequence repetition time ¼ 2.1 ms/4.3 ms; field of
view, 270 � 270 � 30 mm3; flip angle, 90� spatial resolu-
tion, 1 � 1 � 3 mm3) was used to image the right and left
coronary arteries (29). A 2D right hemidiaphragm pencil-
beam respiratory navigator with acceptance window of
5 mm was used for respiratory motion gating and tracking.

Coronary MRI: Restrospective Study

In two separate studies, right and left coronary MRI were
acquired in two different subject cohorts. For each anat-
omy, 10 healthy adult subjects (four men, 22.0 6 2.1 years
for right, and four men, 30.7 6 19.0 years for left) without
contraindications to MR imaging were included. The k-
space data were fully acquired, and were then exported
and transferred to a standalone workstation to allow a ret-
rospectively undersampled study. The data were under-
sampled by factors of 2, 3, and 4, by keeping the center
50 � 5 ky–kz-space lines, and randomly discarding outer
k-space lines based on a zero-mean Gaussian distribution.

As a comparison to the proposed LOST strategy, the
datasets were also reconstructed using l1 minimization
and TV regularization. l1 Minimization was implemented

FIG. 2. The proposed LOST shrinkage uses the transform sparsity

of similarity clusters generated. The sparsity property is used to
remove aliasing by the application of a hard-thresholding operator
in early iterations, and a Wiener filter after the estimates become

more accurate.
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coil-by-coil via basis pursuit using the SPGL1 solver for
large-scale l1 regularized least squares problems (30).
The solver was run for 300 iterations and orthogonal
Daubechies-4 wavelets (15,21) were used as the sparsify-
ing transform. TV regularization was implemented coil-
by-coil via RecPF algorithm (31) using three-dimensional
finite differences for F (Cm) ¼ TV (m), using 100 itera-
tions and tTV ¼ 0.0001 (14,31). The final estimates were
generated by root-sum-squares of the coil estimates for
all reconstruction methods and for the reference image.

Coronary MRI: Prospective Study

Coronary MRI datasets were prospectively acquired at accel-
eration rates of 2, 3, and 4 in a total of four healthy subjects
(two men, 22.0 6 1.4 years). The imaging pulse sequence
was modified to accommodate the random undersampling
patterns and to mitigate effects due to eddy currents, gradi-
ent switching, and flow. Based on the undersampling factor,
an undersampling pattern was generated by keeping the
center 40 � 5 ky–kz lines and discarding edges randomly.
The undersampling pattern was then stored as a lookup ta-
ble. Before the acquisition, a phase reordering was per-
formed, where the selected samples were sorted based on
their ky and kz location in a radial fashion.

The prospectively undersampled images were recon-
structed using both LOST, and l1 minimization in the
wavelet domain. Additionally, data were prospectively
acquired with SENSE for the same acceleration rates, using
uniform undersampling (8). The reconstructions made by
the scanner were saved and used for comparison. Fully
sampled images were also acquired for comparison. The
nominal scan times for these exams were 3:11 min for
fully sampled acquisition: 1:36 min, 1:04 min, and 49 s for
acceleration rates of 2, 3, and 4, respectively, assuming
100% navigator efficiency and a heart rate of 70 beats/min.

Image and Statistical Analysis

For our retrospective coronary MRI study, both subjec-
tive and objective image analyses were performed to
evaluate the three reconstruction methods (LOST, l1 min-
imization and TV regularization) at different rates. For
both left and right coronaries, a total of 10 imaging data-
sets were generated for each subject, including one from
a fully sampled k-space, and three per method for accel-
eration rates of 2, 3, and 4. A qualitative assessment of
coronary artery image quality was performed by an expe-
rienced independent blind reader with >10 years coro-
nary MRI experience using a four-point scale system (1
¼ poor, 4 ¼ excellent) (32). Separate scores were given
for the proximal, mid, and distal segments of the RCA;
and left main (LM), proximal, mid left anterior descend-
ing artery (LAD), and left circumflex artery (LCX). These
scores were combined for the right and left systems,
respectively, before statistical analysis.

The Soap bubble (33) tool was used to quantitatively
evaluate the RCA vessel sharpness. Vessel sharpness
scores were calculated for both sides of the vessel. Final
normalized sharpness was defined as the average score
of both sides normalized by the center of vessel inten-
sity. For quantitative measurement, the mean square

error (MSE) of each reconstruction was also calculated.
The normalized MSE was then calculated by dividing
each individual MSE by the sum of the squared l2 norms
of the reference coil images.

Imaging scores, sharpness, and MSE are presented as
mean 6 one standard deviation. The signed rank test
was used for imaging scores to test for the null hypothe-
sis that the central tendency of the difference was zero at
different acceleration rates. All statistical analyses were
performed using SAS (v9.2, SAS Institute, Cary, NC).
The normalized sharpness scores and normalized MSE
were compared using the paired t test. A P value of
<0.05 was considered to be significant.

RESULTS

Figure 3 shows a sample 2D slice from a 3D coronary MRI
dataset from fully sampled k-space data, and reconstructed
images using LOST at acceleration rates of 2, 3, and 4,
with corresponding reconstructions using l1 minimization
in the wavelet domain and TV regularization in middle
and bottom row, respectively. With acceleration greater
than 2, l1 minimization and TV regularization suffer from
blurring and artifacts. In all methods, there is a degrada-
tion of image quality as the acceleration rate is increased,
although the degradation of LOST images is less severe.
Figure 4 depicts reformatted images of LAD, LCX, and
proximal RCA from a 3D left coronary MRI dataset recon-
structed using the three approaches. Both l1 norm minimi-
zation and TV regularization suffer from blurring at rates
higher than 2. LOST allows for improved visualization at
higher rates but also has artifacts.

Figure 5 summarizes the qualitative assessment of the
coronaries, which indicate LOST outperforms both l1 norm
minimization in the wavelet domain and TV regularization
at all rates. Statistical analysis shows that the difference
between LOST and the other two methods are significantly
different at all rates (P < 0.05). There is a significant differ-
ence between TV regularization and l1 minimization at
rate 4 for the RCA, in favor of TV regularization. There is
also a significant difference among TV regularization and
l1 minimization at rate 2 for LAD/LM/LCX.

Table 1 summarizes normalized sharpness and MSE
for RCA and normalized MSE for LAD/LM/LCX, using
LOST, l1 norm minimization in the wavelet domain and
TV regularization. The mean value of MSE for LOST was
lower than l1 norm minimization and TV regularization.
Except for acceleration rate 2 of the LAD/LM/LCX, TV
regularization consistently had a lower MSE than l1
norm minimization in the wavelet domain, and their dif-
ference at rate 2 was not statistically significant. When
the three methods were compared pairwise, there were
statistically significant differences between all methods,
except for rate 2 between TV and l1 norm minimization.

LOST had the highest RCA sharpness score among all
the reconstruction methods. l1 norm minimization in the
wavelet domain had a higher sharpness score compared
with TV regularization, which is consistent with the quali-
tative assessment. When compared with the fully sampled
reference, there were no significant differences for LOST
at rate 2. All the other reconstructions exhibited signifi-
cant differences with respect to the reference (P < 0.05).

760 Akçakaya et al.



Reformatted RCA images from a prospective acquisi-
tion are depicted in Fig. 6 from fully sampled acquisi-
tion, LOST, and l1 norm minimization with random pro-
spective undersampling for rates 2, 3, and 4. The SENSE
reconstruction with a uniform undersampling pattern for
the same subject is also shown. At rate 2, the three
reconstructions provide images where the RCA is clearly
visible, although l1 norm minimization suffers from blur-
ring, and SENSE has noise amplification. The differences
become more pronounced at higher rates of 3 and 4. Fig-
ure 7 depicts a reformatted image from a prospective
LAD/LM/LCX acquisition, which shows similar image
quality to RCA. At rates 3 and 4, LOST provides visual-
ization of the arteries, whereas the proximal RCA and
LCX are no longer visible in SENSE, and all the arteries
are blurred for l1 norm minimization. There are inter-
exam variations among images acquired using uniform
and random undersampling, as well as the fully sampled
scan, due to variations in the subjects’ breathing pattern.

DISCUSSION

We have developed an improved reconstruction technique

for undersampled k-space data, which exploits the image

structure to remove aliasing and imaging artifacts, and

evaluated this novel method in coronary MRI. The use of

similarity clusters enables high levels of sparsity, because

the blocks within the clusters exhibit similar signal charac-

teristics. This is stronger than merely assuming sparsity of

signals in a transform-domain or assuming a probabilistic

model of sparsity structure in images, as conventional CS

reconstructions do. The learning procedure adaptively

determines the structure of the image, thus the variations

between unique anatomies, patients, imaging parameters,

and contrast level are captured for the image of interest,

although further investigation about its utility with these

variations is necessary. Furthermore, the learning procedure

also identifies variations in different coil images, even when

the method is used coil-by-coil.

The shortcomings of fixed transforms in representing

different anatomies were previously reported (34–36),

and transforms fine tuned to the given anatomy using a

dictionary learning algorithm were used (24). Dictionary

learning methods are based on a global optimization

model, where a dictionary is generated for all the compo-

nents of the image (with the components being the pa-

rameter direction (34), patches (35), or columns of the

image (36)). Thus, a dictionary is generated with the goal

to simultaneously sparsify all the components, and each

FIG. 3. Retrospective accelerated RCA reconstruction: An example slice of a 3D coronary MR image from fully sampled data, LOST
(top row) and l1 norm minimization in wavelet domain (middle row) and total variation (TV) regularization (bottom row) at rates of 2, 3,
and 4. RCA is readily visualized at all rates for images using LOST. The RCA is highly blurred for rate-4 l1 minimization and TV regulari-

zation. Furthermore, more apparent artifacts and blurring are observed for these two techniques at rates 3 and 4 compared with LOST
(AO: aortic root; RV: right ventricle; LV: left ventricle; RCA: right coronary artery).
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FIG. 4. Retrospective accelerated left coronary MRI: Reformatted axial images of the RCA, left anterior descending artery (LAD), and

left circumflex artery (LCX)) from fully sampled 3D left coronary MRI data (reference), and from LOST (top row), l1 minimization (middle
row), and TV regularization (bottom row) reconstructions for accelerated acquisition rates of 2, 3, and 4. The coronaries can be readily
visualized in all images, although blurring is apparent at rates 3 and 4 for l1 minimization and TV regularization. (LAD: left anterior de-

scending; LCX: left circumflex artery).

FIG. 5. Mean image reading scores and standard deviation for the right and left coronaries, for all reconstructions at rates 2, 3, and 4.
LOST outperforms the other methods at all rates. The significant differences (P < 0.05) are marked with *.
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component is thresholded individually such that its rep-

resentation has at most a predefined number of nonzero
coefficients. In contrast, our model uses clusters that only

have blocks of similar content, and each block can be

part of multiple clusters, which reduces the artifacts asso-
ciated with standard thresholding methods (27). Further-

more, as dictionary learning methods try to simultane-

ously sparsify the components based on an l2 constraint,
the relevant anatomical features are not necessarily cap-

tured in an equally sparse manner, which may lead to

artifacts. The dictionary learning stage can be performed
using training data (34,35), which might not reflect the

variability, contrast, and image features among patients.

Alternatively, the dictionary and the image can be
approximated together, where the dictionary is updated

with least squares constraints, based on the current image

estimate, which is the solution of a CS reconstruction

problem that uses the previous estimate for the nonpara-
metric dictionary (36). This approach suffers from high-

computational burden and the potential to converge to a

local minimum, because the dictionary update only relies
on a least squares solution without further constraints,

although the measurements are highly incomplete.
In our implementation, we used different shrinkage

techniques depending on the iteration number. At the ear-
lier iterations, hard thresholding is preferred as it effec-
tively removes aliasing. In our experiments, we found that
hard thresholding is much more effective than soft thresh-
olding (capturing l1 norm of each cluster) for removing
aliasing in similarity clusters. Wiener filtering is not ap-
plicable in earlier iterations, as the aliasing artifacts pro-
duce unreliable filter coefficients. However, in later itera-
tions, Wiener filtering with appropriate filter coefficients
is preferred because of its effectiveness in removing block-
ing and noise artifacts. These observations are consistent
with the results in image denoising literature (27).

In terms of computational complexity, the complexity
of the data consistency stage is dominated by an FFT
and an IFFT, both of O(N�log(N)), where N is the image
size; which is standard in many reconstruction algo-
rithms. In the dealiasing stage, the shrinkage operations
scale linearly with the dimensions. For hard threshold-
ing and Wiener filtering, the complexity is
O(N2

b�Ncluster�log(Nb�Ncluster)) per voxel. In our implemen-
tation, we limit ourselves to small constant block and
cluster sizes, which results in a run-time not more than
wavelet-based thresholding. The block-matching portion
before the iterations, requires pairwise comparisons for
each block within the search radius, resulting in a com-
putational complexity of O((Nb�Nsearch)

2�Ndepth), which
takes almost as long as the iterative portion itself. Fur-
ther accelerations in the learning process can benefit the
overall algorithm, enabling more frequent update of simi-
larity clusters. For instance, rather than sliding through
each voxel one-by-one as we currently do in our algo-
rithm, several voxels might be skipped at once (27). The
run-times for the algorithms were 7 min for TV (RecPF),
98 min for LOST, and 385 min for l1 norm minimization
(SPGL1) for reconstructing five coil images, each of size
544 � 270 � 19, on a standard Lenovo workstation
with a 2.66-GHz central processing unit and 8-GB RAM.
We also note that since most of the processing in ourTa
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algorithm is done independently for each voxel, as
opposed to a linear transformation across the image, a
parallel implementation using a graphics processing unit
(GPU) may result in significant run-time gains, bringing
the running time to more clinically feasible levels.

Some techniques were used in our implementation to
simultaneously meet requirements of both speed and
quality of reconstruction, but alternatives may be consid-
ered as well. For instance, we used an l2 distance-based
similarity measure, which is advantageous because the
triangle inequality guarantees that the maximum dis-
tance between any two elements in a given cluster will
be bounded. However, other more computationally
demanding similarity measures such as mutual informa-
tion (37) and shape-adaptive block matching (38) or 3D
block matching may be used.

We have used FFT as our 3D transform for the clus-
ters. The use of FFT, especially in the third dimension
(along the blocks) is crucial for ensuring high levels of
transform domain sparsity. We note that as the similar-
ity clusters contain only blocks of similar signal con-

tent, the periodic boundary conditions of FFT along the
third dimension do not hinder the representation spar-
sity. The transform in the other two dimensions (within
the blocks) is less critical, but we used FFT based on
the availability of fast Cþþ implementations and for its
natural capacity to handle complex data. Further inves-
tigation is required for optimization. We also note that
due to the contents of similarity clusters, a 3D FFT not
only captures the low-resolution characteristics but
most of the characteristics. This in conjunction with
the use of a fixed thresholding value (and not a fixed
level of sparsity) for all clusters ensures that high-reso-
lution features in areas with substantial signal content
are not lost, as confirmed by the quantitative sharpness
measurements.

In the highly overcomplete representation used in this
work, we allow for overlapping neighborhoods and for
image patches to be represented in multiple different
ways in different clusters. Thus, a thresholding based on
a fixed number of coefficients for each cluster is not
appropriate in general. Finally, the processed patches are

FIG. 6. Prospective accelerated RCA acquisition: Reformatted images from a prospectively undersampled targeted RCA acquisition,
from fully sampled data, LOST (top row), l1 minimization (middle row), and SENSE (bottom row) for acquisition rates of 2, 3, and 4. Ran-

dom undersampling was utilized for the acquisitions reconstructed with LOST and l1 minimization, uniform undersampling was utilized
for SENSE. At rate 2, LOST reconstruction is visually very similar to the reference, whereas l1 minimization has blurring, and SENSE has

folding artifacts. At higher rates, LOST still manages to provide improved visibility, while blurring and noise amplification are apparent in
l1 minimization and SENSE images, respectively.
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combined in a nonlinear fashion based on the effects of
thresholding for that cluster. Hence, the method does not
really fit the traditional CS framework, and the compres-
sibility analysis of (15) cannot be applied in a straightfor-
ward manner.

The size of the fully sampled central k-space for this
work was determined empirically to ensure that the low-re-
solution image generated from these k-space lines did not
exhibit ringing artifacts. This ensures that the algorithm
does not learn these artifacts as part of the image. If a
smaller part of the central k-space is acquired, an estimate
can be generated using standard CS techniques, and this
estimate can be used to determine the similarity clusters.

The proposed dealiasing approach may also be used in
combination for combining parallel imaging and CS (20–
23), as well as with non-Cartesian trajectories. Although
this study did not test the optimal way of combining the
proposed method with parallel imaging techniques, the
local processing of the blocks may yield more robust
reconstruction to imperfect coil sensitivity maps. The
use of a phased-array coil with a higher number of chan-
nels may yield higher acceleration rates, because images
will be better localized in different coils. The proposed
method may also improve image reconstruction in other
anatomical or functional imaging, which requires further
investigation.

CONCLUSIONS

We have developed an improved reconstruction tech-
nique for undersampled acquisitions that learns and uti-
lizes the structure of images being reconstructed and
evaluated its performance in coronary MRI.

APPENDIX A

Extensions: Low Rank-Based Processing of
Similarity Clusters

Low-rank properties of matrices have been an active area
of recent research, with applications in low-rank matrix
completion from incomplete measurements and robust
principal component analysis techniques (39,40). To uti-
lize low rankedness of clusters, each 2D patch in the
cluster is rearranged into an N2

b � 1 vector, and these
vectors are treated as the columns of a matrix describing
the cluster. Because the data in each 2D block has simi-
lar anatomical features, the matrix can be well approxi-
mated by a low-rank matrix. As a simple example, if all
the 2D blocks had the same signal content, then the ma-
trix would have rank 1.

To utilize the low-rank properties of the cluster Ll, we
first generate the cluster matrix MLl

by rearranging the

FIG. 7. Prospective accelerated left coronary MRI: Reformatted axial images depicting RCA, LCX, and LAD from a prospectively undersampled
targeted left coronary MRI acquisition, from fully sampled data, LOST (top row), l1 minimization (middle row), and SENSE (bottom row) for acqui-

sition rates of 2, 3, and 4. At rate 2, the three methods reconstruct images of similar quality, although l1 minimization exhibits blurring. At rates 3
and 4, l1 minimization and SENSE suffer from blurring and noise amplification, respectively, and the coronaries can no longer be defined.
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2D blocks in Kl to column vectors. By the low-rank prop-
erties of the similarity clusters, MLl

can be well approxi-
mated by a low-rank matrix, LLl

, corrupted by artifacts
and noise. Classical principal component analysis seeks
to find the best rank-k matrix that approximates MLl

in
the l2 sense. Although this is optimal in the presence of
Gaussian noise, principal component analysis is not ro-
bust to gross and non-Gaussian errors caused by artifacts
and noise, and a more robust version of principal com-
ponent analysis, denoted principal component pursuit
(PCP) has recently been proposed in (40). Here, the noise
and artifacts are modeled as a sum of gross errors, ELl

and small errors ZLl
, resulting in the model

MLl
¼ LLl

þ ELl
þ ZLl

: ½A1�
The low rank matrix can then be recovered using a

convex relaxation of rank minimization

min
L; E

Lk k�þlpcp Ek k1þmpcp MLl
� Lþ Eð Þ�� ��2

F
; ½A2�

where �k k� denotes the nuclear norm of the matrix (sum
of the absolute values of the singular values), �k k1
denotes the l1 norm of the matrix (sum of the absolute
values of the entries), and �k k2F denotes the squared Fro-
benius norm of the matrix (sum of the magnitude-squares
of the entries), and kpcp and lpcp are optimization
weights (40). This minimization can be solved using iter-
ative approaches (40). However, this results in a com-
plexity of O(max(N2

b, Ncluster)
6) per voxel, which prohib-

its a comprehensive study of this implementation. We
note that a GPU implementation may enable the use of
this technique, which is attractive because it can handle
non-Gaussian artifacts.

APPENDIX B

Weighted Averaging of Processed Blocks

The weighted averaging approach used to generate a
final image estimate from thresholded blocks in similar-
ity clusters can be formally described as

mðtþ1Þ ¼
X

x0;y0 ;z0ð Þ

P
l: x0 ;y0;z0ð Þ2Ll

w filt
l xx0 ;y0;z0 F�1 Ffilt F Llð Þð Þð Þ� �

P
l: x0 ;y0;z0ð Þ2Ll

w filt
l

, X
x0;y0 ;z0ð Þ

I x0; y0; z0ð Þ; ½B1�

where Ffilt specifies which nonlinear filter has been
used (ht or wie), wfilt

l specifies the corresponding weight
for the appropriate cluster. xx0;y0 ;z0 �ð Þ is a function that
keeps the 2D image block whose top left corner is
located at (x0, y0, z0) among the blocks in the cluster (�)
and maps this to its appropriate location in the image,
and I (x0, y0, z0) is the indicator function that is 1 for

f x; y ; zð Þ : x0 � x � x0 þNb � 1; y0 � y � y0 þNb

�1; z ¼ z0g ½B2�

and 0 otherwise.

REFERENCES

1. McGibney G, Smith MR, Nichols ST, Crawley A. Quantitative evalua-

tion of several partial Fourier reconstruction algorithms used in MRI.

Magn Reson Med 1993;30:51–59.

2. Meyer CH, Hu BS, Nishimura DG, Macovski A. Fast spiral coronary

artery imaging. Magn Reson Med 1992;28:202–213.

3. Peters DC, Korosec FR, Grist TM, Block WF, Holden JE, Vigen KK,

Mistretta CA. Undersampled projection reconstruction applied to MR

angiography. Magn Reson Med 2000;43:91–101.

4. Barger AV, Block WF, Toropov Y, Grist TM, Mistretta CA. Time-

resolved contrast-enhanced imaging with isotropic resolution and

broad coverage using an undersampled 3D projection trajectory.

Magn Reson Med 2002;48:297–305.

5. Mistretta CA, Wieben O, Velikina J, Block W, Perry J, Wu Y, Johnson

K. Highly constrained backprojection for time-resolved MRI. Magn

Reson Med 2006;55:30–40.

6. Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O. An

optimal radial profile order based on the golden ratio for time-

resolved MRI. IEEE Trans Med Imaging 2007;26:68–76.

7. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial har-

monics (SMASH): fast imaging with radiofrequency coil arrays.

Magn Reson Med 1997;38:591–603.

8. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE:

sensitivity encoding for fast MRI. Magn Reson Med 1999;42:

952–962.

9. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J,

Kiefer B, Haase A. Generalized autocalibrating partially parallel

acquisitions (GRAPPA). Magn Reson Med 2002;47:1202–1210.

10. Prieto C, Mir R, Batchelor PG, Hill DLG, Guarini M, Irarrazaval P.

Reconstruction of under-sampled dynamic images by modeling the

motion of object elements. Proceedings of the 14th Scientific Meeting

of ISMRM, Seattle; 2006. p 687.

11. Sharif B, Derbyshire J, Faranesh A, Lederman R, Bresler Y. Real-time

non-gated cardiac MRI using PARADISE: doubly adaptive acceler-

ated imaging. Proceedings of the 17th Scientific Meeting of ISMRM,

Honolulu; 2009. p 767.

12. Odille F, Uribe S, Batchelor PG, Prieto C, Schaeffter T, Atkinson D.

Model-based reconstruction for cardiac cine MRI without ECG or

breath holding. Magn Reson Med 2010;63:1247–1257.

13. Tsao J, Boesiger P, Pruessmann KP. k-t BLAST and k-t SENSE:

dynamic MRI with high frame rate exploiting spatiotemporal correla-

tions. Magn Reson Med 2003;50:1031–1042.

14. Block KT, Uecker M, Frahm J. Undersampled radial MRI with multi-

ple coils. Iterative image reconstruction using a total variation con-

straint. Magn Reson Med 2007;57:1086–1098.

15. Lustig M, Donoho DL, Pauly JM. Sparse MRI: the application of com-

pressed sensing for rapid MR imaging. Magn Reson Med 2007;58:

1182–1195.

16. Vasanawala SS, Alley MT, Hargreaves BA, Barth RA, Pauly JM, Lus-

tig M. Improved pediatric MR imaging with compressed sensing. Ra-

diology 2010;256:607–616.

17. Donoho DL. Compressed sensing. IEEE Trans Inf Theory 2006;52:

1289–1306.

18. Candès EJ, Romberg J, Tao T. Robust uncertainty principles: exact

signal reconstruction from highly incomplete frequency information.

IEEE Trans Inf Theory 2006;52:489–509.

19. Gamper U, Boesiger P, Kozerke S. Compressed sensing in dynamic

MRI. Magn Reson Med 2008;59:365–373.

20. Otazo R, Kim D, Axel L, Sodickson DK. Combination of compressed

sensing and parallel imaging for highly accelerated first-pass cardiac

perfusion MRI. Magn Reson Med 2010;64:767–776.

21. Lustig M, Pauly JM. SPIRiT: iterative self-consistent parallel imaging
reconstruction from arbitrary k-space. Magn Reson Med 2010;64:
457–471.

22. Fischer A, Seiberlich N, Blaimer M, Jakob P, Breuer F, Griswold M.

A combination of nonconvex compressed sensing and GRAPPA (CS-

GRAPPA). Proceedings of the 17th Scientific Meeting of ISMRM,

Honolulu; 2009. p 2813.

23. Liang D, Liu B, Wang J, Ying L. Accelerating SENSE using com-

pressed sensing. Magn Reson Med 2009;62:1574–1584.

24. Elad M, Aharon M. Image denoising via sparse and redundant repre-

sentations over learned dictionaries. IEEE Trans Image Process 2006;

15:3736–3745.

25. Figueiredo M, Nowak R. An EM algorithm for wavelet-based image

restoration. IEEE Trans Image Process 2003;12:906–916.
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