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On the Selection of Sampling Points for Myocardial T1

Mapping

Mehmet Akçakaya,1* Sebastian Weing€artner,1,2 S�ebastien Roujol,1 and Reza Nezafat1

Purpose: To provide a method for the optimal selection of
sampling points for myocardial T1 mapping, and to evaluate

how this selection affects the precision.
Theory: The Cram�er–Rao lower bound on the variance of
the unbiased estimator was derived for the sampling of the

longitudinal magnetization curve, as a function of T1,
signal-to-noise ratio, and noise mean. The bound was then

minimized numerically over a search space of possible
sampling points to find the optimal selection of sampling
points.

Methods: Numerical simulations were carried out for a satura-
tion recovery-based T1 mapping sequence, comparing the
proposed point selection method to a uniform distribution of

sampling points along the recovery curve for various T1 ranges
of interest, as well as number of sampling points. Phantom

imaging was performed to replicate the scenarios in numerical
simulations. In vivo imaging for myocardial T1 mapping was
also performed in healthy subjects.

Results: Numerical simulations show that the precision can
be improved by 13–25% by selecting the sampling points

according to the target T1 values of interest. Results of the
phantom imaging were not significantly different than the the-
oretical predictions for different sampling strategies, signal-

to-noise ratio and number of sampling points. In vivo imaging
showed precision can be improved in myocardial T1 mapping

using the proposed point selection method as predicted by
theory.
Conclusion: The framework presented can be used to select

the sampling points to improve the precision without penalties
on accuracy or scan time. Magn Reson Med 000:000–000,
2014. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Quantitative mapping of various magnetic resonance
(MR) parameters, such as longitudinal (T1) or transverse

(T2) relaxation times may provide diagnostic information
beyond conventional contrast-weighted images (1). These

quantitative techniques have found a range of applica-

tions in neurological (2,3), oncologic (4,5), and cardiac

(6,7) applications. In particular, recently, myocardial T1

mapping (8–12) has been shown to provide a technique

for assessment of interstitial diffuse fibrosis (13). Fur-

thermore, if myocardial T1 maps are acquired both prior

to and following contrast injection, they can further be

used to measure the extracellular volume fraction (14),

which has shown utility for detection of diffuse myocar-

dial fibrosis (6).

Quantitative mapping approaches rely on acquiring

multiple images of the same anatomy with different con-

trast weightings, achieved by varying one or more imag-

ing parameter(s). These parameters may include flip

angles (15), echo times (16), and/or inversion/saturation

times (17). Then, a closed-form expression, which char-

acterizes how the magnetization evolves, as a function of

the unknown parameters of interest and the known

parameter(s) that is being varied, is voxel-wise fitted to

these series of images. Clearly, the number of images in

this series has to be greater than or equal to the number

of unknown parameters of interest. Thus, multiple

images are acquired in the series with different contrasts,

which correspond to different sampling points on the

magnetization curve that is parameterized by the

unknown quantities.
To achieve a sufficient level of precision in the esti-

mation, a high number of images are acquired with dif-

ferent choices of sampling points (18), typically with a

uniform distribution along the curve (10,19), resulting

in a long acquisition time. However, there is a degree

of freedom on the selection of the location and the

number of the sampling points on the parametric curve,

which is controlled by the sequence designer. Further-

more, in myocardial parameter mapping, the respiratory

motion has to be compensated for. In myocardial T1

mapping, this is commonly achieved by performing

breath-holds, typically ranging from 11 to 17 heartbeats

(8,10,11,20). Thus, it is critical to improve the precision

of the sequence with this constraint on the total scan

time.
The precision of the T1 estimation process can be char-

acterized by the Cram�er–Rao Bound (CRB), which pro-
vides a lower bound on the variance of an unbiased
estimator of a deterministic parameter (21). Furthermore,
it characterizes when an estimator that achieves this
lower bound exists. CRB has been used in a number of
MRI applications, including diffusion kurtosis imaging
(22,23) and parameter mapping (24–26). By considering a
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parametric model involving the gradient vector direc-
tions, as well as the diffusion and kurtosis tensors, an
estimation theoretic approach was used to optimize
the direction and b-value of the diffusion weighting
gradients (23). It was shown that the optimal selection
was different than the conventionally used set of
standard gradient settings, and this selection lead to
improvements in precision. In parameter mapping, an
approach for determining experimental parameters
were proposed in (24) for rapid simultaneous T1 and
T2 measurement. This CRB-based technique was used
in (25) for characterizing optimal sampling times to
determine the T2 relaxation time. The optimal scheme
yielded a distribution concentrated at certain points
related to the T2 value, unlike the traditional uniform
distribution utilized in other studies. Most similar to
our current work is that of (26), which derived the
CRB for T1 mapping. This was then used to character-
ize the selection strategies for certain ordered sampling
schemes, which lead to tractable analytical expres-
sions. Because the search space in (26) was limited to
these ordered sampling schemes, the resulting sam-
pling schemes were not similar to that of (25) in T2

mapping, which exhibited concentrations at certain
areas of the parametric curve. Furthermore, only
numerical simulations were used in (26), with no vali-
dation for phantom or in vivo data.

In this work, we sought to use an estimation theoretic
framework for bounding the precision of a given myo-
cardial T1 mapping sequence in the presence of noise.
We extend the bounding approach of (26) to accommo-
date a wide range of T1 values of interest, by providing
a Bayesian lower bound on the precision of the T1 esti-
mator, defined as the standard deviation of error for a
given noise level. We then propose to determine the
optimal selection of sampling points by numerically
minimizing this bound. To test the theory in practice,
we choose a saturation-based T1 mapping sequence,
and minimize the corresponding closed-form expression
for the lower bound over a large search space of sam-
pling points to select an improved distribution of sam-
pling points for a given range of T1 values of interest.
Numerical experiments, phantom, and in vivo imaging
are performed to evaluate the proposed sampling point
strategy versus a uniform distribution of sampling
points along the curve.

THEORY

Cram�er–Rao Lower Bound for Parameter Mapping

For completeness, we describe the signal model and
derive the CRB for T1 mapping, which is similar to the
derivation of (26). In myocardial T1 mapping, at each
sampled image voxel, we observe

yk ¼ M xk ; a; b;T1ð Þ þ nk ; [1]

for k e {1, . . ., K} representing images with different con-
trast weightings along the longitudinal magnetization
curve. nk is measurement noise. Furthermore,

M xk ; a;b;T1ð Þ ¼ a 1� b exp �xk=T1ð Þð Þ; [2]

is the magnetization at xk on the magnetization curve,
parameterized by a, the signal-to-noise ratio (SNR) of the
image with fully-recovered magnetization (with appro-
priate normalization for the noise variable nk); b, which
captures the saturation/inversion efficiency, the effects
of imaging pulses on the magnetization recovery (10)
and the mean of noise in the magnitude images (27), and
T1, the longitudinal relaxation time.

For the K observations, we let Y¼ {y1, y2, . . ., yK}.
Based on the noise distribution, the probability density
function p(Y|a,b,T1) can be determined. This in turn
can be used to find the Fisher information matrix (21),
whose info (i,j)th entry is given by:

I½ �ij ¼ �E
@2

@ui@uj
log p Yð jhÞ

� �
; [3]

where for ease of notation, u1¼ a, u2¼b, u3¼T1. Then,
the CRB states, if p(Y|a,b,T1) satisfies certain regularity
conditions (21), the estimator of T1, denoted by Test

1 , has
variance bounded by

var Test
1

� �
� I�1
� �

3;3
: [4]

As the Rician noise in the magnitude images is well-
approximated as Gaussian noise with sufficient baseline
SNR (27), and as the maximum-likelihood estimate for
Gaussian noise corresponds to the least-squares estimator
that is commonly used in the context of MR parameter
estimation (2,8), we restrict ourselves to a Gaussian noise
model. Without loss of generality, we consider unit-
variance zero-mean Gaussian noise, as the non-zero
mean can be captured using the parameters, a and b in
the T1 mapping model. In this setting,

log p Yð jhÞ ¼ C � 1

2

XK

k¼1

jyk �M xk ; hð Þj2; [5]

where C is a constant. We also note that the maximum-
likelihood estimator is unbiased and attains this lower
bound for this log-likelihood function (21).

Optimization of Sampling Point Selection

The model described by Eqs. [1] and [5] leads to:

Iij ¼ �E
@2

@ui@uj

log p Yð jhÞ
" #

¼
XK

k¼1

@M xk ; hð Þ
@ui

@M xk ; hð Þ
@uj

; [6]

Thus, the Fisher information matrix for the T1 map-
ping model of Eq. [6] is
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; [7]

The goal of the optimization procedure is to minimize
the variance of the estimator of T1. From Eq. [4],
var Test

1

� �
� I�1
� �

3;3
, where

J a; b;T1; xkf gð Þ ¼ I�1
� �

3;3

¼ I11I22 � I2
12

I11 I22I33 � I2
23

� �
� I12 I33I12 � I23I13ð Þ þ I13 I12I23 � I22I13ð Þ

:

[8]

We minimize J a;b;T1; xkf gð Þ as a surrogate for mini-
mizing var Test

1

� �
. While this is a closed-form expression

in terms of {xk} given the values of [a, b, T1] that we are
interested in, the analytical minimization of the objective
function is not tractable. Thus, we propose to solve

x
samp
k

� 	
¼ arg min

xkf g
J a; b;T1; xkf gð Þ [9]

numerically over a grid of values for {xk} for the desired val-
ues of a, b, T1. Furthermore, in Appendix A, we show that

J a; b;T1; xkf gð Þ ¼ 1

abð Þ2
J 1;1;T1; xkf gð Þ: [10]

Thus the values of a, b only scales the lower bound
itself, and the minimization over the grid of values for
{xk} is independent of a, b, and only depends on the T1

value of interest.

METHODS

All imaging was performed on a 1.5T Philips Achieva
(Philips Healthcare, Best, The Netherlands) system.
Phantom imaging was performed with a body coil, and
in vivo imaging was performed with a 32-channel car-
diac phased-array receiver coil. For this HIPAA-
compliant study, the imaging protocol was approved by
our institutional review board, and written informed
consent was obtained from all participants.

Saturation and inversion recovery are the most com-
monly used techniques for sampling of the longitudinal
magnetization recovery. Currently, there are no myocar-
dial T1 mapping sequences that sample an unperturbed
inversion recovery curve in a single breath-hold, although
there are Look-Locker-based variants (8,9). Hence, we con-
centrate on the saturation recovery (SR) curve. We choose
a SR-based-T1 mapping sequence, SASHA (10), for valida-
tion in this study. This sequence is electrocardiogram-

triggered, and applies a saturation pulse at every heart
beat, followed by imaging after a recovery time of xk. The
first heart beat is acquired without magnetization prepara-
tion, corresponding to an infinite SR time. As different
SR times can be selected for each heart beat in this
sequence, this increases the degrees of freedom for the
selection of the optimal sampling points.

Numerical Simulations

Simulation Setup

We note from Eq. [8], J a; b;T1; xkf gð Þ depends directly on
1=a2, that is, the lower bound on the variance of the esti-
mator scales inversely with the square of the SNR. Thus,
the choice of a does not affect the evaluation of the func-
tion, only changing the scaling. Hence, a¼ 40 was arbitra-
rily chosen as the baseline SNR for the simulations. b¼ 0.9
was used for the simulations, selected from the typical
experimental range of b values for SASHA between 0.9
and 1.1 (10). A trigger delay of 780 ms at 60 bpm and an
acquisition window of 190 ms were used. Including the
duration of the saturation pulse and the duration of the
read-outs to the k-space center (with the assumption of a
linear profile order), the allowable saturation times ranged
between Tmin¼ 140 ms and Tmax¼760 ms.

Experiments

Two sets of experiments were performed. In Numerical
Experiment A, the bound was evaluated for various T1

values of interest for K¼ 11 sampling points: (i) 1250 ms
(myocardium precontrast), (ii) 450 ms (myocardium post-
contrast), (iii) 950–1250 ms (precontrast T1 range), (iv)
400–600 ms (postcontrast T1 range), and (v) 450 and
1250 ms (myocardium precontrast and postcontrast). In
Numerical Experiment B, the bound was evaluated for
various K values of {5, 7, 9, 11, 13, 15} for T1 values of
interest from 950 to 1250 ms.

Additional experiments, the effects of changing Tmax,
and allowing for multiple sampling of the point at infin-
ity were performed, and are included in Appendix B.

Numerical Optimization

The K sampling points {xk} were selected numerically as
follows: The search space was generated as all the possi-
ble saturation times from Tmin to Tmax with a step size of
10 ms, and a saturation time at infinity, corresponding to

Point Selection for Cardiac T1 Mapping 3



sampling without any magnetization preparation. Every
possible ordered samplings of length K, allowing repeti-
tions, was generated from the search space. The point at
infinity was only allowed to be included once in any
sampling as any imaging pulse performed during acqui-
sition disturbs the magnetization at this point. Thus, to
sample the same point at infinity requires multiple rest
periods for the longitudinal magnetization to regrow,
which decreases efficiency, especially considering the
constraints on scan duration with the breath-hold acqui-
sition. For every ordered sampling, J a; b;T1; xkf gð Þ was
evaluated for the given [a, b, T1].

For the T1 values in a continuous range, a Bayesian
CRB variant was used (28), where

JB u1; u2; xkf gð Þ ¼ 1

Tmax
1 � Tmin

1

Z Tmax
1

Tmin
1

J u1; u2; u3; xkf gð Þdu3

[11]

was evaluated instead. The integral was performed
numerically with a step size of 5 ms, while making sure
the (nearly)-uniform distribution on T1 was 0 at the
boundary points as required in (28). For the bimodal T1

value of optimization (v), the procedure was evaluated
with both equal weights and weights proportional to
1=T2

1 for the variances associated with the two T1 values.
The CRB on precision, defined as the square root of

J a; b;T1; xkf gð Þ and denoted by CRBprec, was evaluated for
the points selected by the optimization procedure, and
compared to a uniform distribution of sampling points,
where K – 1 sampling points are uniformly spread in the
range Tmin to Tmax, and a point at infinity as in (10).

Phantom Imaging

Imaging Setup

To characterize the effect of the choice of sampling points
on the precision of the T1 estimates, phantom imaging was
performed using 14 NiCl2 doped agarose vials (29), whose
T1 and T2 values spanned the ranges of values found in
the blood and myocardium precontrast and postcontrast.
A single-shot steady-state free precession sequence with
the following parameters was used: 2D single-slice, field-
of-view (FOV)¼ 210 � 170 mm2, in-plane resolution¼1.9
� 2.5 mm2, slice-thickness¼8 mm, TR/TE¼ 2.7/1.35 ms,
flip angle¼ 70�, 10 ramp-up pulses, acquisition window-
¼ 190 ms, linear k-space ordering. All scans were repeated
five times to average out random variations.

Experiments

The first set of experiments compared different sets of sam-
pling points for K¼ 11. The sets of sampling points tested
were the ones chosen from the numerical simulations for T1

values of interest varying from 950 to 1250 ms, from 400 to
600 ms, and 450 and 1250 ms. For comparison, acquisitions
with saturation times uniformly distributed in the range Tmin

to Tmax, plus a point at infinity (referred to as “uniform”)
were performed. Each scan was acquired with number of sig-
nal averages (NSA)¼5 for sufficient baseline SNR.

The second set of experiments evaluated the precision
of the uniform and proposed point selection techniques

for T1 values of interest varying from 950 to 1250 ms, for
different number of sampling points, K¼ {5, 7, 9, 11, 13,
15}. NSA¼ 5 was used for these scans as well.

The third set of experiments was performed to validate
the inverse linear dependence of precision to baseline
SNR. The sequence was designed to last for K¼11 heart-
beats, and the scans were acquired with NSA¼ {1, 3, 5,
10}. The uniform point selection and the proposed point
selection for T1 values of interest varying from 950 to
1250 ms were utilized.

In Vivo Imaging

Myocardial T1 maps were acquired in five healthy adult
subjects (four women, 23.4 6 3.3 years) without a con-
trast injection. Images were acquired in the short-axis of
the heart. The SASHA sequence was used with a single-
shot acquisition and a single-shot steady-state free pre-
cession readout with the following parameters: 2D
single-slice, FOV¼ 300 � 300 mm2, in-plane reso-
lution¼1.9 � 2.5 mm2, slice-thickness¼ 8 mm, TR/
TE¼ 3.1/1.55 ms, flip angle¼70�, 10 ramp-up pulses,
SENSE rate¼2, acquisition window¼ 190 ms, linear k-
space ordering. The sequence duration was 11 heart-
beats, and it was performed during breath-hold. Acquisi-
tions were performed using a uniformly distributed
point selection and the proposed selection of points for
T1 values between 950 and 1250 ms. For each point
selection strategy, the acquisition was repeated five
times to average out random variations.

Image Analysis

T1 estimation was performed offline using MATLAB
(v7.6, MathWorks, Natick, MA) using the 3-point model
(10) of Eq. [2]. Any point acquired without a saturation
preparation was assumed to be sampled at an infinite
(1) saturation time. Multiple points acquired at the
same point on the magnetization recovery curve were
used individually for fitting, instead of averaging prior to
fitting.

For T1 measurements, a region-of-interest (ROI) analy-
sis was performed for both phantom and in vivo imag-
ing. The mean value and standard deviation in the ROI
was recorded for each acquisition. The estimated T1

value, Test
1 , is reported as an average 6 standard devia-

tion of the mean values in the ROI (over the five acquisi-
tions for each sampling strategy), which is a surrogate
for accuracy and the interscan reproducibility. Under the
assumption that the T1 values are homogenous in the
small ROI (11), the precision, prec Test

1

� �
, is reported as

the average 6 standard deviation of the spatial standard
deviation of the T1 values in the ROI (over five acquisi-
tions for each sampling strategy).

For phantom imaging, circular ROIs were drawn across
each of the 14 vials, starting from the center of the vial
and containing �300 voxels. The ratios of the mean prec
Test

1

� �
for the two sampling strategies were then com-

pared to the ratios predicted by the theoretical model for
different K and T1 values in the union of the ranges of
optimization using paired t-test. For the SNR experi-
ment, the correlation between prec Test

1

� �
for different

NSAs was compared to 1/�(NSA) using Pearson’s linear
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correlation coefficient for both sampling strategies. For
in vivo imaging, ROIs were manually drawn, by two
independent experienced readers, in the left ventricle
myocardium and the blood pool. Test

1 and prec Test
1

� �
were calculated for both strategies.

RESULTS

Numerical Simulations

Point Selection for Different T1 Values of Interest

The 11 sampling points selected by the proposed method
for the first four different cases of T1 values of interest, and
the associated CRBprec are depicted in Table 1 for
SNR¼ 40, along with the corresponding CRBprec for a uni-
form distribution of sampling points. The proposed choice
of sampling points yields a trimodal distribution: 1 point
at1, 3–4 points at Tmin, and 6–7 points close to the T1 val-
ue(s) of interest. The proposed selection leads to a reduc-
tion in CRBprec in all cases (13, 26, 24, 12.1% reduction for
T1 values of interest of 450, 1250, 950 – 1250, 400 – 600
ms, respectively) compared to the uniform selection.

For the fifth case of T1 values, the optimization with
equal weights yielded 4 points at 140 ms, 6 at 760 ms,
and 1 at 1. In this case, CRBprec associated with the
T1¼ 450 ms estimation was 42.3 ms, whereas CRBprec for
T1¼ 1250 ms was of 82.6 ms, where the former is worse
than for uniform selection. Note that for equal weights,
the variance of the higher T1 value dominates the opti-
mization procedure, yielding the same choice of points
as for just T1¼ 1250 ms. When weights of 1=T2

1 are used
to capture the percentage variation in estimation, the
optimal selection becomes 4 points at 140 ms, 4 at 570
ms, 2 at 760 ms, and 1 at 1, resulting in reductions in
CRBprec of 5 and 18% (for T1 of 450 and 1250 ms, respec-
tively) compared to uniform selection. This latter selec-
tion of points is used in subsequent imaging for these T1

values of interest.

Effect of Changing the Number of Sampling Points

Table 2 depicts the results of the proposed point selec-
tion strategy and CRBprec for both point selection strat-
egies for T1 values of interest of 950–1250 ms for various

Table 1
Results of the Proposed Optimization Procedure for Sampling Point Selection for Various T1 Values of Interest and 11 Sampling Points

T1 values of

interest (ms)

Sampling Point

Selection Strategy Saturation Recovery Sampling Points (ms) CRBprec (ms)

1250 Proposed (140, 140, 140, 140, 760, 760, 760, 760, 760, 760, 1) 82.6

Uniformly distributed (140, 209, 278, 347, 416, 485, 554, 623, 692, 760, 1) 111.3
450 Proposed (140, 140, 140, 480, 480, 480, 480, 480, 480, 480, 1) 33.9

Uniformly distributed (140, 209, 278, 347, 416, 485, 554, 623, 692, 760, 1) 39.1

950–1250 Proposed (140, 140, 140, 140, 760, 760, 760, 760, 760, 760, 1) 71.8
Uniformly distributed (140, 209, 278, 347, 416, 485, 554, 623, 692, 760, 1) 94.0

400–600 Proposed (140, 140, 140, 510, 510, 510, 510, 510, 510, 510, 1) 36.9
Uniformly distributed (140, 209, 278, 347, 416, 485, 554, 623, 692, 760, 1) 42.0

The saturation recovery times are chosen between Tmin¼140 ms and Tmax¼760 ms (and possibly one point at 1, representing an

acquisition with no preparation). The associated Cram�er–Rao lower bound (CRB) on the standard deviation (std) of the T1 estimator
(CRBprec) when using the proposed strategy and a strategy selecting uniformly separated points are also depicted. The results indicate

that the optimization procedure favors selection of multiple points at the same locations, with multiple points at Tmin, as well as multiple
points close to the T1 value of interest (or the closest to it if these values are greater than Tmax). In all cases, the optimized procedure
has a lower CRB associated with the variance and standard deviation of the T1 estimator, when compared to a uniform distribution of

sampling points.

Table 2
The Variation of the Selected Points for Different Number of Sampling Points, K, as well as the Associated CRB on the Standard Devia-

tion of the T1 Estimator (CRBprec) when Using the Proposed Strategy and a Strategy Selecting Uniformly Separated Points

# sampling
points, K

Point Selection
Strategy Saturation Recovery Sampling Points (ms)

CRBprec

(ms)

5 Proposed (140, 140, 760, 760, 1) 117.7
Uniform (140, 347, 554, 760, 1) 144.8

7 Proposed (140, 140, 760, 760, 760, 760, 1) 98.6

Uniform (140, 264, 388, 512, 636, 760, 1) 130.4
9 Proposed (140, 140, 140, 760, 760, 760, 760, 760, 1) 88.8

Uniform (140, 229, 318, 407, 496, 585, 674, 760, 1) 119.4
11 Proposed (140, 140, 140, 140, 760, 760, 760, 760, 760, 760, 1) 82.6

Uniform (140, 209, 278, 347, 416, 485, 554, 623, 692, 760, 1) 111.3

13 Proposed (140, 140, 140, 140, 140, 760, 760, 760, 760, 760, 760, 760, 1) 78.2
Uniform (140, 196, 252, 308, 364, 420, 476, 532, 588, 644, 700, 760, 1) 105.2

15 Proposed (140, 140, 140, 140, 140, 760, 760, 760, 760, 760, 760, 760, 760, 760, 1) 74.8
Uniform (140, 188, 236, 284, 332, 380, 428, 476, 524, 572, 620, 668, 716, 760, 1) 99.6

The range of T1 values of interest was from 950 to 1250 ms, with Tmin¼140 ms and Tmax¼760 ms. The proposed selection procedure

again favors a trimodal distribution of points among Tmin and Tmax, which results in an improvement over the CRB for variance and std
of the T1 estimator with respect to a uniform distribution of selection points for all K.
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numbers of sampling points, K. The trend for the optimi-
zation strategy is to select 1 point at 1, floor(K/2)�1 or
floor(K/2) points at Tmin, and floor(K/2) or floor(K/2)þ 1
points at Tmax (as T1>Tmax). The reduction in CRBprec

compared to uniform sampling is 18.7, 24.4, 25.6, 25.8,
25.7, 24.9% for K¼ 5, 7, 9, 11, 13, 15 points,
respectively.

Phantom Imaging

Precision for Different Sampling Point Selections

Table 3 depicts the results of the phantom measurements
over all 14 vials with different T1 values for various sam-
pling strategies with NSA¼ 5 for each acquisition and
K¼ 11. The estimated T1 values for different sampling
strategies for each vial are in good agreement with
theory, even though there are variations between the five
acquisitions due to noise (reflected as the standard devi-
ation in the Test

1 ). The ratio of prec Test
1

� �
for each pro-

posed sampling strategy and that of the uniform
sampling strategy is reported as “precision (prec) with
respect to (wrt) uniform.” The points optimized for T1

values from 950 to 1250 ms show consistent improve-
ment (as a ratio< 1) in this range with respect to the uni-
form strategy. Similarly, the points optimized for T1

values from 400 to 600 ms show consistent improvement
for smaller T1 values< 1150 ms. The points optimized
for two T1 values of 450 and 1250 ms show improvement
in standard deviation of the estimator for all T1 values.
Theoretical prediction for the ratios of prec Test

1

� �
with

respect to that of the uniform strategy is also reported for
all selection of points. These are not statistically differ-
ent than the experimental ratios (P¼ 0.26, P¼0.09,
P¼ 0.05 for T1 values of 950 – 1250 ms, 400 – 600 ms,
450 and 1250 ms, respectively) for vials with T1 values
in the union of the ranges of optimization.

Precision versus Number of Sampling Points

Table 4 shows phantom results evaluating how prec Test
1

� �
varies with number of sampling points, K. The ratio of
prec Test

1

� �
between the proposed and uniform point selec-

tions are depicted for K¼ {5, 7, 9, 11, 13, 15} for the vials,
whose T1 values are between 950 and 1250 ms. Corre-
sponding ratios predicted by theory for these vials are also
reported. The experimental and theoretical ratios are in
good agreement across all vials considered (P¼0.97).

Precision versus Baseline SNR

Figure 1 depicts prec Test
1

� �
with changing NSA (equiva-

lently �SNR) for all vials with T1 values between 950
and 1250 ms and for both point selection strategies. The
best linear fits (y¼ax) are also shown (dashed lines) as a
function of changing NSA. As predicted by Eq. [10],
these are in good agreement with the experimentally
measured prec Test

1

� �
in all cases, with Pearson correla-

tion coefficients >0.99 for all vials and for both point
selection strategies. The baseline SNR was 29.2 6 2.3 for
the case of full longitudinal recovery (i.e., with SR time
of 1) image with NSA¼ 1.

Table 4
The Results of Phantom Imaging for Various Values of Number of Sampling Points, K, Depicting the Precision Values, the Ratio of the

Standard Deviation of the Proposed Point Selection for T1 Values Ranging From 950 to 1250 ms and that of the Uniformly Distributed
Point Selection, as Well as the Ratio Predicted by Theory

Vial # Evaluation Metric K¼5 K¼7 K¼9 K¼11 K¼13 K¼15

2 Uniform - prec(T1
est) (ms) 70 59 58 56 50 47

Proposed - prec(T1
est) (ms) 53 45 44 41 39 35

Std ratio proposed vs. uniform 0.76 0.77 0.73 0.73 0.80 0.76

Theoretical ratio 0.83 0.77 0.76 0.76 0.76 0.77
3 Uniform - prec(T1

est) (ms) 62 56 55 53 50 47

Proposed - prec(T1
est) (ms) 53 45 44 43 40 37

Std ratio proposed vs. uniform 0.86 0.81 0.79 0.81 0.79 0.77
Theoretical ratio 0.82 0.76 0.75 0.75 0.76 0.77

9 Uniform - prec(T1
est) (ms) 43 36 35 34 34 30

Proposed - prec(T1
est) (ms) 35 28 28 25 24 25

Std ratio proposed vs. uniform 0.81 0.78 0.81 0.73 0.70 0.85

Theoretical ratio 0.85 0.79 0.78 0.79 0.79 0.80
11 Uniform - prec(T1

est) (ms) 59 54 52 53 45 45

Proposed - prec(T1
est) (ms) 49 39 41 37 35 34

Std ratio proposed vs. uniform 0.84 0.73 0.80 0.71 0.79 0.76
Theoretical ratio 0.82 0.76 0.75 0.75 0.76 0.76

13 Uniform - prec(T1
est) (ms) 53 49 48 49 44 40

Proposed - prec(T1
est) (ms) 45 41 37 35 34 33

Std ratio proposed vs. uniform 0.85 0.84 0.78 0.71 0.78 0.82
Theoretical ratio 0.85 0.79 0.79 0.79 0.80 0.80

14 Uniform - prec(T1
est) (ms) 63 62 58 56 50 48

Proposed - prec(T1
est) (ms) 53 44 45 45 39 36

Std ratio proposed vs. uniform 0.84 0.70 0.79 0.81 0.77 0.75

Theoretical ratio 0.82 0.77 0.76 0.76 0.76 0.77

The ratios are in good agreement across all vials considered (P¼0.97).
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In Vivo Imaging

Table 5 depicts the results of in vivo T1 measurements
for the five healthy subjects using the proposed and uni-
form sampling strategies. The reduction in prec Test

1

� �
as

measured by reader 1 were 13.9 and 20.1% for the myo-
cardium and blood, respectively, with the proposed
approach compared to the uniform selection strategy.
The corresponding reductions measured by reader 2
were 20.2 and 26.6% for the myocardium and blood,
respectively. Overall, there was a 17.0 and 23.5% reduc-
tion in the prec Test

1

� �
in the myocardium and blood,

respectively, using the proposed approach compared to
the uniform selection.

Figure 2 shows example myocardial T1 maps from a
healthy subject (subject #5), acquired using the pro-
posed and uniform point selection strategies at a heart
rate of 60 bpm. Homogeneity of the T1 maps is visibly
improved in the blood pools, where the T1 value is
higher compared to the myocardium. prec Test

1

� �
in the

myocardium averaged over the five acquisitions showed
22 and 20% improvement with the proposed selection
as measured by readers 1 and 2, respectively. Similarly,
prec Test

1

� �
for the blood pool showed 22 and 31%

improvement as measured by readers 1 and 2, respec-
tively. In comparison, the theory predicts reductions of
24.6 and 30.3% for CRBprec of the myocardium and
blood, respectively.

DISCUSSION

In this study, we used an estimation theoretic framework
for evaluating the precision of myocardial T1 mapping
techniques to devise a sampling point selection strategy.
This was achieved by minimizing the CRB on the var-
iance of the estimators over the search space of possible
sampling points. Subsequently, we evaluated this point
selection strategy in a saturation-recovery-based T1 map-
ping sequence, and compared it to a uniform distribution
of sampling points along the SR curve. The improve-
ments in precision in phantom and in vivo imaging
matched those from the numerical simulations derived
from the theory.

The proposed optimized selection procedure yielded
sampling points that are concentrated in three areas of
the T1 relaxation curve: one at a low saturation (or inver-
sion) recovery time (Tmin), one with a saturation time
near (or due to sequence limitations, Tmax, the closest
possible value to) the T1 value of interest, and the third
point at 1. The multiplicity of the points at these loca-
tions varies with the total number of points, as well as
the sequence being simulated (e.g., taking multiple
points at 1 may not be feasible in cardiac MR). In all
cases, these lead to an improved precision with respect
to a uniform distribution of the points along the T1 relax-
ation curve. Thus, from a theoretical perspective it is bet-
ter to improve the SNR at specific well-chosen points

FIG. 1. Standard deviation of the T1 estimator as a function of varying NSA (or equivalently SNR) for the proposed point selection for T1

values ranging from 950 to 1250 ms and the uniformly distributed point selection. The experimental results are in good agreement with
the best linear fit of the form y¼ ax (dashed lines) with Pearson coefficients >0.99 for all cases. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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along the magnetization recovery curve by sampling mul-
tiple times at these locations than to distribute the sam-
pling points along the curve. We note that this choice of
points tends to be different than another existing hypoth-
esis that points on the curve with higher magnitude
derivatives with respect to time are more influential on
the final estimate (30).

The CRB for T1 mapping was also derived previously
in (26). This was then used to select a new set of sam-
pling points, however, the search space was only limited
to ordered (linear, quadratic, cubic) sampling schemes
due to the analytical tractability of these expressions.
Thus, the trimodal distribution resulting from our
numerical optimization scheme with a more extensive

Table 5
The Results of In Vivo Imaging on Five Healthy Subjects Using the Proposed and Uniform Sampling Strategies, where Each Acquisition

was Repeated Five Times, as Measured by Two Independent Readers.

Uniform point selection Proposed point selection

Subject

Heart

rate (bpm) Anatomy

T1
est

(ms)

Prec(T1
est)

(ms)

T1
est

(ms)

Prec(T1
est)

(ms)

Std wrt.

uniform

Reader #1 1 65 Myocardium 1163 6 24.2 104.9 6 15.6 1155 6 33.3 103.7 6 11.3 0.99
Blood 1926 6 17.2 162.5 6 15.3 1897 6 26.8 114.7 6 10.2 0.71

2 75 Myocardium 1350 6 19.6 177.9 6 11.5 1348 6 30.0 103.7 6 11.3 0.89

Blood 1751 6 46.4 187.6 6 30.3 1766 6 59.6 149.0 6 5.8 0.79
3 70 Myocardium 1242 6 40.7 153.4 6 21.1 1255 6 15.6 124.5 6 14.5 0.81

Blood 1799 6 9.5 189.0 6 20.7 1811.2 6 36.5 155.0 6 12.0 0.82

4 68 Myocardium 1200 6 33.9 110.9 6 11.5 1193 6 13.6 93.7 6 9.9 0.84
Blood 1733 6 44.2 140.8 6 14.8 1754 6 16.1 128.1 6 17.8 0.91

5 58 Myocardium 1135 6 77.9 105.1 6 18.9 1185 6 16.5 81.8 6 10.3 0.78
Blood 1757 6 52.1 150.2 6 15.1 1751 6 15.1 116.8 6 9.6 0.78

Reader #2 1 65 Myocardium 1188 6 15.6 115.7 6 16.2 1194 6 15.3 91.7 6 11.0 0.79
Blood 1925 6 25.1 166.7 6 16.5 1903 6 19.2 111.8 6 7.7 0.67

2 75 Myocardium 1314 6 25.4 174.4 6 28.6 1307 6 21.5 150.1 6 21.2 0.86
Blood 1772 6 24.1 205.0 6 32.3 1755 6 20.8 148.2 6 7.2 0.72

3 70 Myocardium 1204 6 70.2 117.0 6 16.7 1218 6 37.8 83.0 6 13.5 0.71

Blood 1787 6 37.3 179.7 6 26.5 1809 6 35.4 138.1 6 14.9 0.77
4 68 Myocardium 1213 6 49.5 107.3 6 16.7 1207 6 31.7 85.0 6 5.3 0.79

Blood 1755 6 34.7 161.4 6 16.7 1780 6 19.2 131.4 6 12.8 0.81
5 58 Myocardium 1168 6 54.3 95.3 6 6.8 1187 6 14.8 76.6 6 5.0 0.80

Blood 1772 6 47.8 164.7 6 18.9 1761 6 20.8 114.2 6 10.4 0.69

Test
1 is reported as the mean 6 std of the spatial average T1 values in the ROI across five scans, as a surrogate for accuracy and inter-

scan reproducibility. prec Test
1

� �
is reported as the mean 6 std of the spatial std of the T1 values in the ROI across five scans, as a surro-

gate for the precision within the scan. Std wrt. uniform is the ratio of the mean values of prec Test
1

� �
using the proposed and uniform

point selection, characterizing the percentage gain in precision. prec Test
1

� �
in the myocardium and blood was reduced by 17.0 and

23.5%, respectively, using the proposed approach.

FIG. 2. T1 maps from a healthy subject (subject #5), acquired using the proposed and uniform point selection strategies. The T1 map

generated using the proposed point selection is more homogenous, as visible in the blood pool. prec Test
1

� �
averaged over the five

acquisitions were 105.1 6 18.9 and 81.8 6 10.3 ms for the myocardium as measured by reader 1, and 95.3 6 6.8 and 76.6 6 5.0 ms as
measured by reader 2 for uniform and proposed selection strategies, respectively. prec Test

1

� �
for the blood pool were 150.2 6 15.1 and

116.8 6 9.6 as measured by reader 1, and 164.7 6 18.9 and 114.2 6 10.4 ms as observed by reader 2 for uniform and proposed selec-
tion strategies, respectively.
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search space, was not observed in (26). We note that the
trimodal distribution of optimal points presented here is
similar to the bimodal distribution observed in T2 map-
ping where a 2-parameter model was utilized (25). Apart
from the differences in search spaces, which lead to sub-
stantially different selection of optimal sampling points,
there are other differences between our work and (26). In
particular, only numerical simulations were provided in
(26), while we have also provided phantom and in vivo
data to validate the precision gains of our point selection
approach directly. Furthermore, we have also evaluated
our selection strategy using a Bayesian CRB to accommo-
date a wide range of T1 values of interest.

From both the theoretical and experimental perspec-
tives, it is observed that the standard deviation of the
estimator increases with increasing T1 values, which is
reflected in the choice of sampling points when a range
of T1 values are of interest. This is also reflected in the
corresponding gains of the optimized point selection ver-
sus uniformly distributed point selection, with more sub-
stantial gains in the precision for higher T1 values.
Conversely, for shorter T1 values, both the percentage
and the absolute reduction in the standard deviation of
the estimator were smaller when using the optimized
point selection.

Optimization of the sampling points for one range of T1

values does not guarantee a systematic improvement in
precision across all T1 values. This is consistent with previ-
ous studies in parameter mapping (25,26). This was further
validated in phantom imaging, where the sampling points
optimized for T1 values from 950 to 1250 ms, did worse
than uniform distribution in terms of precision for low T1

values<400 ms. Optimizing for a larger spread of values
also requires careful consideration as to how the final var-
iance should be weighted. For instance, equal weights for
T1 values of interest of 450 and 1250 ms yielded the same
distribution as just optimizing for 1250 ms as the variance
of the estimator is dominated by the larger T1 value. How-
ever, by switching to weights scaling as 1=T2

1 , thus, charac-
terizing the weighted error as a percentage of the T1 values,
an optimal point selection that systematically outper-
formed the uniform sampling point distribution in numeri-
cal and phantom experiments was obtained.

The point selection procedure is not dependent on
the SNR of the fully-recovered image, a or saturation/
inversion efficiency, b, as shown in Appendix A. How-
ever, the standard deviation of the T1 estimator scales
inverse linearly with a, and with b. Thus, the percent-
age gain in precision between optimal point selection
and uniform point distribution is constant for varying
SNR, but the numerical difference becomes small for
high values of a. Hence, for high-SNR sequences, the
gains from the proposed point selection may not be
noticeable. As b also inverse linearly scales the stand-
ard deviation, the dynamic range acquired by doing an
inversion recovery T1 mapping doubles the precision
with respect to SR, assuming accurate flip angles and
ignoring effects of imaging pulses until the acquisition
of central k-space.

The effects of increasing K versus improving the SNR
are different based on the constraints on what points
on the curve can be sampled with a given sequence. In

a practical myocardial T1 mapping scenario, where an
infinite SR time can be imaged only once, going from
K¼ 5 to 15 lead to an improvement in the standard
deviation of the T1 estimator that was worse than the
corresponding improvement achieved by increasing the
SNR by �3. However, in an ideal scenario, where any
point can be sampled multiple times (in Appendix B),
going from K¼5 to 10 was better for improving the pre-
cision than increasing the SNR by �2. Thus, based on
the constraints on the sampling points and the
sequence, the designer can perform the numerical sim-
ulations based on the theory and conclude whether to
improve the SNR or increase K for improved precision
in estimation.

The general estimation theoretic framework for evalua-
tion of variance lower bounds can be used for a wide
range of sequences and applications (22–26). As the
differences predicted by the theory for different sampling
point selection schemes match experimental values well,
the bounds themselves may be useful in comparing mul-
tiple sequences in terms of their precision theoretically
in a quantitative manner. Alternatively this can also be
studied with Monte-Carlo simulations (31), although this
does not lead to closed-form expressions, and thus, does
not allow for a computationally tractable method of opti-
mizing point selection.

In this study, we have arbitrarily chosen a SR approach
utilized in myocardial T1 mapping for validation. This
sequence has certain limitations, most notably the need to
apply the saturation pulse and imaging during the same R-
R interval. This limits the maximum possible saturation
time to Tmax, which decreases as the heart rate increases.
Thus, for higher heart rates (or larger acquisition win-
dows), the optimal selection at Tmax will shift to smaller
values, reducing the precision of the sequence for the
same number of sampling points. Furthermore, the results
in Appendix B indicate that the precision can be
improved if Tmax is higher than the T1 value of interest.
Thus, precision may be improved by applying the prepa-
ration pulse(s) in one R-R interval and imaging in the con-
sequent one, which was explored in other works (32,33).

The accuracy of the T1 estimation using SASHA
sequence with respect to a gold standard inversion
recovery spin echo sequence using phantom measure-
ments were not evaluated, as this has already been
reported (10), and further studied elsewhere (12,34). Our
focus is on the choice of sampling points and how this
can reduce the variance of the estimator, that is, the pre-
cision, as evaluated by signal homogeneity in an ROI
where T1 is expected to be homogenous. We do note that
the CRB theory presented here is for unbiased estimators,
which is an assumption satisfied by the SASHA
sequence with sufficient SNR and the 3-point T1 fitting
of Eq. [2] (10). The theory of CRB can be extended to
biased estimators, provided that the bias term can be
characterized in terms of the parameters that are being
estimated (28). An interesting implication of the CRB for
biased estimators is that a biased estimator does not nec-
essarily have worse precision than an unbiased estima-
tor, and this extension may be appropriate for alternative
myocardial T1 mapping sequences based on Look-Locker
experiments (8,9,35).
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We have based the probabilistic model in our CRB der-
ivation on least-squares estimation, the most commonly
used T1 curve fitting procedure (8–12). This has one-to-
one correspondence with a Gaussian noise model in the
images. However, the noise in the magnitude images is
Rician. Thus, there is an underlying assumption that the
noise in the magnitude images can be well-approximated
by Gaussian noise, which is true with sufficient SNR
(27). However, this assumption may not hold for images
acquired close to the saturation pulse in the SASHA
sequence. This, in turn, may translate to an apparent
bias in the T1 estimates if sufficiently many of the
acquired images have low SNR. For instance, such cases
may happen when the heart-rate of the subject is high,
thus Tmax is low, which was discussed in (10). In our
case, this was observed in phantom experiments for vials
with high T1 values, when sampling points were selected
for low T1 values, but were used to image vials with
high T1 values. Thus, the unbiased nature of SASHA
should be considered, when using the optimal selection
procedure for one range of T1 values, but imaging
another higher range of T1 values.

Our study has several limitations. We have provided a
general theory for evaluating the variance of estimators
in myocardial parameter mapping, but we have only
evaluated this approach in saturation-recovery-based
myocardial T1 mapping, the choice of which was arbi-
trary. Furthermore, studies for confirming the theoretical
results for other parameter mapping techniques are war-
ranted. The in vivo data presented was acquired using
breath-hold, but respiratory drift may be present among
subsequent contrast-weighted images (corresponding to
different sampling points along the SR curve), which can
corrupt the estimated T1 maps and their homogeneity. In
the in vivo data, inflow and off-resonance effects (36)
may also increase signal inhomogeneity, affecting the
final reported mean and precision of the T1 values.

CONCLUSIONS

We have used an estimation theoretic framework to eval-
uating the precision of a T1 mapping technique in the
presence of noise, and to choose the location and num-
ber of sampling points on the parametric magnetization

curve to achieve a given level of precision. The point
selection can be optimized for different values of interest
of a given parameter to achieve higher levels of precision
in estimation without increasing the scan time.

APPENDIX A

Eq. 8 states

J a; b;T1; xkf gð Þ ¼ I�1
� �

3;3

¼ I11I22 � I2
12

I11 I22I33 � I2
23

� �
� I12 I33I12 � I23I13ð Þ þ I13 I12I23 � I22I13ð Þ

:

[A1]

We let

gk ¼ e
�xk
T1 and bk ¼

xk

T1
2
: [A2]

Thus, the numerator of [A1] becomes

I11I22 � I2
12 ¼

XK

k¼1

1� bgkð Þ2
XK

l¼1

�aglð Þ2

�
XK

k¼1

�agkð Þ 1� bgkð Þ
XK

l¼1

�aglð Þ 1� bglð Þ

¼ a2
XK

k¼1

1� bgkð Þ
XK

l¼1

gl gl � gkð Þ

¼ a2
XK

k¼1

XK

l¼1

gl gl � gkð Þ � a2b
XK

k¼1

XK

l¼1

gkg2
l �

XK

k¼1

XK

l¼1

g2
kgl

 !

¼ a2
XK

k¼1

XK

l¼1

gl gl � gkð Þ

[A3]

as
PK

k¼1

PK
l¼1 gkg2

l ¼
PK

k¼1

PK
l¼1 g2

kgl with a simple
change of indices. Similarly, the denominator of A1 is
given by

I11 I22I33 � I2
23

� �
� I12 I33I12 � I23I13ð Þ þ I13 I12I23 � I22I13ð Þ

¼ a4b2
XK

j¼1

1� bgj


 �XK

k¼1

XK

l¼1

g2
kg2

l bl bl � bk

� �
þ gjgkglbl gkbk � glbl

� �
þ gjgkglbjbl gl � gk

� �
8<
:

9=
;

¼ a4b2
XK

j¼1

XK

k¼1

XK

l¼1

g2
kg2

l bl bl � bk

� �
þ gjgkglbl gkbk � glbl

� �
þ gjgkglbjbl gl � gk

� �n o

� a4b3
XK

j¼1

XK

k¼1

XK

l¼1

g2
kg2

l gjbl bl � bk

� �
þ g2

j gkglbl gkbk � glbl

� �
þ g2

j gkglbjbl gl � gk

� �
8<
:

9=
;

¼ a4b2
XK

j¼1

XK

k¼1

XK

l¼1

g2
kg2

l bl bl � bk

� �
þ gjgkglbl gkbk � glbl

� �
þ gjgkglbjbl gl � gk

� �n o

[A4]

Point Selection for Cardiac T1 Mapping 11



as
PK

j¼1

PK
k¼1

PK
l¼1 g2

kg2
l gjb

2
l ¼

PK
j¼1

PK
k¼1

PK
l¼1 g2

j gkg2
l b2

l ,PK
j¼1

PK
k¼1

PK
l¼1 g2

kg2
l gjblbk ¼

PK
j¼1

PK
k¼1

PK
l¼1 g2

j gkg2
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PK

j¼1
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k¼1

PK
l¼1 g2

j g2
kglblbk ¼

PK
j¼1

PK
k¼1

PK
l¼1 g2

j g2
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bjbl after change of indices.

From these expressions, we have

J a; b;T1; xkf gð Þ

¼ 1

a2b2

PK
k¼1

PK
l¼1

gl gl � gkð Þ

PK
j¼1

PK
k¼1

PK
l¼1

g2
kg2

l bl bl � bk

� �
þ gjgkglbl gkbk � glbl

� �
þ gjgkglbjbl gl � gk

� �
8<
:

9=
;
:

[A5]

As gk and bk are functions of {xk} and T1 only, this
shows J a;b;T1; xkf gð Þ is inversely proportional to a2b2.
In particular,

J a;b;T1; xkf gð Þ ¼ 1

a2b2
J 1; 1;T1; xkf gð Þ: [A6]

APPENDIX B

Two additional numerical simulations of theoretical
interest were performed. First, for the T1 value of 1250
ms with K¼ 11, Tmax was set to 1300 ms, which is higher
than the trigger delay time, and the optimization proce-
dure was repeated. Second, to compare the effects of
increasing SNR versus increasing K under the assump-
tion that any sampling point can be selected multiple
times, we simulated the sequence with K¼ 5 and K¼ 10
for T1 values of interest varying from 950 to 1250 ms,
allowing for multiple sampling of all points, including
the point at infinity.
For the set of experiments, where Tmax¼ 1300 ms, the pro-
posed selection of points yielded (140, 140, 140, 1060,
1060, 1060, 1060, 1060, 1060, 1060, 1), whereas the uni-
form distribution resulted in (140, 269, 398, 527, 656, 785,
914, 1043, 1172, 1300, 1). These lead to CRBprec of 77.2
versus 89.1 ms, respectively (13.4% reduction). The distri-
bution of points using the proposed method shows the
trend of the optimization procedure to select 1 point at 1,
3 points at Tmin, and the remaining 7 points at 1060 ms.
For the second set of experiments, where any sampling
point can be selected multiple times, the optimization
for the sequence with K¼ 5 yielded (140, 1265, 1265, 1,
1) for a CRBprec of 86.7 ms, whereas K¼ 10 yielded
(140, 140, 1220, 1220, 1220, 1220, 1220, 1, 1, 1) for a
CRBprec of 60.1 ms. We note that the point selection still
favors choosing points in a concentrated region, favoring
multiplicities of the points with higher signal content. It
is also worth noting that going from 5 to 10 points yields
an improvement of 31% in the variance, which is better
than acquiring the K¼ 5 points twice for double the SNR
(29%), although the difference is not large.
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