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Abstract

This project focuses on identifying salient features/outliers in MR, images using Outlier
Pursuit. We consider a model where the matrix of interest can be decomposed as a sum of low
rank, and column sparse (with only a few non-zero columns) matrices. Usually, the outliers in
such large matrices are identified by solving a (linear constrained) convex optimization program.
Here, we propose an ADMM based algorithm to solve this nonsmooth convex problem. The
proposed algorithm converges linearly to the optimal solution set. Existing tools and results
in the field of Robust PCA are used to show that the obtained solution, recovers the outlier
locations and the low-dimensional subspace exactly. We also briefly describe how MR images fit
the modeled considered here, and show experimental results for identifying the salient features
(lesion) in brain MR images using our algorithm.

1 Introduction

In this age of Big-Data, there have been incessant efforts on processing data efficiently. Identifying
low dimensional structure from such high dimensional data sets has been the primary focus in
statistical inference settings. We consider here, the problem of matrix outlier identification. Let
X € R™M*™ he the data matrix of interest, and we know that it can be decomposed as

X =Ly + Cy, (11)

where Lg is a low rank matrix and Cy is column sparse, i.e. only a fraction of the columns in
Cy is non-zeros. Also, the rank of Ly and the fraction of non-zero columns in Cy are a priori
unknown. Our focus here is to accurately identify the location of the non-zero columns of Cy, and
also the column space of the low rank matrix L. This investigation of ours falls within the realm
of Robust Principal Component Analysis (see, e.g., [I—1]). More recently, [6] gave results on outlier
identification via compressive sampling techniques.

Principal Component Analysis (PCA), is the most widely used method for dimensionality reduc-
tion in statistical analysis. The vanilla PCA problem entails identifying the best low-dimensional
approximation (in terms of least square error) for data points sampled from a much higher di-
mensional space. Singular Value Decomposition (SVD) when applied to the matrix formed by
considering each data sample as a column, can be used to find the column space of the low rank
approximation. However, it is well known that PCA is highly sensitive to the presence of outliers.



In such settings (where it is possible to have spurious or malicious data points), a natural question
that follows is whether we can recover the low dimensional subspace of the “uncorrupted” points
and also the identities of outliers.

1.1 Motivation

Several image processing and computer vision applications (see e.g., [7,8]) aim to identify the
“saliency map” of a given image, which ideally indicates the regions of the image that tend to
attract the attention of a human viewer. The idea behind this project is to use the framework
established in the Robust PCA and saliency map estimation literature to identify tumors and/or
clots (which we shall henceforth refer to as “salient features”) in an MR image.

Here, we interpret the MR image as a collection of distinct non-overlapping patches, so that
we can represent the image equivalently as a matrix whose columns are vectorized versions of the
patches. It has been demonstrated in [9] that such local patches extracted from images can be well
approximated as sample points lying in a union of low dimensional linear subspaces. The approach
we use is based on the assumption that the salient regions in the MR image (say anomalous growths,
tumors, etc.,) may be modeled as outliers from a single common low dimensional subspace. Since
the number of such outliers will (in general) be small, MR images fit into the model (1.1).

Given an MR image, we equivalently represent the image as a matrix, X (of size ny X ny), which
is a collection of vectorized patches (as described above). Thus each patch in the original image is
mapped uniquely to a column of X. The location of outliers in X, once identified (by the column
support, as will be discussed in the next section), can then be mapped onto the corresponding
patches, thus giving us the location of the salient features. The interpretation of MR images as
described above, is pictorially shown in Figure 1.
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Figure 1: Vizualizing the representation of the MR image using the Matrix X. Patches in the
image become columns of X. (a) Original MR image. (b) The n; X ngy matrix, X.

The salient feature patches (like the tumor and also the skull) are represented by the colored
columns, and the rest of the tissue patches (which are similar to each other) correspond to vectors
lying in the low-dimensional subspace. We shall henceforth concern ourselves only with the matrix
X, keeping in mind that locating the outlier columns in X is equivalent to finding the salient image
patches.



2 Problem Setup

In this section, we formalize the problem of outlier pursuit and define the optimization problem
considered here. Following this, in Section 3 we provide a ADMM based algorithm to optimize the
objective function and discuss convergence guarantees for the same. Lastly, in Section 4 we report
the results obtained when the proposed algorithm is applied to an actual MR image.

We consider here a model, where the matrix of interest is a sum of low rank matrix, and a
column sparse matrix (which corresponds to the outliers), i.e. the matrix X € R™*"2 can be
decomposed as,

X =Ly + Cy, (2.2)

where L is a low-rank matrix (with rank(Ly) = r < min(n,ng)), and Cy is column sparse (i.e.
only a fraction, 0 < v < 1, of columns in Cj are non-zero). Our aim is to recover the column
support of the sparse matrix Cy, which gives the location of the outliers; the column support set
of Cy is denoted by Zy, with |Zy| = yn2

The problem of exactly recovering the low-rank, and the (support of the) column sparse matrices
involves solving the following convex optimization problem,

(P1): argmin ||L||« + A||C||12 subjectto L+C =X, (2.3)
where A > 0 is a regularization parameter, || - ||, is the nuclear norm (sum of singular values),
and || - ||1,2 is the sum of ¢ norm of the columns of the matrix. This problem has been studied
by [I—1] who propose (2.3) as a convex surrogate of the following natural recovery formulation for

the Robust PCA /Outlier Pursuit problem:

(P2): argmin rank(L)+ A||C|lp2 subject to L+ C =X, (2.4)
LC

where || -||o,2 denotes the number of non-zero columns in the matrix. It can be easily seen that (2.4)
is combinatorial in nature and intractable. Hence we work with its convex relaxation (2.3) to make
the optimization problem feasible. Before we go into the specifics of how to solve the problem (P1),
let us look at the conditions under which we this recovery problem is feasible (i.e., the solutions
are identifiable).

2.1 Identifiability conditions and the notion of Incoherence

If there are no additional structural assumptions imposed on the low rank and column sparse
components, then the recovery of outlier columns (and also the “true” low dimensional subspace)
could be an ill-defined problem. To understand this statement, consider the trivial case when the
matrix X has just one non-zero column. Such an X is both low rank and column sparse at the
same time, thus making the problem unidentifiable.

To make the problem meaningful (or well-posed), we need to impose additional conditions on
the low rank component Ly, to ensure that it is not column sparse as well. This is formalized via
what is called the incoherence condition which is commonly used in the compressive sensing and
matrix completion literature (see e.g., [1,0]).



Definition 1 (Column Incoherence Property). Let L € R™*"2 be a rank-r matriz, with at most
nr, < ng non-zero columns, and a compact SVD, L = USVT. The matriz L is said to satisfy the
column incoherence property with parameter uy if

r
max ||V e|[3 < pup—, (2.5)
7 nr
where {e;} are the canonical basis (coordinate vectors) in R™.

It should be noted here that uz € [1,nr/r]. A small incoherence parameter puy for the low
rank component essentially implies that the column support of Ly spread out and is hence more
desirable. For the purposes of this project, we assume that Lg is column incoherent with some
parameter puy > 1. It is worth noting here that, the value of p, the fraction of non-zero columns
in Cy (denoted by 7), and the rank of Ly (denoted by ), are a priori unknown and are not required
for the execution of the algorithm presented here.

3 Outlier Pursuit Algorithm using ADMM

The Robust PCA problem entails efficiently solving a convex optimization problem (P1), and the
current methods propose an Alternating Minimization (AltMin) algorithm for the same. The
AltMin algorithm has been shown to converge linearly to an optimal point. In contrast, we present
here a scalable ADMM based algorithm to solve (P1). The proposed method is also shown to
converge linearly to the optimal solution.

3.1 Forming the ADMM problem

Our aim here is to solve the nonsmooth convex program (P1). The problem as described in (2.3) is
an equality constrained optimization with a convex objective function (it is well known that both
|| - ||« and || - ||1,2 are nonsmooth and convex). Thus (P1) is well within the framework of ADMM.
The Augmented Lagrangian for this can be written as,

p
Lo(L,C0) = LIl + NIClaz + (0, L+ C = X) + B|L+ €~ X3, (3.6)
where p > 0 is a constant. The augmented dual function is given by,

d(l/) = I[I},ICI,I ﬁp(La Ca V)a (37)

and the dual problem (which is equivalent to the primal problem P1 under mild conditions) is

(DP): max d(v). (3.8)

v

If p > 0, then L + C' — X is constant over the set of minimizers of (3.7) (see [10] for proof). This
implies that the gradient of the dual function is well defined and given by,

Vd(v) = L(v)+ C(v) — X,



where (L(v),C(v)) is the minimizer of (3.7). Thus we can use a dual ascent strategy to solve the
primal problem (P1) using the dual formulation (3.8)

vi=v+av)=v+a(Llv)+Cv)—-X)

where « is a suitable step size. The update steps involved in the ADMM algorithm is given in the
box below. Executing these 3 steps recursively will, solve the Primal problem (P1).

General Steps involved in ADMM

Step 1: Update Li4q - Subproblem (SP1)

Liyw = argmin L,(L,Ck,vy)
L
= argmin {HLH* + (v, L+ Cp — X) + gHL—i— Cr — X||%} : (3.9)
L

Step 2: Update Cky1 - Subproblem (SP2)

Cr+1 = argénin Ly(Li+1,Cyvy)
. P
= argénm {)\HCHLQ—I— <I/k,Lk+1 —|—C—X>+§||Lk+1 —I—C—X”%} .(3.10)

Step 3: Update the Multiplier v (Dual variable)

Vg1 = Vg + p (L1 + Crp1 — X)), (3.11)

where we fix the step size for the ascent step to be p.

3.2 Solving the Subproblems involved in ADMM

The most important steps involved the ADMM strategy is to solve the subproblem (SP1) given
by (3.9), and subproblem (SP2) given by (3.10) to global minimum. Let us further look into how
these subproblems are solved.

3.2.1 Subproblem (SP1)

The update step for L given by (3.9) involves solving the following nonsmooth convex optimization
problem:

L = argmin {HLH*+ (v, L+C - X) +g|L+C—X|\%~}.
L



After completing the squares and ignoring the terms involving just C' or v (since they won’t affect
the minimization problem here), we get,
2
} : (3.12)
F

The objective function of (3.12) is a sum of smooth and nonsmooth functions of L, (both of which
are convex). A closer look at the objective function helps us identify that the solution of (3.12) is
the proximity operator associated with the nuclear norm function. There happens to be a closed
form solution to this problem and is studied in [ 1]. Before we obtain the closed form solution, let
us first define some preliminary operations.

T = argmin |L|]*+pHL+C—X+V
L 2 P

Consider a matrix Z € R™*"2 of rank r, with an SVD, Z = UXV7T, where ¥ = diag({oi b1<i<r)-
For each 7 > 0, let us introduce the singular value shrinkage operator ®. defined as

D.(2) = UD,(VT, D,(%) = diag({o; — 7}+), (3.13)

where the ¢4 is the positive part of ¢, given by, t;+ = max(0,t). It should be noted that ©, applies a
soft-thresholding rule to the singular values of the matrix. It is intuitive from the definition (3.13)
that the singular value shrinkage operator promotes “low rank” property in some sense (i.e., if few
singular values are smaller 7, then it makes them zero, thus reducing the rank of the resultant
matrix).

We now state without proving a result from [I1], which we shall use to solve the subproblem

(SP1).

Result (from Theorem 2.1 in [11]). For each 7 > 0 and M € R™*"2_ the singular value shrinkage
operator (3.13) obeys

1
D, (M) = argmin {2|\ZM|1%+T||ZH*}. (3.14)
Z
From (3.14) it follows directly that the minimizer of (3.12) is given by,
=9y, (X—C—”). (3.15)
p

3.2.2 Subproblem (SP2)

The solution to (SP2) is similar in flavor to what was shown for the previous subproblem. The
update step for C' given in (3.10) involves solving the following nonsmooth convex optimization
problem:

C = argmin {AHCIh,z + L+ C—X)+ gHLJrC—XH%}.
C

After completing the squares and ignoring the terms involving just L or v (since they won’t affect
the minimization problem here), we get,

2

~ A 1
C = argmin pHCHL?"’QHL‘FC—X‘FV (3.16)
C

p

F

—ho(C)



The objective function of (3.16), as in the previous case, is a sum of smooth and nonsmooth
functions of C, (both of which are convex). A closer look at the objective function of (3.16) helps
us identify that its solution is the proximity operator associated with the group norm || - [|1 2.

Since the function ho(C) is strictly convex, it has a unique minimizer (say C). Now, the first
order optimality conditions imply that, C' minimizes ho if and only if 0 is a subgradient of hg at
the point C' = C, i.e.

v ~
OGC’—(X—L—>+6-8HCH1,2, (3.17)
p

where ¢ = A/p, and 9||C||.2 is the subdifferential of || - |12 at C = C. By definition, we have
|IC]l12 = 32, [|C@||3 (where O is the i-th column of C), and (3.17) is hence separable (decouples)
column wise. So, the optimality condition (3.17) can be rewritten as,

. , , (4) ~ (4)
0ccl) - (X(“ — L - ”p) te (AClhs) " Vi=12,. s

, ~ (@)
In other words, for some subgradient vector ¢(?) e ((’3“0 |\172> , we have

~

0=C0 —Gg) +e-g(i), Vi=1,2,...,n9,
where we have defined Gg) = (X @ _ @ — %) We can rewrite the above equation as,
CO =G —c.g vi=12.. . ny. (3.18)
Let us now define the column wise shrinkage operator, €. as,

€

1GD|l2

@6(G0)2<1 > GO Vi=1,2,... na. (3.19)
+

First if we note that value of the subgradient vector g0 = C®/||C®||, whenever C® #£ 0 (by
definition), and it can take any value in the unit f3-norm ball when C = 0. Using the above fact
it is easy to show that, the column wise shrinkage operator defined in (3.20) satisfies the optimality
condition (3.18). Hence we can write the optimal solution for the subproblem (SP2) as

C=2¢,, (X By - Z) . (3.20)

The overall ADMM algorithm for the Outlier pursuit problem is summarized and provided below.
Algorithm 1 was implemented in Matlab and the results are summarized in the following section.

4 Results and Discussion

The Algorithm 1 was first tested for synthetic data (generated by a Matlab script). This was
also used as test bench to find the optimal values of the regularization parameter A. Once the



Algorithm 1 Outlier-Pursuit Algorithm using ADMM
Input: X
Initialize: Lo = vy =0"""2, Cy =X — Ly, A\=0.71,p=1
while not converged do
(1) Update Ljyy:
Glz — X -C— %I/k
Liy1 < D1/,(G%)

(2) Update Cj1:
Glév +— X — Lk+1 — %I/k
Chri1 < €y/,(GE)

(3) Update vpy1:
Vi1 < Vg + p(Lgg1 + Cp1 — X)
k< k+1
end while

Output: L:= Ly , and C = Cy

regularization parameter \ was tuned, test runs were performed with randomly generated test
matrices X, and the objective function value and runtimes were observed.

Algorithm 1 converged within 40 iterations for matrices as big as 100 x 1000 with rank, r = 5,
and the fraction of non-zero columns v = 0.01. The total run time of the algorithm was less than
2 seconds on a desktop computer. Also the algorithm was able to recover the low dimensional
subspace and the eract column support (almost) every time.

It was also observed that the number of iterations required for convergence seemed to be un-
affected (in the order of magnitude sense) to the problem dimension. However the time taken per
iteration seemed to heavily affected by the problem size. It was also interesting to note that the
number of rows in X seemed to have lesser effect on the runtime when compared to the column
size ng. This seems to be intuitive as we run soft-thresholding operations column wise (for the
C-update), and also find the compact SVD (for the L-update) at every iteration.

While discussing the convergence of the algorithm, it is necessary to elaborate a bit on the
stopping criteria used (note that an explicit stoppping criterion is not specified in Algorithm 1
for the sake of brevity). Both objective function values and primal feasibility condition were taken
into consideration to specify the stopping criteria. In particular, the algorithm keeps track of the
following two things at every iteration, and the loop terminates when both the conditions (given
below) are satisfied.

Condition 1: The change in the objective function value - The change in the value of the
Augmented Lagrangian function between successive iterations is small. More precisely,

LYE(L, Cv) — LP(L,C,v)| < & (= 0.1).

Condition 2: Primal feasibility - When the value of the normalized (per-element) error corre-



sponding to the primal constraint (L + C' = X)) is very small. More precisely,

| Ly + Cryr — XI5 <
ning

5y (=107°)

As a performance benchmark, we implemented the AltMin algorithm presented in [!], and
tested the outlier pursuit problem using synthetic data on both AltMin and Algorithm 1. With the
stopping criteria as defined above, and initializing with a feasible point (refer Algorithm 1), it was
observed that our ADMM based algorithm achieves much better (faster) primal feasibility than
the AltMin algorithm. It was also observed that the AltMin algorithm converged faster (about 3x
faster than ours).

That being said, we can say that the difference in convergence rate is not orders of magnitude
apart. The authors of [1] have shown that AltMin converges linearly to the optimal solution. We
have previously seen in Section 3 that our algorithm converges to an optimal point (it is also well
known that ADMM with a convex objective converges to the optimal solution set). Now we seek
the results established in [10], where the authors prove linear convergence for the sum of convex
separable functions with linear constraints. It is easy to observe that our problem clearly falls in
the above mentioned realm. Thus we can safely claim here that the algorithm presented here also
achieve linear convergence. The convergence analysis involved is out of the scope of this project
and is hence omitted.

Having discussed that qualitative and quantitative aspects of our algorithm, and its performance
on synthetic data, let see how it performed on an actual MR test image. We tested the Algorithm 1
using brain MR image from [12]. The Axial T1 contrast-enhanced MRI of the brain demonstrates
a l-cm right frontal lesion (tumor).

100 200 300 400 500 600 700 100 200 300 400 500 600 700

Figure 2: (Left) Given MR image with a 1-cm right frontal lesion, (Right) The outliers as recovered
by Algorithm 1. The white patches correspond to the outliers. The lesion was correctly identified
as an outlier by our algorithm

Figure 2 shows that our algorithm correctly identifies the location of the anomaly in the brain
MRI. This means that the MR image fits the model proposed by us. Apart from the lesion, the



algorithm also identifies the skull periphery as outliers (which is still acceptable and expected). A
plot showing the objective function values, and the amount of deviation from the primal feasibility
condition as a function of iterations is shown in Figure 3.

«10° Objective Function (Augmented Lagrangian)
T T T T T

1.328
1.3275
1.327 +

1.3265

T

40

F 12

Constraint Penalty: ||L+C-X||?/n_n
T

1072 T T T T

108 F .

10»10 | | | | 1 1 1
0 5 10 15 20 25 30 35 40

Figure 3: (Top) Augmented Lagrangian: Lgk) (L,C,v), (Bottom) Normalized (per-element) error
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corresponding to the primal constraint: % The X-axis shows the number of iterations:

k, and it is worth noting that these are semilog plots (Y-axis is given in logarithmic scale)

For a 794 x 719 input image, and patch size of 20 x 20 (in other words n; = 400 and ny = 1365,
we can see that the algorithm has converged in 38 iterations, taking about 10 seconds to run.

5 Conclusion

The ADMM based algorithm proposed here, has been able to identify salient features in MR images
as shown. Also the algorithm has linear convergence and is hence on par with the state-of-the-art.
One big challenge in this project was to tune the regularization parameter A, especially for actual
MR images. With availability of large data sets and more sophisticated software tools, it might be
feasible to build robust systems which accurately identify anomalies in MR images. Such systems
will be of immense utility in clinical diagnosis.

10



Also, it was observed in the course of the project that, the algorithm in its current state might
not be able to locate tumors/lesions in all types of MR images. In general MR images present
themselves with varied contrasts, and a wide variety of settings, which significantly affect the
image quality and texture. In those cases, the simple model presented here will not be sufficient.
A more generic, union of subspaces model can be used to learn a dictionary, which can in turn
be analyzed in settings similar to that established here. Such investigations could be prove to be
interesting future directions in this field.
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