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Abstract—Recently, Generative Adversarial Networks (GANs)
have emerged as a popular alternative for modeling complex high
dimensional distributions. Most of the existing works implicitly
assume that the clean samples from the target distribution are
easily available, which is not true in real-world applications.
In this paper, we consider the observation setting when the
samples from target distribution are given by the superposition of
two structured components and leverage GANSs for learning the
structure of the components. We propose two novel frameworks:
denoising-GAN and demixing-GAN. The denoising-GAN assumes
access to clean samples from the second component and try
to learn the other distribution, whereas demixing-GAN learns
the distribution of the components at the same time. Through
extensive numerical experiments, we demonstrate that proposed
frameworks can generate clean samples from unknown distri-
butions, and provide competitive performance in tasks such as
denoising and demixing.

I. INTRODUCTION

In this paper, we consider the classical problem of sepa-
rating two structured signals observed under the following
superposition model:

Y=X+N, @

where X € X and N € N are the constituent sig-
nals/components, and X, N' C RP denote the two structured
sets. In general the separation problem is inherently ill-posed;
however, with enough structural assumption on X and N/, it
has been established that separation is possible. Depending
on the application, one might be interested in estimating only
X (in this case, N is considered as the corruption), which is
referred to as denoising, or in recovering both X and N which
is referred to as demixing. Both demixing and denoising arise
in a variety of important practical applications in the areas of
signal/image processing, computer vision, machine learning,
and statistics [1]-[4]. Most of the existing techniques assume
some prior knowledge on the structures of X and A in order
to recover the desired components. However, this is a limitted
assumption in the real applications. In this paper, we consider
the problem of separating constituent signals from superposed
observations. In particular, we are given a set of superposed
observations {Y; = X; + N;}2,, where X; € X and N; € N/
are i.i.d samples from their respective (unknowns) distributions.
In this setup, we explore two questions: First, How can one
learn prior knowledge about the individual components from
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superposition samples? Second, Can we leverage the implicitly
learned constituent distributions for tasks such as denoising
and demixing?

A. Setup and Our Contribution

Motivated by the recent success of generative models in
high-dimensional statistical inference tasks such as compressed
sensing in [5], [6], in this paper, we focus on Generative
Adversarial Network (GAN) based generative models to
implicitly learn the distributions, i.e., generate samples from
their distributions. Most of the existing works on GANs
typically assume access to clean samples from the underlying
signal distribution. However, this assumption breaks down in
the superposition model considered in our setup, where the
structured superposition makes training generative models very
challenging.

In this context, we investigate the first question with varying
degrees of assumption about the access to clean samples from
two signal sources. We first focus on the setting when we have
access to samples only from the constituent signal class A and
observations, Y;’s. In this regard, we propose the denoising-
GAN framework. However, assuming access to samples from
one of the constituent signal class can be restrictive and is often
not feasible in real-world applications. Hence, we further relax
this assumption and consider the more challenging demixing
problem, where samples from the second constituent component
are not available. To solve the latter, we propose demixing-
GAN framework. Finally, to answer the second question, we use
our trained generator(s) from the proposed GAN frameworks
for denoising and demixing tasks on unseen test samples
(i.e., samples not used in the training process) by discovering
the best hidden representation of the constituent components
from the generative models. In addition to the denoising and
demixing problems, we also consider a compressive sensing
setting (whicb is deferred to a longer version of this paper due
to the lack of space [7]) to test the trained generator(s).

II. APPLICATION AND PRIOR ART

To overcome the inherent ambiguity issue in problem (1),
many existing methods have assumed some prior knoeledge
on the structures of components and also that the signals
from X and N are “distinguishable” enough [8]-[13]. The
assumption of having the prior knowledge is a big restriction
in many real-world applications. While some recent attempts
such as structured sparsity [14], dictionary learning [8], and



in general manifold learning have tried to automate this hard-
coding approach, they still cannot fully address the need for
the prior structure. Over the last decade, deep neural networks
have been demonstrated to learn useful representations of real-
world signals such as natural images, and thus have helped
us understand the structure of the high dimensional signals,
for e.g., using deep generative models [15]. Our approach in
this paper is based on implicitly learning the distribution of
constituent components using Generative Adversarial Networks
(GANSs) [16]. GANs have been established as a very successful
tool for generating structured high-dimensional signals [17],
[18] from distributions lying on a low-dimensional manifolds.

In most of the existing works on GANs with few notable
exceptions [6], [19]-[22], it is implicitly assumed that one has
access to clean samples of the desired signal. However, in many
practical scenarios, the desired signal is often accompanied
by unnecessary components. Recently, GANs have also been
used for capturing of the structure of high-dimensional signals
specifically for solving inverse problems such as sparse
recovery, compressive sensing, and phase retrieval [5], [20],
[21]. Specifically, [5] have shown that generative models
provide a good prior to structured signals, for e.g., natural
images, under compressive sensing settings over sparsity-based
recovery methods. Furthermore, authors in [23] have proposed
a projected gradient descent algorithm for solving the recovery
problem directly in the ambient space (space of the desired
signal) based on the prior knowledge about the structured
signals provided by GAN. As mentioned, most of the prior
art in GANs need direct access to the clean samples from
the unknown distribution, which is not the case in many real
applications. AmbientGAN framework [6] partially addresses
this problem by studying a various measurement models. It
showed that the GAN can find samples of clean signals from
corrupted observations. However, AmbientGAN assumes that
the measurement model and parameters are known, which is
a very strong and limiting assumption in real applications.
One of our main contributions is addressing this limitation by
studying the demixing problem. In addition, the approach in
AmbientGAN just learns the distribution of the clean images;
however, it has not been used for the task of image denoisng.
Our framework addresses this issue as well.

III. BACKGROUND AND THE PROPOSED IDEA

A. Background

Generative Adversarial Networks (GANs) have been initially
introduced by [16] for generating samples from an unknown
target distribution. This is done through a zero-sum game
between two players, generator, G and discriminator, D
through the following min-max optimization problem:
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where 0, and 0y are the parameters of generator networks and
discriminator network, respectively. Also, D, and D, represents
the target probability distributionthe and distribution of the

minmax Eqy~p, [log(Do, ())JEz~p. [log(1 — D, (G, (2))];
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Fig. 1: The architecture of proposed GANs. (a) denoising-GAN. (b)
demixing-GAN.
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hidden variables z € R"!. It has been shown that if G and
D have enough capacity, then solving the above optimization
problem by alternative stochastic gradient descent algorithm
guarantees the distribution D, at the output of the generator
converges to D,. Next we present the proposed modifications
to the basic GAN setup that allows for usage of GANs as a
generative model for denoising and demixing structured signals.

B. denoising-GAN

Our idea is inspired by AmbientGAN due to [6] in which
they used a regular GAN architecture to solve some inverse
problems such as inpainting and denoising from unstructured
noise by assumption that the corruption model is known.
The idea is to feed discriminator with observed samples, y;’s
(distributed as Y') together with the output of generator G which
is corrupted by the known corruption model. Our denoising-
GAN framework is illustrated in Figure 1(a). This framework
is similar to one proposed in AmbientGAN paper; however,
denoising-GAN is used to denoise from a structured corruption
(not just arbitrary noise). To this end, we use our assumption
that the components have some structure and the representation
of this structure is given by the last layer of the trained
generator, ie., X € Gy 2, This observation together with
this fact that in GANS, tfle low-dimension random vector z
is representing the hidden variables, leads us to this point: in
order to denoise a new test image, we have to find a hidden
representation, giving the smallest distance to the corrupted
image in the space of GA [5], [23]. In other words, we have
to solve the following optlmlzatlon problem:

Gg, ()13 + Allzl13,

where u denotes the corrupted test image. The solution of this
optimization problem provides the (best) hidden representation
for an unseen image. Thus, the clean image can be reconstructed
by evaluating G (%). While optimization problem (2) is non-
convex, we can still solve it by running gradient descent
algorithm in order to get a stationary point®,

(@)

z = argmin ||u —
z

'One can also use identity function instead of log(.) function in the above
expression. The resulting formulation is called WGAN [24].

7(‘ ( ) denotes the trained generator network with parameter 6'9
3Whlle we cannot guarantee the stationary point is a local minimum,

but the empirical experiments show that gradient descent (implemented by
backpropagation) can provide a good quality result.



C. demixing-GAN

Now, we go through our main contribution, demixing.
Figure 1(b) shows the GAN architecture, we are using for
the purpose of separating or demixing of two structured signals
form their superposition. As illustrated, we have used two
generators and have fed them with two random noise vectors
z21 € Rt and 29 € R”2 according to a uniform distribution
defined on a hyper-cube, where hi,hy are less than the
dimension of the input images. We also assume that they
are independent of each other. Next, the output of generators
are summed up and the result is fed to the discriminator along
with the superposition samples, y;s. Somewhat surprisingly,
this architecture based on two generators can produce samples
from the distribution of each component after enough number
of training iterations. We note that this approach is fully
unsupervised as we only have access to the mixed samples and
nothing from the samples of constituent components is known.
As mentioned above, this is in sharp contrast with AmbientGAN
and our previous structured denoising approach. As a result,
the demixing-GAN framework can generate samples from the
second components, which further can be used in the task
of denoising where the corruption components are sampled
from highly structured signal. So, we d not need to know
the corruption model. Now similar to the denoising-GAN
framework, we can use the trained generators in Figure 1(b),
for demixing of the constituent components for a given test
mixed image by solving the following (demixing) optimization
problem and obtaining z7, Z3:
argmin [y — G, (21) = G5, (z2) 13 + Adllz1ll3 + +Az] 2213,

1,22
where u denotes the test mixed image. Now, each component
can be estimated by evaluating G(;gl (#1) and G(;gQ (22) (denot-
ing the parameters of the first and second trained generators).
While this optimization problem is non-convex, we can still
solve it through block coordinate gradient descent algorithm,
or in a alternative minimization fashion. Finally, we have
provided some theoretical intuitions for the denoising-GAN
and demixing-GAN in the arXiv version of this paper [7].

IV. NUMERICAL EXPERIMENTS

In this section, we present various experiments showing the
efficacy of the proposed frameworks (depicted in Figure 1(a)
and Figure 1(b)) in different setups. First, we will focus
on the denoising from structured corruption in the testing
scenario (please see [7] for the training part). Next, we focus
on demixing signals from structured distributions. Here, we
present our results on two sample datasets, MNIST [25] and
F-MNIST [26]. Due to lack of space, we defer the details
of experiments setup, the complementary experiments on the
compressive sensing scenario, experiments on the other datasets
(SVHN [27], and Quick-Draw [28]), and emrically investigating
the failiure of demixing-GAN to [7].

A. Structured Corruption Models

For all the experiments on MNIST dataset, we have used
the network architectures for discriminator and generator(s)

Corrupted digits

denoising-GAN

Fig. 2: The performance of trained generator for various level of
corruption (lc) in denoising of unseen images. Top row: Ground truth
digits. Middle row: corrupted digits with random sinusoidal, with a
level of corruption from 1 to 5. Bottom row: the reconstructed digits.

similar to the one proposed in DCGAN [29]. For the corruption
part, we have used two structured noise models similar to [30].
In the first one, we generate random vertical and horizontal
lines and add them to the dataset. The second structured noise
is constructed based on random sinusoidal waves in which
the amplitude, frequency, and phase are random numbers. We
define the level of corruption (Ic) as the number of sinusoidal
or lines added to the original image.

B. Denoising from Structured Corruption

In this section, we use GAN architecture illustrated in
Figure 1(a) for removing of the structured noise. The setup of
the experiment is as follows: we use 55000 MNIST images
with size 28 x 28 corrupted by either of the above corruption
models*. The resulting images, 7;’s are fed to the discriminator.
We also use hidden random vector z € R1% drawn from a
uniform distribution in [—1,1]'° for the input of the generator.
Once the denoising-GAN is trained (i.e., obtaining 0,), it can
be used to denosie unseen test images. For reconstructing of
the clean images, we solve the optimization problem in (2) to
obtain solution z. Then we find the reconstructed clean images
by evaluating Ggq (%). In Figures 2, we have used the different
level of corruptions for sinusoidal corruption model. Also, we
vary the level of corruption from 1 to 5 with random sines.
The result of Ggg (%) has been shown below of each level of
corruption.

As we can see, even with heavily corrupted images (level cor-
ruption equals to 5), GAN is able to remove the corruption from
unseen images and reconstruct the clean digits. Furthermore,
we evaluate the quality of reconstructed images compared to
the corrupted ones through a classification task. Please see [7]
for more details.

C. Demixing of Structured Signals — Training

In this section, we present the results of our experiments
for demixing of the structured components. To do this, we
use the proposed architecture in Figure 1(b). We first present
our experiment with MNIST dataset, and then we show the
similar set of experiments with Fashion-MNIST dataset (F-
MNIST) which includes 60000 training 28 x 28 gray-scale

“Here, we just present the random sinusoidal corruption. Please see [7] for
the other experiment. Also, we set level of corruption 1 for sinusoidal waves.



images with 10 labels. The different labels denote objects,
including T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal,
Shirt, Sneaker, Bag, and Ankle boot.

1) Experiments on MNIST Dataset: We start the experiments
with considering two sets of constituent components. In the
first one, we use random sinusoidal waves as the second
constituent component. Compared to the denosing case, here

we are interested in generating of the samples from both parts.

In Figure 3, we show the training evolution of two fixed random
vectors, z; and zy in R100
As we can see, our proposed GAN architecture can learn two
distributions and generate samples from both digits and random
sines.

Mixed images 1" epoch gnd epoch

Mixed images 1% epoch gnd epoch

Fig. 3: Evolution of output samples by two generators for fixed z1
and z. The top panel shows the evolution of the two generators
in different epochs where the mixed images comprise of digits and
sinusoidal. The first generator learns the distribution of MNIST digits,
while the second one is learning the random sinusoidal waves. The
bottom panel shows the same experiment withe the mixed images
comprise only digits 1 and 2.

In the second scenario, we consider the mixed images as the
superposition of digits 1 and 2. In the training set of MNIST
dataset, there are around 6000 samples from cach digits of 1
and 2. In this case, we are interested in learning the distributions
from which digits 1 and 2 are drawn. Thus, we have used these
digits to form the set of superposition images. The bottom
panel of Figure 3 shows the output of two generators, which
can learn the distribution of the two digits. The interesting
point is that these experiments show that each GAN can learn
the existing digit variety in MNIST training dataset, and we
typically do not see mode collapse, which is a major problem
in the training of GANs [31].

2) Experiments on F-MNIST Dataset: In this section, we
illustrate the performance of the proposed demixing-GAN for
F-MNIST dataset. Similar to the experiment with MNIST digits
experiment, we train the demixing-GAN, where we have used
InfoGAN ([32] architecture for the generators. The dimension
of input noise to the generators is set to 62. Figure 4 shows
the output of two generators (mixed images comprise of dress
and bag images from the training set), which can learn the
distribution of dress and bag images during 21 epochs.

in the output of two generators.

t epoch 6th epoch

Mixed images 1

Fig. 4: Evolution of output samples by two generators for fixed z1
and z2. The mixed images comprise only two objects, dress, and bag
in training F-MNIST dataset. One generator produces the samples
from dress distribution, while the other one outputs the samples from
the bag distribution.

D. Demixing of Structured Signals — Testing

Similar to the test part of denoising, in this section, we
evaluate the performance of two trained generators in a
demixing scenario for the mixed images, which have not been
seen in the training time. Figure 5 shows the demixing on
three different mixed images. Here, we have compared the
performance of demixing-GAN with Independent component
analysis (ICA) method [33]. In the top and middle rows of
Figure 5, we consider the mixed images generated by adding a
digit (drawn from MNIST test dataset) and a random sinusoidal.
To demix these components from each other, we use trained
GAN for learning the distribution of digits and sinusoidal waves
(the top panel of Figure 3) and solve the demixing optimization
problem through an alternative minimization fashion. The
corresponding constituent components arc then obtained by
evaluating G, 9., (21) and Gng (22). As we can see, our proposed
GAN can separate two digits; however, ICA method fails in
demixing of two components.

o E
" .
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Mixed Image  Est. 15¢ Part  Est. 270 par

Fig. 5: The performance of trained generators for demixing of two
constituent components. The first two columns are the ground-truth
components. The third column is the ground-truth mixed image and
the last two columns denote the recovered components. The first
row uses the same generator trained for only one digit (drawn from
MNIST test dataset) and a random sinusoidal. The second row uses
the generator trained only for digits 1 and 2. The last row shows the
result of demixing with ICA method.

Nest, we evaluate the performance of the trained demixing-
GAN on the F-MNIST dataset. In Figure 6, we have illustrated
a similar experiment to the previous case. The first row uses the
generator trained for only two objects for 20 epochs. The second
row uses the same generator trained for only two objects for
30 epochs. The last row shows the result of demixing with ICA



method. As we can see, ICA fails to separate the components
(images of F-MNIST) from each other, while the proposed
demixing-GAN can separate the mixed images from each other.
Finally, as an attempt to understand the condition under
which the demixing-GAN is failed, we empirically investigated
the role of two aspects of demixing-GAN. First, it seems that
the z-space of the generators for characterizing the distribution
of the constituent components play an essential role in the
success/failure of the demixing-GAN. Second the incoherence
of the hidden structures in the generator space determines
to what extent demixing is feasible. We investigate these
observations through some numerical experiments in [7]..

ngml%

— LML
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Fig. 6: The performance of trained generators for demixing of two
constituent components. The first two columns are the ground-truth
components. The third column is the ground-truth mixed image and
the last two columns denote the recovered components. The first row
uses the generator trained for only two objects for 20 epochs. The
third row uses the generator trained for only two objects for 30 epochs.
The last row shows the result of demixing with ICA method.

V. CONCLUSION

We studied the GANs framework for learning the structured
signals in denoising and demixing applications. We empirically
showed that it is possible to implicitly learn the underlying
distribution of the structured components even in the super-
position model. We also used these learned structures for the
downstream task such as denoising and demixing of unseen
images. Further theoretical investigation regarding the more
involved demixng scenario is a future research direction.
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