
Stack Sizing for Optimal Current Drivability 
in Subthreshold Circuits 

John Keane, Hanyong Eom, Tae-Hyoung Kim, 
Sachin Sapatnekar, and Chris Kim 

 
 

Abstract—Subthreshold circuit designs have been demonstrated to 
be a successful alternative when ultra-low power consumption is 
paramount.  However, the characteristics of MOS transistors in the 
subthreshold region are significantly different from those in strong-
inversion.  This presents new challenges in design optimization—
particularly in complex gates with stacks of transistors.  In this paper, 
we present a framework for choosing the optimal transistor stack 
sizing factors in terms of current drivability for subthreshold designs.  
We derive a closed-form solution for the correct sizing of transistors 
in a stack, both in relation to other transistors in the stack, and to a 
single device with equivalent current drivability. Simulation results 
show that our framework provides a performance benefit ranging up 
to more than 10% in certain critical paths.  

 

Index Terms—Subthreshold logic, logical effort, ultra low power 
design 

 

I. INTRODUCTION 
Due to the robust nature of static CMOS logic, circuits in this 

technology family can operate with supply voltages below the 
transistor threshold voltage (Vth), while consuming orders of 
magnitude less power than in the normal strong-inversion region. 
The operating frequency of subthreshold logic is much lower than 
that of regular strong-inversion circuits (Vdd > Vth) due to the small 
transistor current, which consists entirely of leakage current. The 
low operating frequency and low supply voltage combine to 
reduce both dynamic and leakage power, leading to the significant 
power savings seen in subthreshold designs.  

Subthreshold logic holds promise for the growing number of 
applications in which minimal power consumption is the primary 
design constraint.  Such circuits have received much attention in 
recent research, and a number of successful designs have been 
demonstrated.  A multiplexer-based SRAM was proposed for 
subthreshold operation by the authors of [1].  They also 
introduced new tiny-XOR circuits and demonstrated their 
performance in a Fast Fourier Transform processor running at a 
supply voltage of 180mV.  The authors of [2] presented a new 
high-density SRAM system operating down to 200mV at ISSCC 
2007.  In [3], Kim et al. built an ultra low power adaptive filter for 
hearing aid applications using subthreshold logic.  Subthreshold-
friendly logic styles and massively parallel DSP architectures 
were used in that work to achieve low voltage operation 

The characteristics of MOS transistors in the subthreshold 
region are significantly different from those in the strong- 
inversion region. The saturation current, which was a near-linear 
function  of  the  gate and threshold voltages in  the  strong- 
inversion region, becomes an exponential function of those values 
in the subthreshold regime [4].  In this work, we show that the 
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sizing methods used to obtain maximum performance must be 
reformulated for use in subthreshold designs due to these different 
characteristics.  In particular, we present a framework for 
choosing the optimal transistor stack sizing factors in terms of 
current drivability for subthreshold circuits.  A closed-form 
solution for the optimal sizing of stacked transistors is derived and 
shown to match simulation results.  Our theoretical sizing values 
closely match those found in simulations with Predictive 
Technology Model (PTM) [5,6] devices ranging from 130nm 
technology down to the 45nm node.  This sizing method is shown 
to provide a clear benefit in logic paths containing a large number 
of stacks where the nodal capacitance is not dominated by the 
increased device sizes used in our method. 

II. OPTIMAL 2-STACK SIZING 
A. Optimal Ratio between 2 Stacked Devices 

The first step we take in developing the subthreshold stack 
sizing framework is finding the optimal width ratio between 
transistors in a stack for maximum drive current. Here we will 
present a closed-form expression for the relative sizing of two 
transistors in a stack, showing that it is beneficial to size up the 
transistor nearest to the supply rail (Vdd for PMOS, ground for 
NMOS).  The starting point is the following pair of current 
equations for upper and lower transistors as situated in an NMOS 
stack (so the lower device is connected to ground), excluding the 
common factors that will cancel out when they are equated: 
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Here, WU and WL denote the upper and lower transistor widths, 
respectively, and VX denotes the voltage at the node between those 
devices.  The Drain-Induced Barrier Lowering (DIBL) coefficient 
(a negative number) is represented by λd, and γ is the body effect 
coefficient.  The thermal voltage is represented by VT, while Vt0 
stands for the nominal threshold voltage.  According to simulation 
results, VX≈ 10% of Vdd.  Each Vx term multiplied by the small 
DIBL coefficient (ranging from roughly -0.01 to -0.2 in current 
bulk technologies) can then be approximated as ~0.  Moreover, 
note that ( ) 0/ ≈−− TXdd VVVe .  We use the symbol 
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as well as the fact that m = 1+γ, to further simplify calculations.  
Rewriting the two current equations and equating them yields the 
following relationship: 
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Solving for VX  and using the definition qkTVT /=  gives us 
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We then define WT = WU +WL to eliminate WL, which results in the 
following current equation: 
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We find the optimal size for WU by setting ( )UU W/I ∂∂  equal to 
zero.  Again using our definition of WT, we then find the optimal 
size for WL.  This derivation results in the following equations: 
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According to these results, we expect to drive a higher current 
through the two-transistor stack when the lower device is larger 
than the upper transistor by a factor of α .  For example, with an 
NMOS stack in 90nm PTM technology, when using a WU of 1μm, 
the optimal WL would be 1.23μm at Vdd = 0.2V, and 1.30μm at Vdd 
= 0.3V.  As shown in equation (3), α is a function of Vdd, resulting 
in the different optimal width ratios for different Vdd values. 

HSPICE simulations using 45nm through 130nm PTM 
technology files closely match the results of our derivation, and 
verify that the benefit of using the α  sizing ratio is more 
pronounced for larger α values (i.e., when the supply voltage is 
larger).  PMOS transistor stacks exhibited the same sizing 
trends—optimal sizing requires the upper transistor (adjacent to 
the power supply) to be sized up by a factor of ~ α .  Results for 
90nm technology are displayed in Fig. 1, and indicate optimal 
ratios that are roughly 4% to 6.5% smaller than the theoretical α  
factors stated earlier.  Due to the small difference in current with 
the skewed sizing (~0.5% to 1.5% improvement), we will use a 
1:1 width ratio in stacks.  This reduces the design complexity for a 
negligibly small performance penalty.   
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Fig. 1.  DC current in stacks of two devices for a range of WU:WL sizing 
ratios.  The total width of the stacked devices is held constant at 1um.  
The small benefits derived by using skewed stack sizing are indicated 
in the upper corners of the plots. 
 

B. Optimal 2-Stack Sizing Factor 
After deciding to use a 1:1 ratio for the two devices in a stack, 

we must find the amount by which they should be sized up to 
drive the same current as a single transistor.  Defining W = WU = 
WL as the size of each transistor in the stack, we can modify 
equation (6) as follows: 
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For a single transistor, the current equation is: 
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where Weff stands for the effective width of this device.  From 
equations (9) and (10), we have the following relationship:  
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According to this equation, two stacked transistors should be 
sized up by a factor of (1+α) in relation to a single device for the 
same current drivability.  Tables I and II display (1+α) stack 
sizing values from this theory and from simulation results, 
demonstrating the validity of equation (11).  DC simulations were 
performed to find the correct sizing for transistors in a stack 
which is capable of conducting the same amount of current as a 
single unit-sized device.  Sizing factors found in simulations were 
slightly smaller than those predicted by the theory derived above 
due to effects not captured by current equation (1), but the trend 
with technology scaling is nearly identical in both cases.   

Results indicate that stacks need to be sized up by a larger 
amount in the subthreshold region compared to the strong-
inversion region.  Also note that NMOS stack sizing factors are 
significantly smaller in strong inversion due to velocity saturation.      

TABLE I 
NMOS Stack Sizing Factors 

Vdd Sizing Method 130nm 90nm 65nm 45nm 

0.2V simulation 
theory 

2.19 
2.39 

2.30 
2.52 

2.42 
2.67 

2.66 
3.04 

0.3V simulation 
theory 

2.27 
2.50 

2.44 
2.70 

2.64 
2.93 

3.11 
3.57 

1.2V simulation 1.58 1.60 1.63 1.69 

TABLE II 
PMOS Stack Sizing Factors 

Vdd Sizing Method 130nm 90nm 65nm 45nm 

0.2V simulation 
theory 

2.33 
2.45 

2.48 
2.66 

2.68 
2.90 

3.00 
3.34 

0.3V simulation 
theory 

2.60 
2.57 

2.85 
2.88 

3.20 
3.28 

3.95 
4.13 

1.2V simulation 1.98 2.08 2.05 2.15 
 

III. ARBITRARY STACK SIZES 

A. Proof of the Symmetry of the Lowest n-1 Device Widths 
    in an n-Stack  

Building an extensive cell library based on this stack sizing 
framework requires an extension of our work to stacks of three or 
more devices.  The derivation for the current equation of a three-
stack, which follows a similar method as the derivation in section 
II.A gives us the following result: 
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W1 and W2 stand for the widths of the two lower transistors in the 
stack of NMOS devices (see notation in Fig. 2).  WT is defined as 
WT = W1+W2+W3, and is used to eliminate W3, the width of the 
upper device.  This equation is symmetric with respect to the 
widths of the W1 and W2 transistors, indicating that the optimal 
sizes for the lower two devices in the stack are equal.  We now 



extend this finding through a straight-forward direct proof, which 
confirms the symmetry of the lower n-1 transistor widths in a 
general n-stack achieving maximum drive current.   

                
            (a) n-stack notation       (b) n-stack sizing for equivalent width 

Fig. 2.  NMOS n-stack  

The following equations hold for the drive-current through the 
transistors in an n-stack: 
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The iv  variables are shorthand for TVVie /− , and β stands for 
( ) Ttdd V/VVe 0− .   

Step 1: By setting equation (16) equal to equation (17), we can 
show that 
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Step 2: Next, by setting (15) equal to (16), and solving it for 
2ν , 

we have 
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=  is called the parallel combination of W1 and 

W2.  Step 2 is now repeated to move up through the stack until we 
reach the equation ( ) ( )232121 −−−−−− −=− nnnnnn WW νννν .  From this 
we find 
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where { }12−nW  is the parallel combination of transistors 1 through 

n-2.  
Step 3: Finally, setting equation (13) equal to (14), we can solve 
for 1−nν  
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We now have the following current equation: 
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 and substituting for Wn in equation (22), we 

get: 
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An examination of equation (23) shows that the variables W1 
through Wn-1 appear symmetrically in the expression.  Therefore, 
when In is optimized, W1 through Wn-1 must have identical values, 
since setting the partial derivative of In with respect to each Wi, for 
i = 1 to n-1, will result in a symmetric set of n-1 equations.   

B. Optimal n-Stack Sizing Factor 
Given the symmetry of the lower n-1 device sizes, i.e., WX = W1 

= W2 = … = Wn-1, we have the following general form for In in an 
n-stack: 
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To optimize In, we set ∂In/∂Wx=0 to obtain  
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Using the definition of WT, i.e., Wn = WT – WX (n – 1), we get  
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Thus, we have proven that the α  sizing ratio holds for the 
general n-stack case.   

As in the two-transistor stack case, the scaling factor of α  
leads to a trivial performance benefit (e.g., a 0.3% increase in 
current through a PMOS or NMOS stack in 90nm technology with 
a total stack width of 1um), so sizing all stacked transistors 
equally is the best choice in terms of overall design complexity.  
Using equation (24) and following the example of equation (11), 
we find that each device in an n-stack should then be scaled up by 
a factor of [1+α*(n-1)] to set the effective width of the stack equal 
to that of a single unit transistor (Fig. 2).  Note that all work done 
here again applies to PMOS stacks in a similar manner.  The 
discrepancies between the larger sizing factors predicted by this 
theory and those found with simulations become slightly more 
pronounced as the stack size grows.  For PMOS three stacks, the 
difference stays within the ~4-7% range, while for large alpha 
values, NMOS sizing factors are overestimated  by up to ~15% 
due to second order effects not captured in equations (1) and (2). 

IV. SIMULATION RESULTS 
A. Critical Path: A Chain of Stacks  

We tested our sizing with 130nm, 90nm, 65nm, and 45nm PTM 
simulations using simple chains of logic gates that are 
representative of those that may be found in the critical path(s) of 
ultra low power circuits.  In order to isolate the benefits of using 
the larger stack sizing in subthreshold operation, a consistent beta 
ratio (PMOS to NMOS width ratio) of 1.5 was employed across 
all simulations.  This nominal value is close to that used in 
advanced CMOS processes.  Stack sizing factors found with DC 
simulations as described in section II.B were used.  These 
experimentally determined numbers closely match our theoretical 
results, as stated earlier. 

The logical effort sizing method was used as a straight-forward 
means of quickly optimizing the delay though a logic path [7].  
Logical effort is defined as the ratio of the input capacitance of a 
gate to that of an inverter driving the same amount of output 



current.  Fig. 3 displays logical effort values based on our stack 
sizing parameters, as well as the corresponding parasitic delay 
values.  Parasitic delay represents the delay of a gate driving no 
load, and is set by the parasitic junction capacitance. 

 
Fig. 3.  Parasitic delay (p) and logical effort (g) values 

While the additional loading on previous stages created by the 
larger stack sizes here can degrade the performance of some logic 
chains, critical paths driving substantial fanout capacitance, and 
particularly those containing paths dominated by stacks, do 
benefit from this sizing.  The simple circuit illustrated in Fig. 4 is 
an example of a critical path whose delay is improved with our 
stack sizing framework.  The fanout inverter widths were kept 
constant across all experiments, and their loading effect was taken 
into account through the branching factor [7].  The minimum 
width (i.e., the NMOS width in the unit-sized inverter) was held at 
1um.  The gate capacitance of the inverters indicated in Fig. 4 
served as the input and output capacitance parameters for the 
logical effort calculations (Cin and Cout, respectively). 

 
Fig. 4.  Representative chain of logic gates with FO4 at each output 

Delays were found for both the path through this circuit 
consisting entirely of stacks (the “Stacks” path), and that 
containing no stacks (the “Fast” path), using the worst-case input 
pattern for each.  Critical path delay results for Vdd = 0.3V and Vdd 
= 0.2V are shown in Tables III and IV, respectively.  As indicated 
here, the critical path shifts from the Stacks path to the Fast path 
when using the optimized subthreshold sizing, and the critical 
delay is consistently reduced.  Also note that the 1.2V sizing 
scheme was optimal when operating in strong-inversion, with 
improvements over subthreshold sizing performance ranging from 
<1% to 12.3%. 

In logic paths where there are not chains of stacks driving each 
other in sequence, the larger subthreshold stack sizing becomes 
less beneficial, or even detrimental in terms of performance, due  

TABLE III 
Critical Path Delay Improvement for Vdd = 0.3V 

Technology 
Conventional 1.2V sizing Subthreshold 0.3V sizing 

Delay Crit. Path Speedup Crit. Path 

130nm 14.86n Stacks 7.3% Fast 

90nm 14.10n Stacks 6.0% Fast 

65nm 16.14n Stacks 8.1% Fast 

45nm 24.23n Stacks 4.6% Fast 

TABLE IV  
 Critical Path Delay Improvement for Vdd = 0.2V 

Technology 
Conventional 1.2V sizing Subthreshold 0.2V sizing 

Delay Crit. Path Speedup Crit. Path 

130nm 98.12n Stacks 6.6% Fast 

90nm 96.25n Stacks 6.2% Fast 

65nm 113.8n Stacks 8.1% Fast 

45nm 174.6n Stacks 10.4% Fast 

 
to its loading effect on the previous stage.  For instance, if 
inverters are inserted between each NAND/NOR pair in the 
circuit in Fig. 5, improvements in subthreshold with our larger 
stack sizes are reduced to ~1%.  In a chain of just NAND gates, 
the smaller stack sizes used in superthreshold were generally 
better choices across all supply levels.  In detailed optimization 
schemes, care must be taken to account for transient effects, 
including the variance of load capacitances as operating 
conditions change.  DC sizing schemes such as the one presented 
here provide us with intuition about the devices we are 
constructing circuits with, and a starting point for thorough 
optimization procedures. 

V. CONCLUSION 
We have presented a new stack sizing framework for circuits 

operating in the subthreshold region.  A closed-form solution for 
the optimal width ratio between different devices within a stack, 
as well as the sizing factor for stacked transistors was presented 
and shown to closely match experimental results.  Our 
optimization scheme resulted in performance gains of up to 10+% 
in simulations of critical paths where internal node capacitance is 
not dominated by the increased stack sizing factors. 
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