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Abstract— As VLSI technologies scale down, intercon-
nect performance is greatly affected by crosstalk noise due
to the decreasing wire separation and increased wire aspect
ratio, and crosstalk has become a major bottleneck for
design closure. The effectiveness of traditional buffering
and spacing techniques for noise reduction is constrained
by the limited available resources on chip. In this paper,
we present a method for incorporating crosstalk reduction
criteria into global routing under a broad power supply
network paradigm. This method utilizes power/ground
wires as shields between signal wires to reduce capacitive
coupling, while considering the constraints imposed by lim-
ited routing and buffering resources. An iterative procedure
is employed to route signal wires, assign supply shields,
and insert buffers so that both buffer/routing capacity and
signal integrity goals are met. In each iteration, shield
assignment and buffer insertion are considered simulta-
neously via a dynamic programming-like approach. Our
noise calculations are based on Devgan’s metric, and our
work demonstrates, for the first time, that this metric shows
good fidelity on average. An effective noise margin inflation
technique is also proposed to compensate for the pessimism
of Devgan’s metric. Experimental results on testcases with
up to about 10,000 nets point towards an asymptotic
runtime that increases linearly with the number of nets.
Our algorithm achieves noise reduction improvements of
up to 53% and 28%, respectively, compared to methods
considering only buffer insertion, or only shield insertion
after buffer planning.

I. INTRODUCTION

With increasing operating frequencies and decreasing
minimum feature size in nanometer VLSI design, in-
terconnect performance issues have become dominant
in determining the performance of a circuit. Besides
optimizing interconnect timing and power for perfor-
mance improvement, it is also important to integrate the
analysis and optimization of interconnect crosstalk noise
in order to maintain signal integrity. With each succes-
sive technology generation, wires are spaced closer to
each other and also have more skewed aspect ratios,
resulting in increased levels of coupling capacitance
in each generation, which can cause a switching net
to induce large noise spikes on its neighboring nets.
Crosstalk noise can affect the circuit performance in one
of two ways:
(a) Functional noise is seen when a victim net changes

its level due to the switching of its neighbor aggres-
sor nets, and this could lead to circuit malfunction.

(b) Delay noise is caused when the victim and ag-
gressor nets switch at the same time, causing the
injection of a noise pulse during switching, which
can alter the delay.

The algorithm proposed in this paper primarily miti-
gates functional noise; however, the insertion of buffer
and supply shields with stable voltage levels between
signal wires also provides the subsidiary benefit of
greatly easing delay uncertainties and therefore relieves
the delay noise.

Various noise analysis techniques have been pro-
posed over the years. Crosstalk noise can be most
accurately evaluated by circuit simulation methods such
as SPICE [22], but this is computationally expensive
for large circuits. On the other end of the spectrum,
most simplified, some existing noise optimizations in
physical design [16], [34], [36] employ a geometric noise
metric, in which the noise level is proportional to the
overlap length between wires. However, such a model
is not accurate since it does not capture the electrical
properties of circuit. Under a linear circuit model, noise
analysis can be performed using model order reduction
techniques as in [23], through which noise waveforms
can be obtained with high accuracy, although the com-
putational cost can still be too high for its use in a full
chip noise optimization tool. To further expedite noise
analysis, various simplified crosstalk models have been
developed. The work in [30] derives bounds for crosstalk
noise using a lumped model, but ignoring interconnect
resistance and assuming a step input for aggressor driver.
The peak noise expression in [30] is extended by [31] to
include a π circuit model for interconnect and a saturated
ramp input model. This effort is further extended to a
2− π interconnect modeling in [8] to take into account
the coupling location on the victim net and to better
model the aggressor net. Although these approaches can
provide closed-form analytical model for noise attributes,
their simplified coupling model fails to capture the
distributed nature of coupling between adjacent lines;
at the same time, the closed-form expressions are too
complicated to be incorporated in a optimization engine
in physical design.

Devgan’s work in [9] proposes a clever metric to es-
timate the peak noise, in which various circuit electrical
properties, such as distributed coupling capacitance, ag-
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gressor slew rate and wire resistance, are taken into con-
sideration. Although pessimistic, its simple form make
it amenable to be incorporated in physical design [1],
[5], [19] due to the fact that it is easy to compute
incrementally. This is particularly useful for methods that
incrementally expand a partial route for a net until the
complete route is determined.

As an extension to Devgan’s noise metric, [18] em-
ploys moment-matching techniques to accurately esti-
mate noise in a RLC network. However, this method
requires multiple tree traversals to obtain an noise es-
timation, hence not easily embedded into the noise
optimization process. Another extension to Devgan’s
metric is shown in [14], which introduces a time constant
to control the exponential noise decay at victim node to
reduce pessimism. This approach bears a simple form,
and shows high accuracy for noise analysis in RC cir-
cuits. Nevertheless, compared with Devgan’s metric, this
method requires coupling information over the whole net
to be available to obtain a valid noise solution, while
Devgan’s metric has the property of incrementality, and
can generate a partial noise solution with incomplete
coupling information during building noise protection
solutions. Therefore, Devgan’s metric can greatly reduce
protection algorithm complexity, as will be detailed later.
Moreover, the similarity of its computations to Elmore’s
delay metric [11], which many engineers in industry are
very familiar with, imply that there is a low learning
curve, and that intuitions from Elmore’s metric can be
carried over to this problem.

Based on the above review and comparison, we em-
ploy Devgan’s noise metric, among other noise analysis
models, in our noise reduction algorithm during global
routing. This is mainly due to the fact that Devgan’s
metric considers a wide range of electrical properties
and bears a extremely concise form as will be discussed
in Section II-C.2. Furthermore, this paper studies the
fidelity of Devgan’s noise metric under our experimental
setup and proposes a noise margin inflation technique to
overcome its pessimism at high slew rates [14], [18] so
as to to safely employ this metric. Therefore, Devgan’s
metric fits well into our global routing flow for noise
reduction.

The efforts for crosstalk noise mitigation are exerted
throughout physical design stages. In early design stages,
[5] addresses the problem of buffer planning for better
noise reduction during floorplanning. Due to the lack
of detailed physical information at this early stage, the
optimization efforts can be quite limited. On the other
hand, after the routing phase, with more detailed physical
and electrical properties of a circuit known, crosstalk
noise can be effectively reduced with various techniques.
Many recent works [4], [12], [27] present gate sizing
methods to reduce noise by appropriately increasing the
driving gate size of victim net and decreasing that of
aggressor net. Wire spacing, which can control the sep-
aration between nets, are utilized to optimize crosstalk
noise in [19], [20]. Similarly, wire sizing is employed

in [13] for noise reduction. A disadvantage of the above
techniques is that they are all performed after the routing
phase. As the routes and gate positions are rather fixed,
the solution space can be constrained, hence greatly
limits the optimization efforts.

Among other physical design stages, routing deter-
mines the routes, layers and relative positions of nets,
which are some of the most contributing factors to
affect the noise level of a net; at the same time, some
effective noise mitigation resources such as buffers and
shields, can also be employed during routing. Therefore,
noise reduction efforts during the routing phase can
significantly improve the signal integrity of a VLSI
circuit. Previous routing techniques [16], [17], [34],
[36] use simple crosstalk metrics and/or ignore issues
related to routing congestion, particularly due to supply
nets and shields. A practical crosstalk-conscious router
must consider the trade-off between routing resource
consumption and noise reduction. To address this issue,
shield planning and crosstalk budgeting are utilized in
some recent works [15], [32], [33], [35] to perform
global routing with RLC noise avoidance and routing
area optimization under resource constraint. However,
buffer insertion, an effective way to block noise prop-
agation, is not addressed in these works. [1] proposes
an algorithm to utilize buffers for improved timing and
noise performance, but this technique is performed in
the post-layout phase, therefore suffers from restrained
solution space. Moreover, it does not fully address the
contention for buffer resources. With trends showing
the use of an increasingly large number of buffers to
reduce interconnect delay and achieve timing closure in
modern designs, it is projected at 32nm technology, a
very large proportion of all cells need to be buffers [25].
This will produce high levels of contention for limited
buffer resources, implying that buffer considerations
must be taken into account during global routing, for
best resource utilization. This motivates our simultane-
ous buffer and shield insertion scheme for functional
noise reduction. Together, shielding wires and buffers
can effectively control crosstalk noise, and an integrated
approach can manage both resources optimally.

This paper addresses the problem of crosstalk noise
reduction during global routing under restrictions on the
availability of routing and buffer resources. Some of the
contributions in this paper are as follows:
• We simultaneously allocate power supply wires as

shields and insert buffers in global routing phase in
order to route nets under a noise budget, so as to
best utilize noise avoidance resource.

• We develop a practical methodology to tackle the
pessimism of Devgan’s metric. For the first time,
we verify the fidelity of this metric, and develop a
noise margin inflation technique to compensate for
the over-estimation of Devgan’s metric.

• To utilize existing power supply wires, this method
is presented under the backdrop of a flexible supply
network architecture. The procedure results in a
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signal/power co-routing solution at the global level.
• We also incorporate considerations to insert a suf-

ficient number of buffers to control the delays and
slews on each signal line.

• Experiments show our algorithm achieves noise
reduction improvements of up to 53% and 28%,
respectively, compared to methods considering only
buffer insertion, or only shield insertion after buffer
planning; while testcases with up to about 10,000
nets point towards an asymptotic runtime that in-
creases linearly with the number of nets.

Our method works iteratively: starting with an ini-
tial global routing solution, an enumerative dynamic
programming-like algorithm is used to simultaneously
assign supply shields and buffers to meet the noise
budget for each net, one at a time, to find a minimum
cost solution for the net. Next, an iterative rip-up-and-
reroute step is performed to better meet the routing and
noise goal. We simultaneously take into account the
limitations on routing/buffer resources and the needs for
signal integrity and provide a global routing solution that
is immune to capacitive coupling noise. For compari-
son purposes, we also implement an intelligent greedy
approach which is faster, but less effective in resource
allocation. The organization of the paper is as follows.
In Section II, the model and problem formulation are
formally presented. This is followed by the verification
of the validity of using Devgan’s metric in Section III.
Next, in Section IV, we describe our iterative algorithm.
Experimental results are presented in Section V, fol-
lowed by a conclusion in Section VI.

II. PRELIMINARIES

A. Global Routing and Buffer Model
As shown in Figure 1, our global routing model

tessellates the entire chip into an array of grid cells,
referred to as the routing grid. Net N consists of a set of
electrically equivalent pins {s, p1, p2, ..., pk} distributed
in different routing grid cells, that must be connected
by wires, of which s is the source and p1, p2, ..., pk are
the sinks. The dual graph of the routing grid tessellation
is the routing graph G, which is shown in Figure 1(a)
as the dashed lines. Connections among all of the pins
will be routed over the routing graph G. Each edge
in the routing graph corresponds to a boundary eij

in the routing grid that connects grid cells i and j.
The grid length, Le, is defined as the center-to-center
distance between two neighboring grid cells. Due to
geometrical limitations on the boundary, we require that
We ≤ Ce, in which We is the total width (including
wire spacing) used by signal and power lines passing
the boundary, and Ce is the geometrical width of the
boundary e, or the boundary capacity. A violation of
this requirement results in boundary overflow. We follow
a routing model in which horizontal and vertical lines
are routed on different layers. The aim of routing is
to eliminate boundary overflows while achieving other
performance-related goals.

routing
grid

routing
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vertex in

a grid cell
boundary

buffer

signal wire

a grid cell at
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{

Fig. 1. Routing grid and buffer insertion for signal wires.

In the literature, various models for buffer placement
have been proposed, prominent among which are buffer
block planning [7], in which buffer blocks are placed
between the building blocks of the circuit, and distributed
buffer model [2], in which buffers are interspersed within
the routing grid, and their exact location is undetermined
until later in the design process. The latter approach has
several advantages over the former in terms of reduced
congestion and increased flexibility [2]. Therefore we
adopt this distributed buffer model in our work, and
specify it in more detail as follows. Figure 1(b) shows an
inset view of a part of the routing grid where distributed
buffers are inserted into a signal wire. For a grid cell
i, the number of available buffers is denoted as Bi.
If the number of utilized buffers is bi, then bi ≤ Bi

must be satisfied, otherwise we have buffer overflow. To
control the interconnect delay and slew rate, a maximum
wire length between two buffers (gates) is enforced. For
instance, in [2], [10], for a high-end microprocessor,
consecutive buffers are separated by at most 4500µm.
In terms of a constraint in our global routing model,
this translates to a requirement that the maximum total
interconnect length that can be driven by a buffer (gate)
is the length of M grids.

B. Power Supply Architecture

A traditional power supply architecture is composed of
a regular dense grid that traverses the entire layout area.
However, different parts of the layout require various
amounts of current, and the density of the grid does
not have to be uniform. This flexibility is exploited
in [26] to design a locally uniform, globally non-uniform
power grid structure, and this property is also employed
in [28] to optimize routability while achieving satisfac-
tory power integrity.

In this work, we utilize a similar non-uniform and
flexible power grid architecture that can satisfy the
power requirements and provide shielding functionality
between neighboring signal wires. We assume that the
power grid is an array of variable density, and the power
integrity of the supply grid is maintained by ensuring
that the average and minimum number of wires feeding
every block exceeds a specified threshold. The layout



4

A

AA

V

A

source sink1

sink2

power supply
as shield

5A

2s

1s

4
3

21

Fig. 2. Switching noise on a victim net with shielding supply wires.
V is the victim net, Ai, i = 1, . . . , 5 are potential aggressor nets, and
s1, s2 are power supply shields.

is divided into blocks, which corresponds to different
functional blocks in practice. For each block i, regarding
the power integrity, we are given:
• a Minimum Average Number (MAN) of supply

wires MANi per grid edge.
• a Minimum Number (MN) of supply wires MNi

over each grid edge belonging to the block i.
Note that MANi and MNi are both defined per edge
of the routing graph of Section II-A and together define
a basic structure of power network, thus enabling the
power considerations to be incorporated even before a
detailed power architecture is determined. Any extra
power lines/shields beyond MNi and MANi will only
improve the power grid performance [28]. This power
grid model works well on intermediate metal layers, as
in [24], where the variable number of power lines in
adjacent blocks do not have to match exactly since they
can be connected to each other through upper layers.
The edge capacities in the routing graph are shared by
signal wires and power supply wires, implying that if
signal wires utilize too much of the routing capacity at
a boundary, then it is not possible to make enough room
for supply wires. The supply wires in the supply grid
are used not only to carry power currents, but also work
as shields between aggressor and victim signal wires to
reduce noise; we will use the terms supply wire and
shield interchangeably.

C. Noise Calculation under Shield Insertion
1) Supply Shield Arrangement: The insertion of a

supply wire between two signal wires will shield them
from each other. As supply wire has a stable voltage
level, it can effectively mitigate the capacitive coupling
noise between the signal lines. We say that a side of
a signal wire is provided protection if it neighbors a
supply shield. Figure 2 shows five aggressor nets and
a two-sink victim net with two supply wires as shields.
As shown in the figure, with the insertion of shield s1

and s2, aggressor A5 will not affect the victim net, and
aggressor A4 will also have less capacitive coupling with
the victim net compared with the case when s2 is absent.

In the global routing phase, the exact positions of
signal nets are still undetermined, and hence neighbor-
hood information is not fully available. At the same
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Fig. 3. Calculation of noise margin by Devgan’s metric.

time, the switching activity of nearby signal nets is also
unclear. In the absence of this detailed information, it
is meaningful to determine a worst-case scenario based
on the information that is available. We assume if one
side of a signal net is not placed next to a shield, it will
(pessimistically) be adjacent to an aggressor net that will
induce coupling noise on the net. Thus a signal wire
must have supply lines placed on both sides to be fully
protected. However, due to limited routing resources, a
net may not be fully protected. We refer to the number
of protected sides of net k at a specific routing edge eij

as Pij, k, and it can take a value of 0, 1, or 2. If Pij, k is
known for the signal wires across edge eij , the number
of supply wires required for shielding can be found as
follows. If there are S signal wires requiring protection
on a single side, and D signal wires requiring protection
on both sides, we must have p power supply as shields
to achieve the protection, and the minimum amount of
p can be found by the following equation:

p =
{

S
2 + D if S is even
S+1

2 + D if S is odd
(1)

Note that one power supply wire can shield two sides,
corresponding to signal wires on both sides, which actu-
ally “share” the protection from this supply wire, and the
above equation (1) has already taken this sharing effect
into consideration. It is easy to prove that an arrangement
of supply and signal wires with the above numbers
exists, so that the desired protection is feasible. The
specific positions of the signal wires and supply wires
will be handled by detailed routing tools. Since supply
wires and signal wires share the routing resources, the
capacity constraint of edge eij requires that

Ce ≥ ws · se + wp · pe (2)

where Ce is the boundary capacity; ws and wp are the
width (including the metal width and the spacing) of a
signal wire and a supply wire, respectively; se and pe

are the number of signal wires and supply wires passing
the boundary e, respectively.

2) Noise Calculation with Devgan’s Metric: We as-
sume that a noise margin, NMspec, is specified for each
gate or buffer input in the circuit, and represents the
largest noise voltage that will avoid a circuit malfunc-
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tion1. An net is represented using a standard segmented
coupled RC model so that its equivalent circuit contains a
tree of resistors with capacitors to ground and to adjacent
nets. The nodes in the tree are assigned parental relation-
ships, with nodes closer to the source preceding those
away from it. Our noise reduction algorithm propagates
a set of candidate solutions in the search space, and to
facilitate this, we recursively define the noise margin for
an internal node i as:

NM(i) = min
all child nodes j

(NM(j)− Vn(i ↔ j)), (3)

where Vn(i ↔ j) is the noise voltage induced between
i and j. A net is noise free if at any driving node (i.e.,
the net source or any buffer output), we have:

In ·Rd ≤ NM (4)

Here, Rd is the gate driver resistance, and In is the
induced noise. The noise current can be calculated and
propagated using Devgan’s metric. This is illustrated by
an example in Figure 3, which shows a signal wire seg-
ment extending from the center of grid cell i to the center
of its neighbor cell j. Let the per unit length coupling
capacitance and resistance be Cc and Re, respectively,
and the aggressor voltage slew rate be µ. Since the lower
side of the wire segment is shielded, only the upper
aggressor will induce noise on this net, implying the
following result according to Devgan’s metric:

In(j) = In(i) + Le · Cc · µ (5)

NM(j) = NM(i)−ReLe

(
1
2
CcLeµ + In(i)

)
(6)

If the noise at j satisfies the constraint (4), the buffer will
block the propagation of noise, and the noise margin at
j′ will recover to NMspec, with the noise current In(j′)
reset to 0 as well.

D. Problem Formulation

The formal statement of the problem is as follows.
Given a tiling of a chip and the corresponding routing
graph G = (V, E), nets N = {n1, n2, ..., nm}, the
edge capacity Cij for every edge eij ∈ E, and the buffer
capacity Bi for each routing grid cell i ∈ V , the problem
is to find a routing solution that:

1) determines the routes for each net on the routing
graph,

2) satisfies the power wire density constraints, i.e., the
average and minimum density MANi and MNi

of each block must be met,
3) determines the grid cells in which a net is to be

buffered, subject to the buffer capacity constraint,
4) finds Pij, k over each edge eij in the routing of

net k, subject to the edge capacity constraint (2),
5) satisfies noise constraint (4) for all nets.

1As described later in Section III-B, this noise margin can be
selected by inflating the actually desired noise margin, so that it
accounts for the over-estimation in Devgan’s metric.

6) ensures that the total amount of interconnects that
can be driven by a buffer (gate) is at most M grid
units.

III. VALIDITY OF DEVGAN’S METRIC

Devgan’s metric is known to provide an upper bound
for the crosstalk noise in an RC circuit, but this upper
bound is also known to potentially result in large over-
estimates [18]. We will now examine the utility of this
metric, despite its known inaccuracies, in the specific
context of our simultaneous shield and buffer insertion
algorithm. In our approach, a set of candidate solutions
is propagated, and the calculated noise is used to prune
some of these solutions in one of the following two ways:
• Comparing the noise value Vn,s1 of solution s1 and

Vn,s2 of solution s2 to identify the relatively larger
one.

• Comparing the noise value Vn,s of a solution s
against a specified noise margin NMspec, and prun-
ing the solution if Vn,s > NMspec.

We claim that for the above purposes, we can still safely
use Devgan’s metric despite its pessimism, and we will
justify this by arguing for the fidelity of the metric,
as well as the employment of a noise margin inflation
technique, which can compensate for its pessimism.

A. Fidelity of Devgan’s Metric
In the context of determining the relative order of

protection solutions by their noise value, we argue that
it is the fidelity of a noise metric that is important
rather than the accuracy. Fidelity of a noise metric
for protection solution refers to the degree to which
an optimal or near-optimal solution according to this
metric will also be near-optimal according to an accurate
noise metric. During solution pruning, if the noise metric
employed has good fidelity, the relative order determined
by this metric will have a high probability of being
the same as that determined by an accurate simulation
method, such as SPICE. Thus we can claim that solutions
pruned under the noise metric are truly inferior to others
in terms of noise level.

We verify the fidelity of Devgan’s metric with a set of
experiments that are conducted under design scenarios
that are similar to those encountered for our problem.
We randomly generate the pin locations of a circuit
with several multiple-sink nets in a 6× 6 grid, and then
route the nets using AHHK algorithm [3]. The coupling
capacitances are then extracted using the technology
parameters that will be detailed later in Section V. Next,
we randomly pick one net as the victim net and consider
the other nets as aggressors, and assume all aggressor
nets adversely switch at the same time while the victim
net remains at a stable value. This experimental setup
is aligned with the assumption we made in the problem
formulation, so that the verification results can be validly
applied to our algorithm. Under this scenario, we com-
pute the coupling noises at the sinks of the victim net
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Aggressor rise # nets Ranking: All victim sinks Ranking: Worst noise sinks average overlap
time in circuit # victim Average % error # worst Average % error (# of grid lengths)

sinks rank diff. noise sinks rank diff.
200 ps 20 234 23 9.8% 100 6 6% 9.59
100 ps 20 264 32 12.1% 100 11 11% 10.49
200 ps 40 279 16 9.3% 100 4 4% 13.37
100 ps 40 271 33 11.1% 100 8 8% 13.61

TABLE I
VERIFICATION OF THE FIDELITY OF DEVGAN’S METRIC.

using Devgan’s metric and using a SPICE simulation.
The above experiment is repeated 100 times, and then
all of the victim sinks in these experiments are ranked
according to their noise under Devgan’s metric and under
SPICE, respectively. Since a net has an average of 2.5
sinks under our experiments, the noise is computed at a
total of about 250 sinks in these 100 experiments. The
rank difference of each such sink under the two metrics
is then determined.

Our experiments correspond to the following cases:
• The number of nets in each experiment is either

20 or 40: under these assumptions, we find that the
average number of crosstalk adjacencies per victim
net is around 10 grids and 13 grids, respectively,
which indicates that there is a significant amount
of coupling. The two cases correspond to low and
high net density in a routing region.

• The input waveform, modeled as a saturated ramp
from 0 to 1.8V, has a transition time of either 100
ps or 200 ps, which simulate different aggressor
switching time. Here we assume a uniform transi-
tion time for all aggressor nets, which is consistent
with the noise model used in our shield and buffer
insertion algorithm.

This results in four combinations of (number of nets
= 20 or 40) and (transition time = 100 ps or 200
ps), and the corresponding results that show the rank
difference of each sink are listed in Table I. For all 250
or so sinks in the experimental setup, the average errors
that corresponds to the distance in ranking (between
Devgan’s metric and under SPICE) are around 9 ∼ 12%,
which suggests that Devgan’s metric has good fidelity in
comparing crosstalk noise. On average, while comparing
two structures, if one of them has lower crosstalk noise
than the other under Devgan’s metric, it is very likely to
also demonstrate lower noise under a SPICE simulation.
The fidelity is even higher for the worst noise victim
sink ranking for the 100 sinks with worst noise values
in victim net, where the error is only around 4 ∼ 11%.

These results lead to an important conclusion: on
average, Devgan’s metric has good fidelity, and can be
used as an effective metric to compare noise levels in
our shield and buffer insertion algorithm.

B. Noise Margin Inflation
The second pruning technique in our algorithm com-

pares the noise value estimated from Devgan’s met-
ric against a specified noise margin NMspec. In this

comparison, due to the pessimistic nature of Devgan’s
metric, a noise value can be over-estimated, and thus the
corresponding eligible solution can be falsely pruned,
so that our buffer and shield insertion algorithm may
over-optimize and use more than enough resources to
accomplish full protection, or under stringent protection
resources, may result in false-failures. To compensate for
this pessimism of Devgan’s metric, in practice, we can
apply a noise margin inflation technique, i.e., we can
heuristically inflate the specified noise margin NMspec

to be NMinf (NMinf > NMspec). If chosen carefully,
the inflated noise margin as input to our algorithm will
compensate for the over-estimation of Devgan’s metric.

Although there is no strict mathematical proof about
the accuracy of employing this inflation technique, its
validity can be verified and supported by the statistical
model detailed below. The inflated noise margin NMinf

can be estimated from NMspec using a curve-fitting
technique. If we denote a noise voltage evaluated under
Devgan’s noise metric as Vd, and the value of the same
noise evaluated under a SPICE simulation (which is
considered as the accurate noise level) as Vs, then we
use a fitting function Vd ≈ a0Vs + a1, where a0 and
a1 are constants. Therefore, the inflated noise margin
can be obtained from the relationship as NMinf =
a0NMspec + a1.

To generate the coefficients a0 and a1, we first ran-
domly generate nets in a circuit with the same tech-
nical parameters as in Section III-A. The number of
nets in each circuit is 30 to simulate the congested
routing scenario of a complex design, and the aggressor
transition time is 200 ps, which is consistent with our
experimental setup in Section V. The experiments are
performed 100 times, and the noise value at each sink
is evaluated with both Devgan’s metric (obtained as
Vd) and SPICE simulation (obtained as Vs). We plot
the distribution of Vd vs. Vs as in Figure 4, and each
point in the figure has a coordinate of (Vs, Vd) which
corresponds to noise value evaluated under different
metrics. A least squares fit is then performed to find
the values a0 and a1, and the result is shown by the
dashed line in the figure. It is noted that we eliminate
all the noise points with Vd > Vdd = 1.8V in performing
the curve fitting for the following reasons: (a) It is not
physically possible for a noise value to be larger than
Vdd in a RC interconnect model, and Devgan’s metric is
known to be over-pessimistic here. (b) In practice, we
observe that for noise with Vd > Vdd, the corresponding
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Fig. 4. Noise estimation under Devgan’s metric and SPICE simulation. The least squares fit to a linear approximation between the two noise
metrics is drawn as a dashed line. The plane is divided into four representative regions, I through IV, as shown above.

Vs is always much larger than a practically specified
noise margin, and this eliminates the necessity to include
them in the sample data. From the fitting results, we can
obtain the values a0 = 1.93 and a1 = −0.26V under
our experimental setup.

To illustrate the usefulness of the noise margin in-
flation technique, we draw a vertical line at a given
noise margin point, and a horizontal line at the point
where this vertical line crosses the fitting line. These
horizontal and vertical lines divide the plane into four
regions labeled as I, II, III and IV. We will use Ni, i = I,
II, III, IV to indicate the number of points falling in each
region i. Figure 4 shows an example of such crossing
lines and the corresponding divided regions under a
specified noise margin NMspec = 0.4V. Points falling
in region I [III] represent the cases in which a noise
satisfies [violates] both the NMspce under SPICE simu-
lation and NMinf under Devgan’s metric. As shown in
Figure 4, most of the points fall in regions I and III,
which indicates that under our noise margin inflation
technique, the qualitative noise value from Devgan’s
metric agrees well with the SPICE simulation result. For
the noise margin inflation to be an effective technique,
we desire that it should capture all the valid solutions,
and thus a valid solution under SPICE simulation will
not be falsely discarded under inflated noise margin.
This effectiveness is reflected by the very small number
of points in region IV, which are the points violating
NMinf under Devgan’s metric but actually satisfying
NMspec under SPICE simulation. In the above example,
only 1.7% (calculated as NIV /(NIII + NIV ) ) of the
total discarded noise values with our technique are
actually good solutions but falsely pruned. Interpreted
alternatively, our noise inflation technique can capture
96.4% (calculated as NI/(NI +NIV ) ) of all the eligible
solutions in a statistical sense. At the same time, for

noise inflation to be a safe technique, we also want
to avoid false acceptance of a noise-failure solution,
i.e., the protection solution obtained under the inflated
noise margin NMinf should also satisfy the original
noise margin requirement NMspec. This is validated
observing that a very small number of points fall into
region II in Figure 4. This safety requirement is crucial
for the accuracy of our method, and we will further
experimentally show in Section V that the noise margin
inflation technique embedded in our simultaneous shield
and buffer insertion algorithm does generate valid noise
protection solutions, and the above proposed curve-
fitting technique to estimate inflated noise margin is an
accurate approach in practice.

IV. ROUTING AND CROSSTALK REDUCTION
ALGORITHM

Our approach to the problem formulated in Section II-
D is depicted in Figure 5. The algorithm is iterative
and proceeds through three steps: congestion-driven
global routing, a dynamic-programming-like simultane-
ous buffer and shield insertion procedure and rip-up-
and-reroute refinements. Steps 2 and 3 iterate until all
constraints are satisfied, or no further improvement is
possible. In the above buffer and shield insertion and rip-
up-and-reroute, we process one net at a time and main-
tain a fixed order of all nets. We have experimentally
found under different randomly chosen net orderings,
the results change very little, as long as we maintain the
same fixed net order through all of the iterations. This is
due to the fact that the early iterations are seen to create
good estimates of resource utilization, and this reduces
the order dependence.

A. Step 1: Congestion Driven Routing
The signal wire routing procedure consists of two

phases, similar to that in [2]. The first phase of routing
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Congestion-driven global routing

Dynamic-programming-like
simultaneous buffer and shield

insertion

Rip-up-and-reroute

Satisfy all routing/noise
constraint? Or no

further improvement?

END

Yes

No

Fig. 5. Overall flow of global routing with simultaneous shield and
buffer insertion for crosstalk noise reduction.

constructs Steiner trees using the AHHK algorithm [3],
and works as a fast estimator of the congestion map. The
second phase performs a congestion-driven rip-up-and-
reroute based on this initial solution, with the objective
of minimizing the congestion cost over routing grid
edges [2]. If there is still an overflow violation after this
phase, more rip-up-and-reroute steps will be performed
(with the same net order), as in [21].

Besides punishing regular congestion overflow, the
congestion cost function in the congestion-driven routing
is designed to also incorporate the consideration of
power supply requirements. Since all of the routing
capacity is shared by signal and power routing, signal
routing results will determine the power supply structure,
and thus signal routing must leave enough capacity for
power supply to satisfy the average and minimum power
supply densities MANi and MNi for a block i of
the routing region. The cost function for a signal wire
traversing an edge e in block i is composed of two terms:

routing cost = coste + costi (7)

in which coste is the cost of traversing edge e, and
penalizes any violation of MNi for edge e in block
i; costi is the cost of passing block i, and penalizes
any violation of MANi of block i. Both terms take the
following form:

cost =
{

U
R if R > 0
10−R if R ≤ 0 (8)

where R is the residual signal routing capacity on the
edge [block] for the first [second] term. This value is
calculated by subtracting, from the total edge [block]
capacity, the power supply requirements and the capacity
already used for signal routing, U . Note for the first term,
the power supply requirement is MNi; for the second
term, it is MANi multiplied by the number of edges
in a block i, since MANi is defined per edge. The
exponential form of the cost function after the capacity
violation punishes the over-use of capacity from signal
routing, so as the power grid requirements can be met.
In addition, it can also effectively avoid the aggregation
of signal wires.

The congestion driven routing performs a wave-form
expansion starting from the source, and update tile cost

with the lowest cost in each expansion like [3]. The
routing of a net terminates upon all sinks have been
reached. After every routing or rerouting, each of the grid
cells in the final path is added to the tree as an Internal
Node (IN), and a net will then be a set {s∪P ∪IN∪E},
where s is the source node, P is the set of sink pins, IN
is the set of internal nodes, and E is the set of edges;
this data structure is used for the procedure in Step 2,
which follows this.

B. Step 2: Buffer and Shield Insertion

With a routing solution from the above step, we
simultaneously allocate shield and buffer resources to
each net so that the solution can meet the noise require-
ment while using least protection resources. Each net is
processed individually, and the procedure traverses the
tree structure of the net in a bottom-up manner, starting
from the sinks and moving towards the source, moving
along one grid square at a time. Each tree is described
in terms of nodes that correspond to the grid cells that it
passes through. Assigning a direction to the tree from the
source to the sinks, we refer to the grid cell that contains
the immediate predecessor [successor] of a given node
n in the tree as the parent [child] cell of the grid cell
containing n. If a grid cell has more than two children,
we can insert pseudo-nodes, so that the final tree is a
binary tree for ease of later processing.

While traversing a net across a grid cell i, we have
two methods for protecting it from crosstalk noise:

1) By deciding whether to insert a buffer or not at
grid cell i: this corresponds to two possible buffer
insertion configurations (0 or 1 buffer).

2) By protecting the net using supply shields on one
side, on both sides, or choosing not to shield the
net at all. If grid cell i is not the root of the tree,
shield(s) may be inserted alongside the edge eij

connecting current grid cell i and its parent grid
cell j in the tree. This results in three possible
configurations (0, 1, or 2 sides protected).

Therefore, in each bottom up step, we may have
six possible configurations for the protection structure.
However, we cannot locally determine at each grid
point which scheme is globally optimal, and therefore
an enumerative dynamic programming-like approach is
adopted here in the same spirit as in Van Ginneken’s
algorithm [29].

1) Protection Cost and Solution Architecture: While
traversing a net bottom-up, at grid cell i, we must
find the protection cost corresponding to a protection
structure, so as to measure the resource usage. For the
protection cost related to buffer insertion, since the nets
are processed one at a time, at any point in our insertion
algorithm, the probability that an unprocessed net ni

crossing grid cell i will insert a buffer from i is 1/M . Let
pi be the sum of these probabilities over all unprocessed
nets crossing cell i, and the cost for insertion of breq(= 0
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or 1) buffer at a specific grid tile i is similar to that in [2]:

costbuf i(breq) =





0, if breq = 0;
bi+pi+1
Bi−bi

, if breq = 1,
bi + breq ≤ Bi;

∞ otherwise.

(9)

This cost function will significantly increase the cost
penalty as buffer resources become contentious. For
shielding cost, we can calculate the number of power
supply wires required based on the number of sides
to be protected Nsh and equation (1). In the same
spirit to punish contentious resource usage, the shield-
ing cost costsh ij for a signal wire can be obtained
from a similar form of equation as (9) above, but the
predicted shield usage takes a different approach: each
unprocessed signal net will probabilistically have 1 side
to be protected (assuming equal probability for Nsh =
0, 1, or 2). Both the shielding cost and buffer cost are
a measurement of the number of resources used, and
they are approximately of the same order of magnitude.
Therefore, we can combine them with a weighting factor
λ (determined by resources availability) to develop a
metric for resource usage, which we call the protection
cost at grid cell i, denoted as PCi:

PCi(breq, Nsh)
= λcostbuf i(breq) + costsh ij(Nsh) (10)

where j is the parent grid cell of grid cell i. This
comprehensive cost function can be used as a metric to
evaluate the noise protection resource usage at grid cell
i. In our algorithm, the decision of buffer/shield insertion
in grid cell i is not determined on a local choice, based
on the value of PCi; instead the most efficient noise
protection structure is identified globally, i.e., the choice
of buffer or shielding at each grid cell is selected so that
a global sum of the cost function ( 10) is optimized. Our
algorithm builds a noise protection solution for a net in a
bottom-up traversal, and all feasible protection structures
are maintained during this process. The protection cost
PC of a protection structure is defined as the sum of all
protection costs, PCi, over the grid cells i that have been
processed in the traversal. By the end of our procedure,
a protection structure that has the minimum protection
cost PC, while satisfying the noise requirement, will
be selected. For each net, our algorithm selects the
minimum resource usage solution for noise protection,
and hence it can effectively resolve the contention for
protection resources among nets.

At a cell i during the bottom-up traversal, the noise
margin and noise current will vary according to the
protection structure we choose, i.e., whether a buffer
is inserted and the number of sides of the net that are
shielded. If a buffer is inserted, the noise current will be
“reset” to 0 and the noise margin set back to NMspec.
At each unbuffered location, depending on the number
of sides of a signal wire that are shielded, we can have

the following from equations (5) and (6):

∆In(Nsh) = (2−Nsh) · Le · Cc · µ (11)

∆NM(Nsh) = Re · (1
2
· (2−Nsh)LeCcµ + In(i)) (12)

where ∆In is the increase in the noise current due to the
number of sides getting shielded Nsh ∈ {0, 1, 2}, and
∆NM is the noise margin decrease during the bottom-
up step. To keep a record of the protection structure
in the enumeration, we define a protection solution at
routing cell i to be a 4-tuple S = {PC,NM, In, stru},
where NM is the noise margin at the end of the edge
connecting grid cell i to its parent grid cell j, In is
the noise current induced by the neighboring signal wire
at the same point, and PC is the protection cost of
the current solution. The last component, stru={buffer,
Nsh}, represents the protection structure of the solution,
where buffer is a binary number representing the number
of buffers utilized at grid cell i, and Nsh is the number
of sides (0, 1 or 2) on which the wire is protected.

To satisfy the constraint that the total amount of
interconnect can be driven by a buffer (gate) is at most
M grid cells, we maintain a solution set array (SSA) of
length M at each grid cell. Each element in SSA is a set
of solutions, and the array is indexed from 0 to M − 1.
The solutions in SSA[k], k 6= 0 correspond to a total
downstream interconnect of k grid cells to the nearest
downstream buffer(s), and SSA[0] stores the solution
that correspond to the insertion of a buffer at the current
grid cell.

2) Algorithm for Building Protection Solutions: A
unitary step in the enumeration algorithm is to build the
solution set array at the current grid cell based on the
arrays at its child cell(s). Solutions in set SSA[k], k 6= 0
are propagated from solutions in the lower indexed sets
of the children grid cells. During the process, we update
the noise margin according to different shielding choices
to form new solutions, and the least cost child solution
will be used to build solution in SSA[0] in which buffer
is inserted right at current grid cell. The main procedure
in the algorithm calls function Find sol set array
at the source cell, and returns the minimum cost so-
lution that satisfies the noise constraint. The pseudo
code for the algorithm is listed in Figure 6. Function
Find sol set array finds the solution set array for
a grid cell. SSA is first initialized in line 1, and line
2 initializes the trivial case of a leaf cell , in which
both noise current and protection cost are set to 0. Next,
line 3 considers a single child cell and builds SSA[i]
from SSA[i − 1] of the child grid cell as the left part
of Figure 7 shows, considering the three possibilities
for the number of sides to be shielded: 0, 1 or 2.
SSA[M − 1] of the child cell will be dropped to avoid
violating the buffer load rule. In line 4, the protection
solution with minimum protection cost is selected from
the children solutions and a buffer is inserted. As a result,
both the noise margin and noise current are recovered
for this tuple. Line 5 deals with finding a solution set
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Fig. 7. Updating SSA for one-child and two-child grid cells.

Algorithm: Shield buffer insertion for noise reduction

Input: Net N = {s ∪ P ∪ IN ∪ E}
Output: A protection solution with least protection cost at source s

1) SSA = Find sol set array(s)
2) return protection solution S = {PC, NM, In, stru} ∈ SSA, with PC is

minimized.
Function: Find sol set array

Input: t is the grid cell to be processed.
Output: The SSA of this grid cell.

1) SSA[i] = Φ, i = 0, 1, ...M − 1
2) if t ∈ P , is a leaf

for i = 0 to M − 1
SSA[i] = SSA[i] ∪ {0, NMspec, 0, Φ};

3) else if t has one child l
SSAl=Find sol set array(l);
for i = 1 to M − 1
for each Sl ∈ SSAl[i− 1]
SSA[i] = SSA[i]∪ Propagate(Sl, t);

4) Take minimum PC solution Sm from SSAl,
SSA[0] = SSA[0]∪ Propagate(Insert buf (Sm, t), t);

5) else if t has two children l and r
SSAl=Find sol set array(l);
SSAr=Find sol set array(r);
for i = 2 to M − 1
for each Sl ∈ SSAl[j], Sr ∈ SSAr [k] and j+k=i− 2
SSA[i] = SSA[i]∪Propagate(Merge (Sl, Sr), t);

6) Take min Sml.PC + Smr.PC solutions Sml, Smr from SSAl,
SSAr ;

SSA[0] = SSA[0]∪Propagate(Insert buf (Merge(Sl,
Sr), t), t);

7) Take minimum PC solution Sml from SSAl;
for i = 1 to M − 1

for each Sr ∈ SSAr [i− 1]
SSA[i] = SSA[i]∪Propagate(Merge(Insert buf (Sml,
t), Sr), t);

8) Take minimum PC solution Smr from SSAr

for i = 1 to M − 1
for each Sl ∈ SSAl[i− 1]
SSA[i] = SSA[i]∪Propagate(Merge(Sl,Insert buf(Smr ,
t)), t);

9) Prune solution set array SSA;

Functions:
Propagate(S, t) /* Extend solution by one grid length upward*/

if t is source, return S;
else return {S.PC + PCt(0,Nsh), S.NM −∆NM(Nsh), S.In +

∆In(Nsh), S.stru ∪ {0, Nsh}}, Nsh = 0, 1, 2;

Insert buf(S, t) /* Insert a buffer to existing solution S */
return {S.PC + PCt(1, 0), NMspec, 0, S.stru ∪ {1, 0}};

Merge(Sl, Sr) /* Merge two solutions */
return {Sl.PC +Sr.PC, min(Sl.NM, Sr.NM), Sl.In +Sr.In,
Sl.stru ∪ Sr.stru};

Fig. 6. Algorithm for building protection solution.

array for a grid cell with two children. The complexity
involved here is that when we build the solution, all
of the combinations must be considered, as the right

part of Figure 7 suggests. Line 6 picks the least cost
solution from both the left and right children, and inserts
a buffer to drive both children, thereby recovering the
noise margin and noise current. However, a buffer can
also be inserted only to the left or right branch. Lines
7 and 8 build solution tuples that correspond to these
two cases, where a buffer is inserted to only one child
branch and combined with solutions from the other. In
the above steps, functions Propagate, Insert buf
and Merge are called to build solutions. There can be a
large number of solutions in the SSA for a grid cell after
the Propagate and Merge steps; however, it is not
necessary to keep all of them, and the solution pruning
in the last steps will greatly reduce the solution set size.
There are three types of pruning techniques employed
here:
• We prune those solutions that violate the noise

constraint (4).
• We prune the solutions that violate the buffer or

wiring capacity.
• If a solution S1 is provably inferior to another

solution S2 in the same SSA of a grid cell, i.e.,
if PC1 > PC2, NM1 < NM2 and In1 > In2,
then it is pruned from the set of solutions.

While there is no concrete way of proving that the
size of SSA will be small, the pruning techniques work
efficiently in practice; our experiments show that the
number of solutions at each grid cell is limited between
3 and 60, and is less than 15 in most cases.

C. Step 3: Refinement
After the simultaneous shield and buffer insertion for

noise reduction, refinement steps are applied if there are
still some nets cannot be protected from noise constraint
violation. The procedure is similar to that used in global
routing phase. We rip-up and reroute all of the nets
in the same fixed order as before. After one net is
ripped up, it is rerouted immediately by the rerouting
algorithm described in Section IV-A. However, the cost
function in rerouting is now the combination of both
the wiring congestion cost and the buffer congestion
cost. This will drive the net to go through regions where
wiring capacity and buffers are abundant. The dynamic
programming-like algorithm for simultaneous shield and
buffer insertion is then applied. After all of the nets
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have been ripped up, rerouted, and then protected, the
whole refinement step will be performed again if there is
still some noise violation. The iteration stops until noise
violations are fixed or there is no further improvement.
In practice, the algorithm will not iterate many times,
and our experimental results shown that there will not be
much improvement after the third iteration. To provide
additional protection from noise, in the last step, the
unprotected nets will greedily take all of the unused
wiring and buffer capacities along its path; however, this
step is optional.

D. Algorithm Complexity
The algorithm complexity mainly consists of two

parts: the complexity of the routing and rerouting algo-
rithm, and the complexity of the simultaneous shield and
buffer insertion algorithm. In practice, these two parts
of the algorithm only iterate a limited number of times
before stop, and therefore the number of iterations will
only contribute a constant factor to the overall complex-
ity. The routing and rerouting process essentially follows
the maze routing algorithm, and thus has a complexity
of O(NGlogG), in which G is the total number of
grid cells in the routing graph and N is the number
of nets in the circuits. The computational complexity of
our algorithm is dominated by the simultaneous shield
and buffer insertion algorithm. For a single sink net, as
function Propagate in Figure 6 suggests, the number
of solutions will increase by 3 times for every bottom-
up propagation. There are M solution sets, and all of
the solutions in solution set SSA[i] are actually derived
from SSA[i−1] of the child grid cell, with SSA[M−1]
of the child cell will be dropped. So the maximum
number of solutions in a solution set can be 3M−1,
which is a constant. However, if there are d > 1 sinks in
the tree, as line 5 in function Find sol set array
suggests, the maximum number of solutions can be as
many as O(Cd), where C is a constant. However, this
is found to be unduly pessimistic in practice, since a
large number of propagated solutions will be discarded
as the pruning techniques works well. This also indicates
why the approach is called “dynamic programming-
like” instead of “dynamic programming”: we have no
provable optimal substructure property. However, our
experiments show that the pruning method is efficient
and the number of unpruned solutions at each node is
small, as mentioned at the end of Section IV-B.2. Thus
the running time for processing one net will not explode
exponentially; instead, it will be asymptotically linear
with the net length. Experimentally, we also observe that
the asymptotic total runtime increases linearly with the
number of nets in the benchmark circuits.

V. EXPERIMENTAL RESULTS

A. Experimental comparisons
Our algorithm is implemented in C++ on a Linux

PC with a 2.8GHz CPU and 1GB memory. Out of the

16 benchmarks, the first 14 benchmarks in Table II
are 8 MCNC benchmarks and 6 GSRC benchmarks
(n30c, n50c, n100a, n200a, n200b, n300 ). The largest
benchmarks syn1 and syn2 with over 10,000 nets are
randomly generated2. We superimpose a grid over the
floorplan so that the geometry of each grid cell is
almost a square. We assume that layer assignment has
already been performed for the wires, and our router
handles each layer separately. For simplicity, our results
show one horizontal and one vertical layer, but the
approach is easily extended to multiple layers. As there
are no existing benchmarks that provide buffer infor-
mation, we randomly generate the number of available
buffers in each grid cell to capture the nature that
such resource is reserved by block designers in the
early design phase. The area of available buffers is set
to be under three percent of total chip area. At the
same time, we also control the buffer distribution to
differentiate the performance of our algorithm from the
other algorithms that we show comparisons with. We
divide the design into several blocks, which correspond
to different styles of circuits, such as control logic, data
path, etc., and in our experiments, we use 7 blocks.
The power supply requirements MANi and MNi are
randomly generated but in a balanced manner across
the chip (in practice, these will be dictated by the
functional blocks). We also assume that a power grid
wire is twice the width of a signal wire. The routing
edge capacities are assigned as shown in the table, in
the units of signal wire width. We assume that the grid
length Le = 600µm, that for all gates, the noise margin
specification NMspec = 0.4V under a Vdd of 1.8V, and
that the aggressor voltage change rate µ = 9 × 109V/s.
The technology parameters used in the experiments are
derived from [6] and [37] for the 0.18 µm technology:
unit length coupling capacitance Cc=0.0583fF/µm, unit
length resistance Re=0.373Ω/µm, and buffer driver re-
sistance Rd=180Ω.

We compare our results with those of two other
methods. The first method is similar to the idea of [1], in
which only buffers are inserted to reduce the noise, and
the shielding effects are not considered. The buffers are
also inserted by a dynamic programming-like algorithm,
trying to achieve the noise constraint with the fewest
number of buffers. The second method that we compared
against is a two-step greedy approach, in which buffers
and shields are assigned in separate stages. Buffer in-
sertion is first performed in the same way as [2]. With
the buffer positions known, we then attempt to greedily
insert shield wires for each routing edge. For each net,
the greedy shield insertion is composed of two steps:

1) We use a bottom-up approach, using every possible
shield along the routing edges to meet the noise

2We did not use the ISPD98 placement benchmarks, because most of
the nets in it are very short, which makes buffer insertion unnecessary,
and cannot be used to illustrate the buffer contention problems that
are projected for future technology nodes. This is consistent with the
experience of the authors of [7].
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Circuit # of Available EC Grid M Average # noise violation nets Run time
nets buffers MAN MN BS G B BS G B

ami33 112 3011 9 30× 33 6 3.2 1.5 0 31 46 5s 4s 8s
ami49 368 6889 16 30× 33 7 4.2 1.5 0 66 103 12s 9s 20s
apte 77 1811 9 30× 33 6 3.4 1.7 0 6 41 5s 3s 5s
hp 68 2386 9 30× 33 5 3.5 2.2 0 14 21 3s 2s 4s

playout 1294 15884 56 30× 33 7 18.0 5.5 0 165 568 51s 36s 69s
a9c3 1148 11847 44 30× 33 6 13.0 5.6 0 106 481 37s 29s 50s
ac3 200 4034 14 30× 33 6 4.6 2.4 0 20 85 9s 6s 12s
hc7 430 7938 26 30× 33 7 7.8 4.0 0 59 122 13s 10s 22s

n30c 390 5513 15 30× 33 7 4.3 1.5 0 58 149 11s 3s 13s
n50c 515 8404 17 30× 33 6 4.2 1.8 0 55 140 10s 4s 15s

n100a 885 8931 32 30× 33 6 7.2 4.3 0 68 348 25 7s 25s
n200a 1585 13803 64 33× 33 7 20.1 10.0 0 86 742 57s 14s 58s
n200b 1714 16903 65 33× 33 6 19.6 9.4 0 278 850 63s 29s 48s
n300 1893 23295 68 33× 33 7 19.9 8.4 0 159 879 70s 33s 54s
syn1 10086 87773 334 40× 40 6 96.5 60.7 0 1057 4836 508s 331s 563s
syn2 10486 90577 348 40× 40 6 102.8 61.3 0 1345 4963 637s 398s 558s

TABLE II
COMPARISONS OF ROUTING AND NOISE PROTECTION RESULTS. EC IS THE EDGE CAPACITY; BS REPRESENTS THE SIMULTANEOUS BUFFER

AND SHIELD INSERTION ALGORITHM; G REPRESENTS THE GREEDY ALGORITHM; B REPRESENTS THE BUFFER-ONLY ALGORITHM.

constraint.
2) If step 1 is successful, it may be the case that more

than enough shields have been inserted. We then
follow a top-down peel-off procedure to remove
all of the unnecessary shields and buffers until the
noise constraint or driving length constraint has
been violated. The peel-off is greedy in the sense
that a shield that is closer to the source of a tree
will be removed greedily first. If there are multiple
choices at any step in the top-down process, the
branch with the higher noise margin will have its
shield peeled off first.

Both of the above comparison methods employ the same
routing and rerouting procedure as our algorithm.

The experimental results are listed in Table II. The first
eight columns show some basic properties of the circuits.
Next, the results of our method which introduces buffers
and shields (BS), the first comparison method which
introduces buffers only (B), and the greedy buffering
and shielding method (G) are shown. Empirically, results
show that the asymptotic runtime of our buffer and shield
insertion algorithm is linear in the number of nets, and
our algorithm scales easily to cases with over 10,000
nets. The B and G columns show that these methods
can result in noise protection failures on as many as
53% (circuit apte) and 28% (circuit ami33) of the total
number of nets. In comparison, our simultaneous shield
and buffer insertion approach has achieved the protection
goals successfully without much sacrifice in speed, and
in all cases, all of the nets meet the noise constraints.

The buffer-only approach shows poor performance
because of the restricted number of buffers that are
available. In the competition for limited number of
buffers, a large number of nets cannot obtain enough
buffer resources. Without the help of intelligent shield
insertion, they fail the noise protection. As interconnects
continue scaling, next generation technology will see
a more intensified contention for buffers, and this be-
comes more of an issue for future interconnect design,

as projected by [25]. At the same time, the buffer-
only algorithm also shows longer runtime than our BS
algorithm for most of the testcases. This is due to that
both our BS algorithm and the buffer-only algorithm
follow the same rip-up-and-reroute procedure, which
stops if a satisfactory solution is found or a specific
number of tries have been reached. We find that our
algorithm can reach a satisfactory solution before the
prespecified number of tries, while for all the cases, the
buffer-only approach must reach the maximum number
of tries before it stops, but still fails. This explains why
the buffer-only approach generally has a longer runtime.
The greedy approach, on the other hand, performs buffer
insertion and shield protection in separate steps, and no
concerns of noise constraint are considered in buffer
insertion, resulting in an inferior performance to our
integrated buffer and shield insertion solution. However,
its simple protection algorithm architecture makes it the
most efficient algorithm in terms of runtime among the
three.

Circuit Overflow Circuit Overflow
BS G BS G

ami33 0 416 n30c 0 271
ami49 0 583 n50c 0 398
apte 0 22 n100a 0 207
hp 0 168 n200a 0 168

playout 0 1774 n200b 0 4666
a9c3 0 981 n300 0 1604
ac3 0 228 syn1 0 30524
hc7 0 1054 syn2 0 36634

TABLE III
OVERFLOW OF ROUTING AND PROTECTION IF 100% PROTECTION

IS ACHIEVED.

An additional advantage of our approach is the adap-
tive supply net architecture, which enables a flexibility
between the requirements of signal and power routing, so
that both routing and supply net requirements are simul-
taneously met. For all three algorithms in Table II, the
routing overflow are almost 0 for all benchmarks, and is
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hence not listed. However, in cases where more nets must
be protected to resolve the remaining noise violations,
extra routing resources must be employed, leading to
overflows. Table III reports the overflow results for our
algorithm and the greedy algorithm if 100% protection
is desired (the buffer-only algorithm does not use shield
resources, and is omitted from this comparison). The
results show that much more routing resources have to
be sacrificed to obtain a good protection for the greedy
algorithm, while our algorithm can successfully achieve
a good protection without extra routing overflow.

B. Verification of Noise Margin Inflation

As described in Section III-B, as an effective way
to compensate for the pessimism of Devgan’s metric,
we can heuristically inflate the specified noise margin
NMspec to be NMinf ≈ a0NMspec + a1 and take this
inflated value as the input to our algorithm. It is less
pessimistic this way, and thus fewer protection resources
are required to accomplish protection. Furthermore, we
want to show experimentally that this inflated noise
margin is at an appropriate level, so that it does not
cause false positive errors during the pruning process
in our algorithm, i.e., a protection solution satisfying
the inflated noise margin NMinf under Devgan’s metric
should also satisfy the originally specified noise margin
NMspec when measured with SPICE simulation.

The coefficients for noise margin inflation are exper-
imentally determined in Section III-B with least square
fitting technique and a0 = 1.93 and a1 = −0.26V.
With NMspec = 0.4V in our experiment, we can obtain
NMinf = 0.51V. Inputting NMinf to our algorithm, the
generated protection solutions are then simulated with
SPICE to verify whether they still satisfy the originally
specified noise margin NMspec = 0.4V. Due to long
runtime, we randomly selected up to 700 nets from
each circuit for simulation; for smaller benchmarks such
as hp, all nets were simulated. As a comparison, we
further exaggerate the noise margin to NMexag = 0.6V
and input it to our algorithm. By performing the same
SPICE verification process on the generated protection
solutions, we compare the simulation results in Table IV.

In Table IV, Pinf is the percentage of nets that satisfy
the inflated noise margin NMinf under Devgan’s metric,
and also satisfies the specified noise margin NMspec;
Pexag is the percentage in the case for NMexag =
0.6V. As can be seen, with NMspec inflated to be
NMinf = 0.51V, almost 100% of the solutions can
still satisfy the original NMspec = 0.4V noise margin
under accurate SPICE simulation; while this percentage
drops to about 90% when NMspec is further exaggerated
to NMexag = 0.6V. This result suggests that with too
much inflation of noise margin, we can obtain false
protection solution which actually fails the original noise
requirement in reality; while our proposed methodology
for noise margin inflation in Section III-B is safe and
can acquire a good yet economic solution.

Circuit Pinf Pexag Circuit Pinf Pexag

ami33 100% 93.3% n30c 100% 88.9%
ami49 100% 92.4% n50c 100% 86.5%
apte 100% 89.5% n100a 100% 92.8%
hp 100% 94.3% n200a 100% 90.7%

playout 100% 92.4% n200b 100% 94.2%
a9c3 100% 95.3% n300 100% 94.4%
ac3 99.3% 94.6% syn1 100% 94.2%
hc7 99.1% 93.1% syn2 100% 95.7%

TABLE IV
NET PROTECTION RATE WITH INFLATED NMspec . Pinf AND

Pexag ARE THE PERCENTAGE OF NETS GETTING FULLY PROTECTED

UNDER SPICE SIMULATION WITH INFLATED NMspec AT

NMinf = 0.51V AND NMexag = 0.6V, RESPECTIVELY.

VI. CONCLUSION

We have shown in this paper a method for si-
multaneously inserting supply shields and buffers dur-
ing global routing to reduce crosstalk noise under a
novel power supply architecture. The method employs a
length-constraint based buffer insertion model that also
naturally takes into account delay considerations, and
uses a dynamic programming-like bottom-up method
to optimally assign shields and buffers with the least
resource usage. We have also shown the fidelity of
Devgan’s metric, and the noise inflation technique to
effectively compensate for its pessimism. Experimental
results show that this method can route nets to meet both
capacity and noise constraints. It is more effective than
noise reduction using a buffer-only approach or a greedy
approach.
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