
1

Fast Comparisons of Circuit Implementations
Shrirang K. Karandikar† and Sachin S. Sapatnekar‡, Fellow, IEEE

†IBM Austin Research Laboratory, Austin, Tx 78727, USA
‡Department of ECE, University of Minnesota, Minneapolis, MN 55455, USA

Abstract— Digital designs can be mapped to different imple-
mentations using diverse approaches, with varying cost criteria.
Post-processing transforms, such as transistor sizing can signifi-
cantly improve circuit performance, by optimizing critical paths
to meet timing specifications. However, most transistor sizing
tools have high execution times, and the possible delay gains due
to sizing, and the associated costs, are not known prior to sizing.
In this paper, we present two metrics for comparing different
implementations – the minimum achievable delay, and the cost
of achieving a target delay, and show how these can be estimated
without running a sizing tool. Using these fast and accurate
performance estimators, a designer can determine the trade-offs
between multiple functionally identical implementations, and has
to size only the selected implementation.

Index Terms— Estimation, Very-large-scale integration, CMOS
digital integrated circuits, Digital integrated circuits

I. INTRODUCTION AND MOTIVATION

Implementing a design involves synthesis (technology in-
dependent optimizations and technology mapping), placement
and routing. In a final timing correction step, transistors of
logic gates are appropriately sized to speed up critical paths,
thus incurring a cost (which may be area, or power) overhead
for gains in circuit speed. Although recent approaches have
tried to combine sizing with technology mapping [1], [2], exact
wire loads are determined only after placement and routing,
and it is difficult to estimate them accurately at the technology
mapping stage. Therefore, gate size selection is still performed
heuristically, which leaves a large scope for improving the
circuit delay at later stages by sizing. The importance of this
step can be judged by the amount of research carried out
both in academia [3]–[6] and in industry [7], [8]. A major
drawback of these optimization tools is their large running
times; it can take up to a few hours to calculate the appropriate
solution for an industry-sized circuit. In this scenario, it is
difficult for a designer to determine if an implementation will
be able to meet performance goals after transistor sizing, or
which circuit out of multiple different implementations for
the same functionality should be chosen for further detailed
optimization.

In this paper, we present an approach that estimates the
benefits of sizing, but without incurring the overhead of
running a sizing tool. This directly addresses the problem
stated previously, since a designer can use our approach to
compare a large number of implementations. We evaluate
implementations based on two metrics; each of which is
useful in different contexts. First, we consider the problem
of estimating the minimum delay that can be achieved by an

This work was supported in part by the NSF under awards CCR-0205227
and CCR-0098117, and by the SRC under grant 2001-TJ-884.

implementation, if sizing is applied to it. This metric allows a
designer to determine if an implementation can meet a given
delay specification. The delay of a circuit is the maximum
delay of all PI-to-PO paths of the circuit. Transistor sizing is
applied to the circuit to reduce this delay, in order to meet
design goals. The smallest value of delay that can be obtained
in this manner is referred to as the minimum achievable delay.
Most circuits are rarely sized to the minimum delay value (due
to the associated high area overheads), but those that are on
the critical path may be. Additionally, the minimum achievable
delay, along with the unsized circuit delay also helps determine
the range of delay values over which an implementation can
be used.

� � � � ����� ���� 	���
��� � ��� � ��������� ����� ����� �����

� �"!$# %�"%'&)(+*,(.- /)&

01/)2.�3*,# - 4'%5 � %# *687:9�/)2<;�=$>�?A@
B CD E F�GHI

(a)

� � � � ����� ���� 	���
��� � ��� � � ������� ����� � ��� �����

� �"!$# %�"%'&)(+*,(.- /)&

01/)2.�3*,# - 4'%5 � %'# *6�7J9�/)2LK8M8N
B CD E F GHI

(b)

Fig. 1. Comparing unsized and sized delays of implementations

In this work, we assume that the input to the sizing tool
is a circuit that has been placed and routed, with all device

0

1000

2000

3000

4000

5000

0 50 100 150 200 250 300

A
re

a

Delay (ps)

D1D2

I1
I2
I3
I4
I5

I6

(a)

0

2000

4000

6000

8000

0 50 100 150 200 250 300

A
re

a

Delay (ps)

D1D2

I1
I2
I3
I4
I5

I6

(b)

Fig. 2. Area-delay curves of 6 implementations of benchmark circuit C7552 (a) actual and (b) estimated

sizes set to the minimum available value. During synthesis,
device sizes may have been selected, but in the absence of
physical information, these sizes are sub-optimal, and may
take the design to a state that is far from the best. Rather than
taking such an arbitrarily sized design, we reset all sizes to
the minimum, so that all implementations have a similar initial
state.

It may seem that the delay of such an unsized circuit can
be used as an approximation for the minimum achievable
delay. However, this is not the case, as can be seen from the
situation shown in Figure 1. This figure shows the normalized
delays before and after sizing, for different implementations
of two benchmark circuits, unreg and vda. In terms of the
unsized delays, implementation A of circuit unreg is the
fastest, implementations B and C are a few percent slower,
while D and E are about 10% slower. However, once these
implementations have been sized, we see that implementations
D and E are actually the fastest. A similar situation is seen
for circuit vda. Sizing all implementations is impractical, and
since the unsized delay cannot be used, our estimator can be
a useful tool to determine the best implementation.

The second aspect of making comparisons between different
implementations is to determine, for a certain target delay,
which implementation will have the least cost overhead after
sizing. For convenience, we use the area of the implementation
as a measure of the cost by which implementations can be
selected. There is a direct correlation of area with other mea-
sures of cost, such as power dissipation, sub-threshold leakage
and gate leakage, and a similar approach can be used when
the cost function is power, or a weighted combination of area
and power. This metric is applicable to circuits whose target
delay of operation is greater than their minimum achievable
delay, and hence need not be sized to the minimum delay
value. Rather, the focus for these circuits is to minimize the
cost while achieving the target delay. Currently, determining
the cost is possible only after sizing has been performed, and
as before, evaluating a large number of implementations is
infeasible, due to the running time of current sizing tools.
Simply using the delay and area of an unsized circuit can
be misleading, since different implementations are superior
at different delay points. This happens because the shape of
the area-delay trade-off curve can vary by implementation.

Consider Figure 2(a), which shows the area-delay curves of
multiple implementations of benchmark circuit C7552, with
the area of each implementation shown on the y-axis, and
delay on the x-axis. The extreme right point of each curve
corresponds to the unsized circuit; this has maximum delay
and the smallest area, and successively smaller delay values
require larger areas. Note that the curves have a characteristic
point (called the ‘knee’), at which the rate of change of area
with respect to delay changes drastically.

Each curve is bounded by the maximum delay (i.e., the
unsized circuit delay) and the minimum achievable delay1.
However, as can be seen, the shape of each curve can vary
significantly. For example, in the curves shown in Figure 2(a),
the knee of each curve can either be closer to one of the
end points or in the center. This property varies between
different circuits, as can be expected, but it also varies between
implementations of the same circuit. For implementations I1
and I2 of C7552, the knee is closer to the minimum delay
point. Hence, we initially observe large improvements in delay
for relatively small area cost, for these implementations, but
further delay improvement comes at the cost of large increases
in area. The situation is reversed for implementations I5 and I6,
where the knee is closer to the maximum delay point. In this
scenario, trying to determine which implementation is the best
at some intermediate delay point without having knowledge of
the entire area-delay curve is difficult.

Suppose a designer wants to determine the best implemen-
tation among those available for some target delay of D1. Cal-
culating the minimum achievable delay and the unsized circuit
delay of all implementations, the designer can determine that
all implementations meet this target delay (I5 and I6 do so
trivially, since their unsized delay is greater than D1). At a
different target delay of D2, the implementations that have to
be considered are I3, I4, I5 and I6. Implementations I1 and
I2 need not be considered, since their minimum achievable
delay is larger than this value. However, this information is
not sufficient, since which of these circuits should be selected
is still not known. Ideally, s/he would like an ordering of
these implementations based on the cost, which in this case,

1Technically, the maximum delay of an implementation can be increased
by increasing the sizes of loads on the critical path. However, these circuits
are clearly suboptimal and are therefore not considered

2

is the area. The required ordering for a delay of D1 isO
I3 P I4 P I2 P I1 P I5 P I6 Q , and for D2 it is

O
I4 P I3 P I5 P I6 Q .

Simply ranking implementations based on the unsized delays
and areas is not enough, e.g., at one delay point, I4 has lower
area, and at the other I3 is better. This situation, of different
implementations being the best at different delay points, is
also seen in implementations of other benchmark circuits. As a
drastic example, consider Figure 3, which shows the area-delay
curves of two implementations of benchmark circuit 9symml.
Depending on the target delay selected, D1 or D2, either
implementation I1 or I2 will be preferred. Without estimating
these area-delay curves, which implementation is more area-
efficient can be determined only by generating the area-delay
curves.

RTS RVU
WSW+U

X+Y Y.Z Y[Y \.Z \.Y][Z^ Z.Z^.^ Z^ X+Z^ \.Z^._ Z` Z.Z`.^ Z

aLb+c d+e�f'g8h

i�j e)klklc
m nop

Fig. 3. Two implementations of benchmark circuit 9symml

To summarize, in this paper we present algorithms that
provide an estimate of the minimum achievable delay of a
given implementation, and an estimate of the complete area-
delay trade-off curve. The algorithms do not run a sizing
tool, and are therefore fast, but at the same time, they enable
accurate comparisons between different implementations, as
we will show in the results section. Our approach is based on
the method of logical effort [9], [10], which is well suited
for estimating the minimum achievable delay of a single
path in a circuit, with a heuristic branching factor used to
account for multiple fanouts. However, the critical path of
a circuit changes dynamically according to the choice of
distribution of capacitance over multiple fanouts. An important
contribution and differentiator of our algorithm is a means of
accurately determining the minimum achievable delay of a
circuit by simultaneously considering all paths of the circuit.
Logical Effort, and its associated drawbacks are described in
the following section. We then show how the drawbacks of
logical effort can be overcome, in particular, how multiple
fanouts are handled in our approach. This is integrated into two
algorithms, the first for estimating the minimum achievable
delay, and the second for estimating the area-delay curve of an
implementation. This work has been published in preliminary
form in [11] and [12].

II. LOGICAL EFFORT

The starting point of our approach is the method of logical
effort, which has been widely used in a variety of application
domains [1], [13]–[15] as well as in industry standard EDA
synthesis tools [16], [17]. Using logical effort, the delay of a

gate with is estimated by modeling it as a linear function of
the load being driven as:

D q g r cl

ci

s p q g r h s pq f s p (1)

wheret
Logical Effort (g) is the complexity of the gate, relative
to an inverter. It measures how much worse the gate is
at driving a specified load than an inverter. The base
case of an inverter is taken to have unit logical effort,
and complex gates such as NAND, NOR and XOR have
successively higher values of logical effort.t
Electrical Effort, or Gain (h q cl

ci
) describes how the

electrical environment of the logic gate affects perfor-
mance and how the size of the transistors in the gate
determines its load-driving capability. cl is the load being
driven and ci is the input capacitance of the gate under
consideration.t
Effort Delay (f q gh) is the product of the logical and
the electrical efforts of the gate.t
Parasitic Delay (p) expresses the intrinsic delay of the
gate due to its own internal capacitance, and is largely
independent of the size of the transistors in the logic gate.

This formulation separates the different components that
contribute to the delay of a gate. It also provides the user
with a means of sizing the gate – since the logical effort g
of a gate is fixed, if a particular effort delay is assigned to a
gate, the input capacitance ci that meets this effort delay can
be calculated as

ci q g r cl

f
(2)

As shown in [10], Equation (1) can be extended to estimate
the minimum delay, D̂, of a path of logic as

D̂ q NF
1
N

s P (3)

where F q GH is the path effort, P is the path parasitic delay
and N is the number of gates on the path under consideration.
The path logical effort, G, is the product of the logical
efforts of the gates on the path. The path electrical effort,
H, is obtained as the product of the gate electrical efforts,
or equivalently by the ratio of the load being driven by the
last gate, CL, and the input capacitance of the first gate. The
minimum delay of Equation (3) is obtained by distributing the
path effort F equally to each gate on the path. Thus, each gate
is assigned a gate effort of f q F

1
N . Starting with the gate at

the output, that drives a fixed load of CL, the size of each gate
can be successively determined by using Equation (2).

Equation (3) can be used for determining the minimum
delay (and the corresponding gate sizes) of a simple path of
logic, in which each gate only drives the next gate on the
path. However, realistic circuits have gates that drive multiple
fanouts. In order to address this situation, [10] introduces the
concept of a branching effort, b q Ctotal

Cuse f ul
, where Ctotal is the

total load being driven by the gate, and Cuse f ul is the load
contributed by the fanout on the path of interest. The gate
effort f is now defined to be f q gbh. In Figure 4, gate X

3

drives two gates, Y and Z, which have input capacitances cinY

and cinZ respectively. The total load being driven by gate X
is then Ctotal q cinY

s cinZ , as shown, and Cuse f ul is either cinY

or cinZ , depending on whether path P1 or path P2 is being
analyzed.

PSfrag replacements

X

Y

Z

cinX

cinY

cinZ

coX q cinY
s cinZ

coY

coZ

P1

P2

Fig. 4. Multiple fanouts in analyzing circuit delay

The path effort in Equation (3) is modified to F q GBH,
where B, the path branching effort, is the product of the gate
branching efforts of all gates on the path being analyzed.
A similar methodology is followed in order to obtain the
minimum delay, and the corresponding gate sizes, i.e., each
gate on the path is assigned an effort of F

1
N , and Equation (2),

used to calculate the gate sizes, is modified to include the effect
of the branching factor as

ci q g r cl r b
f

(4)

In this manner, the branching factor tries to capture the
effect of fanouts that are not on the path of interest. This
approach, however, has a few serious flaws. First, paths are
analyzed individually, and the interactions between the sizes
required by each path are not taken into account. More
importantly, the branching factor is assumed to be fixed, and it
is calculated using the initial values of the fanout capacitances
(in the example presented in [10], all fanouts are shown to have
the same size, both before and after sizing). Hence, when a
path is sized using Equation (4), the gate sizes of fanouts not
on the path under consideration have to be scaled according
to the branching factor initially selected. For example, in
Figure 4, when path P1 is being analyzed, the branching factor
of gate X is bX q coX

cinY
. Once the path effort of P1, FP1, has been

calculated, and used to size gates X and Y, the size of gate
Z will have to be scaled by an appropriate amount, in order
to keep the value of bX constant. If path P2 is not critical,
increasing the size of Z is unnecessary, and only increases the
load on gate X. If path P2 is analyzed separately, its path effort,
FP2, may require completely different sizes of gates X and Z,
and gate Y will have to be scaled according to the branching
factor bX q coX

cinZ
. Thus, in the case of multiple fanouts, the

optimal sizes of each fanout (gates Y and Z in Figure 4), and
the corresponding size of the gate driving the fanout (gate X

PSfrag replacements

G Primary
Output

F

DG DOP u PO

DG u PO

cinG

cr

cinF

Fig. 5. Components of the delay of a simple path

in Figure 4) cannot be easily determined using the branching
factor. Analyzing every path in a circuit separately, and the
interactions among all paths is not feasible, because of the
exponential number of such paths in a circuit. Thus, while
the method of logical effort is well suited to analyze single
path delays, it cannot be used directly when critical paths are
not well defined, or can change. In the following section, we
present an approach that can handle such scenarios.

III. DELAY CALCULATION INTEGRATING GATE SIZING

The advantage of logical effort is that it provides the user
with a means of determining the delay of a path of logic
while simultaneously determining the gate sizes required for
achieving that delay. In this section, we present an approach
that is equivalent to logical effort in the degenerate case (single
fanouts and no routing capacitances being considered). Even in
the degenerate case, our approach has higher accuracy, since
only discrete gate sizes that are available in the technology
library are used in our calculations. As mentioned in the
previous section, logical effort has severe shortcomings when
circuits with multiple fanouts are being analyzed. Similar
drawbacks exist when routing capacitance is taken into consid-
eration. Our approach overcomes these drawbacks by simulta-
neously considering gate sizes of all paths in the circuit. A key
concept of our approach is calculating and propagating Delay-
Cin curves for all gates, which capture the effect of changing
delay for different gate sizes. We first present this approach
for simple paths, including the effects of routing capacitance.
This is then extended to handle multiple fanouts.

A. Simple Paths

We define CinG to be the set of all possible values of input
capacitance, cinG , of gate G, corresponding to different sizes
of G. Consider the situation shown in Figure 5, where gate2

G drives fanout gate F. The input capacitance of G and F
are cinG and cinF respectively. The interconnect between the
output of G and the input of F has a routing capacitance of
cr. Thus, the load capacitance that G drives is the sum of the
input capacitance of F and the routing capacitance, or,

clG q cr
s cinF P cinF v CinF (5)

2In this discussion, all gates are shown as inverters for illustration purposes
only. The method applies directly to more complex gates, with appropriate
values for logical effort and parasitic delay.

4

Hence, if F has k different sizes, G will have k correspond-
ing values of load capacitance.

Now consider the delay from the input of a gate G to any
primary output. This delay has two components, the delay of
G itself, DG, and the delay from the output of G to a primary
output, DOP u PO. Thus,

DG u PO q DG
s DOP u PO (6)

This equation is incomplete, since it does not take into
account the sizes of G or its outputs. These can be incorporated
as follows. The term on the left hand side of Equation (6)
depends on the size of G that is under consideration, and is
therefore correctly represented by DG u PO w cinG x . We know that
the delay of G depends on its load, clG , as well as its size,
cinG , and is given by Equation (1). Hence, we represent the gate
delay as DG w cinG x w clG x . An improved version of Equation (6)
is therefore

DG u PO w cinG x q DG w cinG x w clG x s DOP u PO (7)

The last term corresponds to the delay from the input of F
to a primary output. Hence, Equation (7) can be rewritten as

DG u PO w cinG x q DG w cinG x w clG x s DF u PO w cinF x (8)

For a simple path of logic, Equation (8) is a recursive
definition of delay. For a gate driving a primary output (and
hence driving a fixed load), the delay to the primary output
is simply the delay of the gate itself. The delay for any other
gate is defined in terms of the delay from its output to the
primary output.

Recall that the value of clG also depends on the input
capacitance of gate F, cinF , by Equation (5). As mentioned
before, gate F may have k different sizes available. Hence,
there are a corresponding number of k different values of
DG u PO w cinG x . We are interested in the minimum delay from
the input of gate G to a primary output. However, the effect
of different values of cinF on each component of Equation (8)
is opposite: as cinF increases, so does the delay of gate G, but
the delay to primary output of gate F reduces. Thus, in order
to obtain the minimum delay from the input of gate G to a
primary output for a selected value of input capacitance of G,
we need to examine all values of cinF .

DG u PO w cinG x q min
cinF y CinF

O
DG w cinG x w clG x s DF u PO w cinF x Q (9)

The value of DG u PO w cinG x as defined in Equation (9), for
different values of cinG constitutes the Delay-Cin curve of gate
G. It captures the minimum delay from the input of G to the
primary output, for different sizes of G. Note that the sizes of
all gates on the path from G to the primary output are implicit
in the Delay-Cin curve. The formulation of Equation (8) leads
directly to a dynamic programming based algorithm, presented
in the following section.

B. Multiple Fanouts

In the case that G drives multiple fanouts, the load ca-
pacitance clG , is calculated as follows. Say G has n fanouts,
F1 P F2 P)zAz)z Fn, as shown in Figure 6. We denote the possible
values of the sum of the input capacitances of the fanouts
by the set CLG . Then the load capacitance of G is the input
capacitances of these fanouts (an element from CLG), combined
with the routing capacitance, cr.

clG q cr
s cm P (10)

cm v CLG q {
n

∑
j | 1

c j : } c j v CinF j P j q 1 z)zAz n ~
If we assume that each of the fanouts have k sizes, then the

number of values that we obtain, for clG is kn. However, we
show later that the number of useful values to be considered
is actually linear.

PSfrag replacements

G

To
Pr

im
ar

y
O

ut
pu

ts

F1

F2

Fn

DG DOP u PO

DG u PO

cin cr

cinF1

cinF2

cinFn

Fig. 6. Components of the delay of a path

The delay calculation of Equation (7) also changes in the
case of multiple fanouts. In Equation (7), since there was only
one fanout, we could use its delay to a primary output in
order to obtain Equation (8). However, in the case of multiple
fanouts, we are interested in the maximum delay from the
input of gate G to any primary output. Thus, the correct value
to use for DOP u PO is the maximum delay to a primary output
over all fanouts. Thus,

DG u PO w cinG x q DG w cinG x w clG x s
max
j | 1 � � � n O

DFj u PO w cinFj x Q (11)

As before, we can have multiple values of DG u PO w cinG x ,
for different combinations of input capacitances of the fanout
gates. Since we are interested in the minimum of these, we
obtain

5

DG u PO w cinG x q min
cm y CLG

O
DG w cinG x w clG x s

max
j | 1 � � � n O

DFj u PO w cinFj x Q�Q (12)

Note that a selection of sizes of the fanouts F1 P F2 P)�)�A�AP Fn
(which determine the corresponding input capacitances
cinF1 P cinF2 P)�A�)��P cinFn

, and therefore, cm) also fix the value of
the load that gate G has to drive, clG , by Equation (10).

PSfrag replacements

Cin

Delay to PO

k1

k2

k3

k4

t1

t2

t3

t4

t �1
t �2

t �3
t �4

Fig. 7. Combining Delay-Cin curves at multiple fanouts

It may seem that the size of the set CLG for a gate G with
multiple fanouts is proportional to the product of the number
of sizes of the fanout gates. Assume gate G drives four outputs,
whose Delay-Cin curves are represented by k1, k2, k3 and k4,
shown in Figure 7. If each fanout has m sizes, each curve has
m points, and the size of CLG is m4. However, we can show
that most of the values in CLG are redundant. For example,
consider the tuple T of the first points t1, t2, t3 and t4 from
each of the curves in Figure 7. A tuple T � of the point t1 from
curve k1 and any other point from k2, k3 and k4 (say t �2, t �3 and
t �4), is inferior to T for the following reason. There are two
values that are extracted from T and T � , the maximum delay
to a primary output, and the sum of the input capacitances
represented by these combinations, which is used as the load
in the delay calculation of gate G. The maximum delay is the
same in tuples T and T � , but the load presented by T � is
greater than that of T . Hence, the delay of G, and therefore
its delay to a primary output is larger in this case. Since we
are interested in minimizing the delay to a primary output, the
solution offered by tuple T � will never replace that calculated
using T .

The above discussion directly leads to a strategy for ef-
ficiently selecting useful values of cl from the Delay-Cin
curves of outputs. First, these curves are stored in order of
non-increasing delay (and hence increasing sizes). The first
value of cl is the routing capacitance cr plus the capacitance
corresponding to the maximum-delay points from each curve,
as in tuple T . The next value is obtained by replacing the point
with maximum delay (e.g., t1 of curve k1 in T), with the next
point from the same curve (t �1). This effectively ignores the
combination of t1 with remaining points from the other curves.

This process is continued till the maximum delay point is the
last point on its curve. Thus, in the worst case, the total number
of combinations is of the order of the sum of number of points
on each curve, rather than the product. This worst case occurs
when the Delay-Cin curves of all outputs are identical. In other
situations, the number of combinations is smaller than the sum
of the number of points on each curve.

Recall the drawbacks of the traditional branching effort
mentioned in the previous section. A fixed branching effort,
without considering the interactions between fanout branches
can lead to suboptimal circuits, and considering the inter-
actions is impractical, due to the number of combinations
involved. Using Delay-Cin curves allows us to efficiently
assign sizes to multiple fanouts according to the criticality
of each branch.

IV. ALGORITHMS FOR ESTIMATING THE BENEFITS OF
SIZING

Based on the formulation of Delay-Cin curves presented
in the previous section, we now present two algorithms that
determine the metrics mentioned in Section I. Calculating the
Delay-Cin curve of a circuit allows us to estimate its minimum
achievable delay. Modifications to this approach can be used
to determine the cost of sizing a circuit to a target delay, rather
than sizing to the minimum achievable delay.

A. Minimum Delay Estimation

Algorithm 1 Minimum Delay Estimation
for each gate G whose outputs have been processed do

// calculate the Delay-Cin curves for G
for all ci v CinG do

DG u PO w ci x q ∞
// G has n fanouts, F1 P F2 PAz)zAz Fn
for cm v CLG do

clG q cr
s cm

// determine the delay of gate G
DG w ci x w clG x q w g r cl

ci

s parasitic delayx G
// the maximum delay from any fanout F
// to any PO is obtained from the
// Delay-Cin curves of F
temp q DG w ci x w clG x s max j | 1 � � � n � DF j u PO w c j x+�
DG u PO w ci x q min � temp P DG u PO w ci x+�

end for
end for

end for
Minimum Delay q max

O
minall PI’s

O
delay to PO Q�Q

Our formulation for calculating the Delay-Cin curve of a
gate has been presented in the previous section, the most
general form being represented by Equation (12). As men-
tioned before, this is a recursive definition, each value on the
curve being defined in terms of the curves of the fanouts.
Algorithm 1 exhibits the hallmarks of dynamic programming:
the optimal solution for the current gate size is defined in terms
of the optimal solutions of its outputs, which are calculated

6

once and used as needed. A single traversal of the circuit, from
primary outputs to primary inputs is sufficient to calculate the
Delay-Cin curves of all gates in the circuit. Processing gates
in such a topological manner ensures that when the Delay-Cin
curve of a gate is being calculated, the Delay-Cin curves of all
of its fanouts have already been determined.

We assume that primary inputs are inverters of fixed size.
The Delay-Cin curves at the primary inputs include the delay
of these inverters, so that the loading effects of the gates
being driven by the primary inputs are taken into account.
Once we have calculated the Delay-Cin curves at the primary
inputs, determining the minimum achievable delay of the
circuit is straightforward. For each primary input, we can
calculate the minimum delay to any primary output, and the
largest such value over all the primary inputs is the minimum
achievable delay of the circuit. Algorithm 1 presents the
complete algorithm, called Minimum Delay Estimation
(MDE).
Run Time Analysis: Assume that there are k sizes for each
gate in a circuit with N gates, and the maximum fanout on any
gate is � FO � . The innermost for loop is executed O � k r�� FO � �
times, as shown previously, and the cost of determining the
maximum delay point is O � � FO � � . The second for loop is
executed k times, since we assume k sizes for each gate.
Finally, since there are N gates in the circuit, the outermost
for loop is executed N times. Thus, the running time of
Algorithm MDE is O � N z k z k z � FO � z � FO � � . However, note that
this is a very loose upper bound, since very few gates actually
have � FO � fanouts.

Algorithm MDE is optimal for trees. However, most circuits
are DAGs, with reconvergent fanouts. The main problem
with DAGs is that there are multiple paths from a particular
gate to primary outputs, or between two gates. An implicit
assumption of our algorithm is that the Delay-Cin curves at
multiple fanout points are independent, and that we are free
to choose the combination of output delays and capacitances
that best suit the current gate. However, with reconvergent
fanouts, these choices are not independent of each other.
Selecting a data point on one output restricts the choices
on the other, and determining the relation between different
outputs is intractable for general circuits. However, assuming
independence is not unreasonable, for an estimator such as
ours. If the reconvergent paths are completely unbalanced,
i.e., their structure and logic is such that one always has
smaller delay than the other, no errors are introduced due to
the manner in which their Delay-Cin curves are combined.
The smallest Cin value will consistently be selected for the
path with smaller delay. An example of this situation is if
the paths correspond to curves k1 and k4 in Figure 7. On
the other hand, if the delays of the two paths are roughly
of the same order (e.g., if they correspond to curves k1 and
k2), our approach selects approximately similar values of input
capacitances. This may lead to small inaccuracies, since the
actual values of input capacitance may be slightly different.
However, the error in delay estimation is limited, as shown by
the results in Section V.

Our approach can also be used to obtain actual sizes of all
gates in the circuit. In Algorithm MDE, we can store the value

of the load of each output that induces the minimum delay
(corresponding to values of cm and cinF j

in Equation (12)).
This information can be used in a forward traversal of the
circuit, in order to generate sizes for every gate. A gate with
multiple fanins has multiple choices for its size, which can be
resolved by selecting the size imposed by the critical input3.
The effect on the non-critical inputs is that they now have a
load different from what was initially assumed. However, the
difference in the delays from the primary inputs to the critical
and non-critical inputs can be used to compensate for this. In
fact, this difference can be usually be used to reduce the sizes
of the transitive fanin cone of the non-critical inputs, as long
as their delay does not become larger than that of the critical
input. Gate sizes determined in this manner correspond to a
circuit sized for minimum delay. These sizes can be used as
an initial feasible solution for an exact sizing tool, instead of
using the original unsized circuit. This can lead to a large
improvement in running times of the transistor sizing tool,
since a circuit sized using our approach is closer to the final
solution than the initial, unsized circuit. Note however, that
the area of a circuit sized in this manner cannot be used as
an estimate for the area of the final circuit, due to the nature
of the sizing problem. This issue is discussed in the following
subsection.

B. Area-Delay Curve Estimation

As mentioned in Section I, not all circuits need to be sized to
operate at the minimum achievable delay. For these circuits,
we can trade area for delay, also achieving a reduction in
power. In a scenario where a target delay is known, and
multiple implementations of a given circuit are available, we
would like to determine the cost (in terms of area) for achiev-
ing the given delay, which entails estimating the entire area-
delay curve of each implementation. As before, determining
the exact area-delay curve is expensive. In this subsection, we
modify Algorithm 1 in order to quickly estimate the area-delay
curve of a given implementation.

Since we are interested in determining the entire area-delay
curve of the implementation, a natural approach would be to
calculate the area of the transitive fanouts with the delays
during the Delay-Cin calculation of Algorithm 1. However,
there are a few problems with this approach. There are multiple
configurations of gate sizes that can achieve the same delay
value, and hence multiple solutions for each delay value
have to be stored. Unlike in Algorithm MDE, these solutions
cannot be pruned. Finally, every combination of points in
the enhanced Delay-Cin curves of multiple fanouts has to be
considered, which further increases the complexity.

We therefore need another approach to estimating the area-
delay curve. Recall that the Delay-Cin curves calculated in
Algorithm MDE implicitly store sizes of gates in the transitive
fanout cone required for achieving the minimum delay for
each value of Cin. Hence, we can size the circuit using
different points on the Delay-Cin curves of the primary inputs,
and calculate the corresponding area. However, these points

3The critical input of a gate is the input with the largest arrival time. The
other inputs are called non-critical inputs

7

PSfrag replacements

cin

CL2

CL3

G1
G2

G3

Fig. 8. Example circuit

may not be optimal i.e., the area calculated using the above
approach may not be the smallest area for a particular delay.
For example, say we have a minimum delay of d1 for cin1 and
d2 for cin2 , with corresponding circuit areas of a1 and a2, and
d1 � d2. It is possible that there is a non-minimum delay d �2 q
d1 for an input capacitance of Cin2 that had a corresponding
circuit area a �2, that is less than a1. The solution � a �2 P d �2 �
(corresponding to an input capacitance of cin2) is clearly better
than the � a1 P d1 � solution, but since only minimum delay points
are considered, the superior solution is ignored.

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8

A
re

a

Delay

������������ �����

Fig. 9. The area-delay curve for one value of cin

Consider the circuit shown in Figure 8, with two branches of
the circuit driving different loads. For some input capacitance
of cin, we obtain a number of delay values, the minimum of
which is stored in the Delay-Cin curve, and the other delay
values are discarded. However, we can size the circuit using
the minimum as well as the discarded delay values (for the
same value of cin), and calculate the corresponding areas.
These points are shown in Figure 9, and the best points for
an area-delay curve perspective are the ones marked by a line.
This procedure can be repeated for other values of cin, and the
union of the solutions obtained gives us the area-delay curve
desired. This is shown in Figure 10 for three values of cin.
The intersection in the curves corresponding to cin q 4 and
cin q 5 is an example of sub-optimality if only the minimum
delay points were to be considered.

Thus, we estimate the area-delay curve of a circuit by sizing
it for different values of delay, for every value of Cin and
measuring the area. In order to keep the run time low, rather
than sizing for all delay values, we size the circuit for a limited
number of values (in our experiments, we found that selecting
10 sub-optimal delay points was sufficient). This has an impact
on the accuracy of our results, but the effect is limited.

Our heuristic, called Algorithm ADC is shown in Algo-

0

2

4

6

8

10

12

0 2 4 6 8 10

A
re

a

Delay

cin � 3�+��� � cin � 4¡£¢¥¤ ¦ §
cin � 5

¨1© ª «

Fig. 10. Area-delay curve of the circuit in Figure 8

rithm 2. At the primary inputs, we store multiple Delay-Cin
curves. Each time DG u PO w ci x is updated to a new value, we
store the replaced value as an entry in a set of secondary
curves. The minimum delay values from these secondary
curves are then used to size the circuit, and obtain other points
on the delay-area curve. Circuits sized in this manner have
greater delay than the minimum achievable delay, and after
area recovery, they have smaller area as well.

Algorithm 2 Area-Delay Curve Estimation
for each gate G whose outputs have been processed do

if G is not a PI then
Calculate Delay-Cin curve of G as in Algorithm 1

else
Calculate Delay-Cin curve as before, but for each ci
store all solutions

end if
end for

for each set of Delay-Cin curves of the PIs do
Min. Delay q max

O
minall PI’s

O
delay to PO Q�Q

// forward traversal
Size the circuit based on the selected point
Determine the arrival time at each gate
// reverse traversal
Determine the required time at each gate
// area recovery
for each gate G in reverse topological order do

slack q arrival time ¬ required time
while slack � 0 do

Reduce the size of G
Update the arrival and required times of G and its
inputs

end while
end for
Determine area and delay of the sized circuit

end for

The solution obtained using this approach is naturally not
exact. However, as discussed above, since the auxiliary data
of points on the secondary curve encode sizes of the outputs
(and particularly, of sizes of multiple fanouts), these solutions
still provide a good representation of the area behavior of the
circuit at different delay points. That is, though we cannot use
the area-delay curves to make absolute judgments, we can still

8

 ® ¯ ° ± ² ³ ´ µ ¶ � �® ¯ °¶¶�· ±
�· ± ¸º¹[»�¼ ½ ¾ ¿ ÀÁ¸$Â[Ã Ä�ÅÆÇ¸8È¼ É

Ê Ë$Ì�Í Î Ë$Î Ï�Ð Ñ�Ð Ò Ó�Ï

Ô µ�¶�´
Õ Ö× Ø Ù ÚÛÜ ® ¯ ° ± ² ³ ´ µ ¶ � ® ¯ °¶¶[· ±

�· ± ¸ ¹[»�¼ ½ ¾ ¿ À ¸ Â.Ã Ä�ÅÝÆ ¸ ÈÝ¼ É
Ê Ë$Ì Í Î Ë8Î Ï�Ð Ñ�Ð Ò Ó�Ï

Ô ®�² ³�¶
Õ Ö× Ø Ù ÚÛÜ ® ¯ ° ± ² ³ ´ µ ¶ � ® ¯ °¶¶�· ±

�· ±® ¸ ¹[»�¼ ½ ¾ ¿ À ¸ Â[Ã Ä�ÅÝÆ ¸ È¼ É
Ê Ë$Ì�Í Î Ë$Î Ï�Ð Ñ�Ð Ò Ó�Ï

Ô ¯ ±�°�¶
Õ Ö× Ø Ù ÚÛÜ

 ® ¯ ° ± ² ³ ´ µ ¶ � �® ¯ °¶¶�· ±
�· ±
® ¸º¹[»�¼ ½ ¾ ¿ ÀÁ¸$Â[Ã Ä�ÅÆÇ¸8È¼ É

Ê Ë$Ì�Í Î Ë$Î Ï�Ð Ñ�Ð Ò Ó�Ï

Ô ±�¯[±
Õ Ö× Ø Ù ÚÛÜ Þ ß à á â ã ä å æ Þ ç Þ�Þ Þ�ß Þ à Þ áç ß

áã è£é.ê ë ì í î ïðèòñ.ó ô[õö÷èòø'ë ù
ú ûòü[ý þ ûòþ ÿ�� ��� � � ÿ

� ã ß�å�å
� �	

� ��

Þ ß à á â ã ä å æ Þ�ç Þ Þ Þ�ßç Þ
ßà è é.ê�ë ì í î ï è ñ.ó ô[õö è øë ù

ú ûòü[ý þ ûòþ ÿ�� ��� � ��ÿ

� ä�â�â�ß
� �	

� ��

 ® ¯ ° ± ² ³ ´ µ ¶ � �® ¯ °¶¶�· ®¶�· °
¶�· ²¶�· ´ ¸º¹[»�¼ ½ ¾ ¿ ÀÁ¸$Â[Ã Ä�ÅÆ ¸8È¼ É

Ê Ë$Ì�Í Î Ë$Î Ï�Ð Ñ�Ð Ò Ó�Ï

µ�� � Ë8Ë$Í
Õ Ö× Ø Ù ÚÛÜ ® ¯ ° ± ² ³ ´ µ ¶ � ® ¯ °¶¶[· ®¶[· °

¶[· ²¶[· ´ ¸º¹[»�¼ ½ ¾ ¿ ÀÁ¸8Â.Ã Ä�ÅÝÆ ¸$ÈÝ¼ É
Ê Ë$Ì Í Î Ë8Î Ï�Ð Ñ�Ð Ò Ó�Ï

Ñ�Ì[Î � ²
Õ Ö× Ø Ù ÚÛÜ ® ¯ ° ± ² ³ ´ µ ¶ � ® ¯ °¶¶�· ®¶�· °

¶�· ²¶�· ´ ¸ò¹[»�¼ ½ ¾ ¿ À ¸$Â[Ã Ä�ÅÝÆ ¸8È¼ É
Ê Ë$Ì�Í Î Ë$Î Ï�Ð Ñ�Ð Ò Ó�Ï

Ñ�Ì[Î � ³
Õ Ö× Ø Ù ÚÛÜ

Fig. 11. Results for selected ISCAS and MCNC benchmark circuits

make comparative judgments between different circuits.
Once the circuit has been sized, we determine the arrival and

required times at each gate, and use the slack to reduce the
sizes of the gates. This step can drastically reduce the area of
a circuit, since the non-critical parts of the circuit are usually
sized to be unnecessarily fast. After the Delay-Cin curves have
been calculated, the arrival and required times of each gate can
be determined in two traversals of the circuit. This calculation
is performed for each set of Delay-Cin curves available, and
hence the running time is dominated by that of Algorithm 1.

V. RESULTS

In the previous sections, we have presented two metrics for
determining the benefits obtainable from sizing. In order to
validate our approach to calculating these metrics, we proceed
as follows. We use a library consisting of multiple sizes of
an inverter and two-input NAND, NOR and XOR gates, at
the 0 � 1µ technology node, characterized using the Berkeley
Predictive Technology Model4 [18]. In all, we have 10 discrete
sizes of each gate type. The calculated gate sizes are rounded
off to the nearest size available in this library. We use SIS
[19] to map ISCAS and MCNC benchmark circuits, with
varying optimization criteria (for area, delay and combinations
of area and delay), and obtain 7 implementations. We then
add random capacitances at all interconnects of these imple-
mentations twice, in order to simulate the effect of different
placement and routing solutions. We thus obtain 14 different
implementations for each benchmark circuit. The library is

4Available from http://www-device.eecs.berkeley.edu/
˜ptm

also characterized in order to obtain correct values of logical
effort and parasitic delays for each gate5. Comparisons are
made with our implementation of TILOS [3].

A. Algorithm MDE
For all implementations of every benchmark circuit (ob-

tained as described above), we apply our implementations
of TILOS and Algorithm MDE, in order to determine the
minimum achievable delay. Our goal is to measure the error
between both delays obtained (exact, from TILOS and esti-
mated, from Algorithm MDE).

Figure 11 and Figure 12 presents the comparison of Algo-
rithm MDE with our implementation of TILOS for a few of
the benchmark circuits. For each implementation, the first bar
represents the delay of the unsized circuit. The second bar is
the minimum delay obtained when the mapped circuit is sized
using our implementation of TILOS, and the last bar is the
minimum achievable delay estimated using Algorithm MDE.
As can be seen by the correspondence between the last two
bars for each implementation, our results agree with those
obtained via TILOS. In every case, the execution time for our
algorithm was less than a second, while our implementation
of TILOS took from a few seconds for C17 up to more than
1500 seconds for C62886. The average error for each circuit
over all implementations is presented in Table I. Over all the
benchmark circuits (59 in total), the average error is 6 � 01%.

5 [10] describes how these values can be obtained from the reference model.
Our approach is detailed in [20].

6This version does not use incremental timing analysis. However, given
the large difference in run times, we expect our algorithm to still outperform
TILOS, even if it were to use incremental timing analysis.

9

 ® ¯ ° ± ² ³ ´¶¶�· ±
�· ±®® · ± ¸ ¹[»�¼ ½ ¾ ¿ À ¸ Â[Ã Ä�ÅÆ ¸ ÈÝ¼ É

Ê Ë$Ì�Í Î Ë$Î Ï�Ð Ñ�Ð Ò Ó�Ï

Ò ¶
Õ Ö× Ø Ù ÚÛÜ ® ¯ ° ± ² ³ ´ µ ¶ � ® ¯ °¶¶[· ®¶[· °

¶[· ²¶[· ´ ¸º¹[»�¼ ½ ¾ ¿ ÀÁ¸8Â.Ã Ä�ÅÝÆ ¸$ÈÝ¼ É
Ê Ë$Ì Í Î Ë8Î Ï�Ð Ñ�Ð Ò Ó�Ï

Í Ñ�Í
Õ Ö× Ø Ù ÚÛÜ ® ¯ ° ± ² ³ ´ µ ¶ � ® ¯ °¶¶�·

¶�· ®¶�· ¯ ¸ò¹[»�¼ ½ ¾ ¿ À ¸$Â[Ã Ä�ÅÝÆ ¸8È¼ É
Ê Ë$Ì�Í Î Ë$Î Ï�Ð Ñ�Ð Ò Ó�Ï

Ë$Ñ�� Ó�� Ò Ð �
Õ Ö× Ø Ù ÚÛÜ

 ® ¯ ° ± ² ³ ´ µ ¶ � �® ¯ °¶¶�· ¶�· ®¶�· ¯¶�· ° ¸º¹[»�¼ ½ ¾ ¿ ÀÁ¸$Â[Ã Ä�ÅÆ ¸8È¼ É
Ê Ë$Ì�Í Î Ë$Î Ï�Ð Ñ�Ð Ò Ó�Ï

Ë����
Õ Ö× Ø Ù ÚÛÜ ® ¯ ° ± ² ³ ´ µ ¶ � ® ¯ °¶¶[· ®¶[· °¶[· ²

¶[· ´ �· ® ¸ ¹[»�¼ ½ ¾ ¿ À ¸ Â.Ã Ä�ÅÝÆ ¸ ÈÝ¼ É
Ê Ë$Ì Í Î Ë8Î Ï�Ð Ñ�Ð Ò Ó�Ï

Ë � Ñ�����Î �
Õ Ö× Ø Ù ÚÛÜ ® ¯ ° ± ² ³ ´ µ ¶ � ® ¯ °¶¶�· ®¶�· °¶�· ²

¶�· ´ �· ® ¸ò¹[»�¼ ½ ¾ ¿ À ¸$Â[Ã Ä�ÅÝÆ ¸8È¼ É
Ê Ë$Ì�Í Î Ë$Î Ï�Ð Ñ�Ð Ò Ó�Ï

Ì�Ñ�Ò �
Õ Ö× Ø Ù ÚÛÜ

 ® ¯ ° ± ² ³ ´ µ ¶ � �® ¯ °¶¶�· ¶�· ®¶�· ¯¶�· ° ¸º¹[»�¼ ½ ¾ ¿ ÀÁ¸$Â[Ã Ä�ÅÆ ¸8È¼ É
Ê Ë$Ì�Í Î Ë$Î Ï�Ð Ñ�Ð Ò Ó�Ï

Ì�Ñ�� Ò Ð �
Õ Ö× Ø Ù ÚÛÜ ® ¯ ° ± ² ³ ´ µ ¶ � ® ¯ °¶¶[· ¶[· ®¶[· ¯¶[· °

¶[· ± ¸º¹[»�¼ ½ ¾ ¿ ÀÁ¸8Â.Ã Ä�ÅÝÆ ¸$ÈÝ¼ É
Ê Ë$Ì Í Î Ë8Î Ï�Ð Ñ�Ð Ò Ó�Ï

Ì�� Í Î
Õ Ö× Ø Ù ÚÛÜ ® ¯ ° ± ² ³ ´ µ ¶ � ® ¯ °¶¶�· ®

¶�· °¶�· ²
¶�· ´ ¸ ¹[»�¼ ½ ¾ ¿ À ¸ Â[Ã Ä�ÅÝÆ ¸ È¼ É

Ê Ë$Ì�Í Î Ë$Î Ï�Ð Ñ�Ð Ò Ó�Ï

Ì�� Í Î � ´
Õ Ö× Ø Ù ÚÛÜ

Fig. 12. Results for selected MCNC benchmark circuits

TABLE I
PERCENTAGE ERROR OF MDE W.R.T TILOS

Circuit Error% Circuit Error% Circuit Error%
C1908 5.50 C2670 4.53 C3540 4.79
C5315 3.76 C6288 3.42 C7552 4.45
9symml 4.47 apex6 11.59 apex7 4.52
b1 2.32 b9 5.10 c8 3.50
cc 3.64 cht 11.74 cm138a 8.86
cm150a 4.73 cm151a 3.10 cm152a 5.26
cm162a 2.05 cm163a 2.75 cm42 3.99
cm82aa 10.16 cmb 8.00 cordic 6.95
count 6.40 cu 2.42 dalu 3.86
decod 0.65 des 1.97 example2 13.53
f51m 4.41 frg1 6.18 frg2 6.61
i1 10.46 i2 9.17 i3 12.60
i10 2.42 lal 4.84 majority 2.68
mux 12.88 myadder 4.57 pair 3.66
parity 9.74 pcle 1.54 pcler8 5.55
pm1 8.17 rot 4.41 tcon 7.49
term1 6.99 unreg 4.06 vda 6.67
x1 6.64 x2 4.19 x3 7.45

This error is due to the fact that most circuits are not trees,
but have reconvergent fanouts. Our claim in IV-A, of assuming
Delay-Cin curves of reconvergent fanouts to be independent is
borne out by the small magnitude of the error.

B. Algorithm ADC
We next present the results of generating estimated area-

delay curves of all implementations of a circuit, using Al-
gorithm ADC. The first goal of this approach is to correctly

predict which implementation has the lowest cost for different
delay points. In order to measure this, we generate the area-
delay curves for all implementations, using TILOS and Algo-
rithm ADC. In the entire range of available delay values, we
select ten equally spaced delay points. Note that the number of
implementations that can be sized to meet a particular delay
value varies by circuit, as can be seen from the area-delay
curves shown in Figure 2. We make pairwise comparisons

10

TABLE II
COMPLETE AREA-DELAY CURVE COMPARISON

�
∆Aest � ∆Aact

�
Circuit

Comparisons
All Comparisons Incorrect Comparisons

Total Incorrect maximum (%) average (%) maximum (%) average (%)
C432 102 3 21.85 6.42 11.33 9.51
C499 158 14 21.52 6.38 16.08 7.83
C880 41 3 13.95 4.11 9.89 6.93
C1355 136 10 28.61 8.17 18.11 8.02
C1908 113 4 25.72 5.62 5.22 4.00
C2670 121 1 18.87 3.49 3.28 3.28
C3540 101 5 18.24 4.49 14.51 8.12
C5315 163 8 27.51 7.24 5.09 2.34
C7552 30 2 25.08 7.02 4.70 2.68
C6288 57 10 22.50 4.65 11.62 4.85
apex6 127 8 13.62 3.37 5.09 2.13
b9 108 6 9.47 3.00 8.57 4.73
cm162a 162 12 17.90 6.53 17.87 11.40
x3 83 14 16.64 4.88 14.94 6.84
z4ml 64 12 16.43 3.31 9.99 5.01
i7 74 4 8.53 2.47 4.22 1.60
9symml 104 6 20.82 4.82 13.18 9.16
pair 89 10 23.51 5.93 14.24 7.01
pcler8 62 5 16.26 2.86 3.31 2.31
k2 95 3 24.31 4.89 13.91 5.99
ttt2 103 6 11.53 3.14 9.27 6.25
lal 82 0 14.12 3.60 0.00 0.00

Total 2175 146(6.71%)

between all implementations available at the selected delay
point, and determine which implementation is better in each
pair. In Table II, for each benchmark circuit, the number of
comparisons made are shown in the second column. Next, we
make the same comparison using the delay curves obtained
from our implementation of TILOS. An incorrect comparison
is when the ranking according to Algorithm ADC is different
from that obtained from TILOS. As shown in the next column,
incorrect comparisons occur only 1.86% of the time.

Next, we consider the error in the predicted area difference.
When comparing implementations I1 and I2, the better imple-
mentation is the one with smaller area. Let the corresponding
areas be AI1est and AI2est, and assume AI1est � AI2est, so
that I1 is the better implementation. The difference between
the estimated areas of I1 and I2, is calculated as ∆Aest q
100 � 1 ¬ AI1est

AI2est � . The corresponding difference between the

areas from the actual area-delay curves of I1 and I2, AI1act and

AI2act is calculated as ∆Aact q 100 � 1 ¬ AI1act
AI2act � . The maximum

and average difference between ∆Aest and ∆Aact are presented
in columns 4 and 5 of Table II. For example, for circuit
C2670, Algorithm ADC overestimates the difference in areas
between two implementations by an average of 3.49%, while
the maximum error is 18.87%. The maximum error does not
happen too often, and for all circuits, the average error is
5.07%, while the maximum error is 28.61%. The last two

columns present the maximum and average errors in area
estimation for comparisons that were mis-predicted. While
the maximum is large, it is rare, the average error in this
case is 5.71%. As mentioned previously, incorrect predictions
themselves are very infrequent.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we identify and address two components
that can be used to evaluate different implementations of a
circuit. Using the algorithms presented in this paper, designers
can quickly determine the minimum achievable delay that
can be obtained by an implementation. We also present an
algorithm for estimating the entire area-delay curve of all
available implementations, so that given a target delay, the
best implementation (in terms of area) can be selected. Both
of these metrics are calculated without running an exact sizing
tool, and are therefore fast, but do not sacrifice on accuracy,
as shown by the results.

The concept of calculating and propagating Delay-Cin
curves is general, and can be applied to different areas as well.
For example, current placement tools try to provide a solution
that is delay-optimal, among other objectives. However, they
ignore the gains that may be obtained via sizing. Our approach
can be used to guide the placement tool, in effect making it
“transistor-sizing aware,” so that the final solution is globally
optimal. Another area of application is in technology map-
ping, where circuits are broken into trees which are mapped

11

individually, simply estimating the load values at the output of
each tree. In [21], Delay-Cin curves are used to determine the
optimal assignment of loads at tree outputs, leading to superior
mapped solutions.

REFERENCES

[1] L. Stok, M. A. Iyer, and A. J. Sullivan, “Wavefront Technology Map-
ping,” in Proceedings of the Design, Automation and Test in Europe
Conference, Mar. 1999, pp. 531–536.

[2] B. Hu, Y. Watanabe, A. Kondratyev, and M. Marek-Sadowska, “Gain-
Based Technology Mapping for Discrete-Size Cell Libraries,” in Pro-
ceedings of the IEEE/ACM Design Automation Conference, June 2003,
pp. 574–579.

[3] J. P. Fishburn and A. E. Dunlop, “TILOS: A Posynomial Programming
Approach to Transistor Sizing,” in Proceedings of the IEEE/ACM
International Conference on Computer Aided Design, Nov. 1985, pp.
326–328.

[4] S. S. Sapatnekar, V. B. Rao, P. M. Vaidya, and S.-M. Kang, “An Exact
Solution to the Transistor Sizing Problem for CMOS Circuits Using
Convex Optimization,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 12, no. 11, pp. 1621–1634, Nov.
1993.

[5] C.-P. Chen, C. C. N. Chu, and M. D. F. Wong, “Fast and Exact Simulta-
neous Gate and Wire Sizing by Lagragian Relaxation,” in Proceedings
of the IEEE/ACM International Conference on Computer Aided Design,
Nov. 1998, pp. 617–624.

[6] V. Sundararajan, S. S. Sapatnekar, and K. K. Parhi, “Fast and Exact
Transistor Sizing Based on Iterative Relaxation,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 21,
no. 5, pp. 568–581, May 2002.

[7] A. R. Conn, P. K. Coulman, R. A. Haring, G. L. Morrill,
C. Visweswariah, and C. W. Wu, “JiffyTune: Circuit Optimization
Using Time-Domain Sensitivities,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 17, no. 12, pp.
1292–1309, Dec. 1998.

[8] X. Bai, C. Visweswariah, P. N. Strenski, and D. J. Hath-
away, “Uncertainty-aware circuit optimization,” in Proceedings of
the IEEE/ACM Design Automation Conference, June 2002, pp. 58–63.

[9] R. F. Sproull and I. E. Sutherland, “Theory of Logical Effort: Designing
for Speed on the Back of an Envelope,” in IEEE Advanced Research in
VLSI, Mar. 1991, pp. 1–16.

[10] I. Sutherland, B. Sproull, and D. Harris, Logical Effort: Designing Fast
CMOS Circuits. San Fransisco, CA: Morgan Kaufmann, 1999.

[11] S. K. Karandikar and S. S. Sapatnekar, “Fast Comparisons of Circuit
Implementations,” in Proceedings of the Design, Automation and Test
in Europe Conference, Feb. 2004, pp. 910–915.

[12] ——, “Fast Estimation Of Area-Delay Tradeoffs In Circuit Sizing,”
in Proceedings of the IEEE International Symposium on Circuits and
Systems, May 2005, pp. 3575–3578.

[13] F. Beeftink, P. Kudva, D. Kung, and L. Stok, “Gate-Size Selection for
Standard Cell Libraries,” in Proceedings of the IEEE/ACM International
Conference on Computer Aided Design, Nov. 1998, pp. 545–550.

[14] W. Donath, P. Kudva, L. Stok, P. Villarrubia, L. Reddy, A. Sullivan,
and K. Chakraborty, “Transformational Placement and Synthesis,” in
Proceedings of the Design, Automation and Test in Europe Conference,
Mar. 2000, pp. 194–201.

[15] K. Sulimma, I. Neumann, L. van Ginneken, and W. Kunz, “Improving
Placement Under the Constant Delay Model,” in Proceedings of the
Design, Automation and Test in Europe Conference, Mar. 2002, pp. 677–
682.

[16] L. Stok, D. S. Kung, D. Brand, A. D. Drumm, A. J. Sullivan, L. N.
Reddy, N. Hieter, D. J. Geiger, H. H. Chao, and P. J. Osler, “BooleDozer:
Logic Synthesis for ASICs,” IBM Journal of Research and Development,
vol. 40, no. 4, pp. 407–430, July 1996.

[17] “Gain Based Synthesis: Speeding RTL to Silicon,” http://www.
magma-da.com/articles/Magma GBS White Paper.pdf, white Paper.

[18] Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and C. Hu, “New
Paradigm of Predictive MOSFET and Interconnect Modeling for Early
Circuit Design,” in Proceedings of the IEEE Custom Integrated Circuits
Conference, May 2000, pp. 201–204.

[19] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal-
danha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “SIS: A System for Sequential Circuit Synthesis,” Elec-
tronics Research Laboratory, Department of Electrical Engineering

and Computer Science, University of California, Berkeley, Tech. Rep.
UCB/ERL M92/41, May 1992.

[20] S. K. Karandikar, “Synthesis and Performance Prediction of VLSI
Designs,” Ph.D. dissertation, University of Minnesota, 2004.

[21] S. K. Karandikar and S. S. Sapatnekar, “Logical Effort Based Technol-
ogy Mapping,” in Proceedings of the IEEE/ACM International Confer-
ence on Computer Aided Design, Nov. 2004, pp. 419–422.

Shrirang K. Karandikar received the B.E. degree
from the University of Pune in 1994, the M. S.
degree from Clarkson University in 1996 and the
Ph.D. degree from the University of Minnesota in
2004. He worked with Intel’s Logic and Validation
Technology group from 1997 to 1999, and is cur-
rently a post-doctoral researcher at IBM’s Austin
Research Laboratory.

Sachin S. Sapatnekar received the B.Tech. degree
from the Indian Institute of Technology, Bombay
in 1987, the M.S. degree from Syracuse University
in 1989, and the Ph.D. degree from the University
of Illinois at Urbana-Champaign in 1992. From
1992 to 1997, he was an assistant professor in the
Department of Electrical and Computer Engineering
at Iowa State University. He is currently the Robert
and Marjorie Henle Professor in the Department of
Electrical and Computer Engineering at the Univer-
sity of Minnesota.

He has authored several books and papers in the areas of timing and layout.
He has held positions on the editorial board of the IEEE Transactions on VLSI
Systems, and the IEEE Transactions on Circuits and Systems II, IEEE Design
and Test, and the IEEE Transactions on CAD. He has served on the Technical
Program Committee for various conferences, and as Technical Program and
General Chair for Tau and ISPD, and Techical Program co-chair for DAC.
He has been a Distinguished Visitor for the IEEE Computer Society and a
Distinguished Lecturer for the IEEE Circuits and Systems Society. He is a
recipient of the NSF Career Award, three best paper awards at DAC and one
at ICCD, and the SRC Technical Excellence award. He is a fellow of the
IEEE.

12

