
A

Techniques for Scalable and Effective Routability Evaluation

Yaoguang Wei, University of Minnesota
Cliff Sze, IBM Austin Research Laboratory
Natarajan Viswanathan, IBM Systems and Technology Group
Zhuo Li, IBM Austin Research Laboratory
Charles J. Alpert, IBM Austin Research Laboratory
Lakshmi Reddy, IBM Systems and Technology Group
Andrew D. Huber, IBM Systems and Technology Group
Gustavo E. Tellez, IBM Systems and Technology Group
Douglas Keller, IBM Systems and Technology Group
Sachin S. Sapatnekar, University of Minnesota

Routing congestion has become a critical layout challenge in nanoscale circuits since it is a critical factor in determining the
routability of a design. An unroutable design is not useful even though it closes on all other design metrics. Fast design closure
can only be achieved by accurately evaluating whether a design is routable or not early in the design cycle. Lately, it has
become common to use a “light mode” version of a global router to quickly evaluate the routability of a given placement. This
approach suffers from three weaknesses: (i) it does not adequately model local routing resources, which can cause incorrect
routability predictions that are only detected late, during detailed routing, (ii) the congestion maps obtained by it tend to have
isolated hot spots surrounded by noncongested spots, called “noisy hot spots”, which further affects the accuracy in routability
evaluation, (iii) the metrics used to represent congestion may yield numbers that do not provide sufficient intuition to the
designer; moreover, they may often fail to predict the routability accurately. This paper presents solutions to these issues.
First, we propose three approaches to model local routing resources. Second, we propose a smoothing technique to reduce
the number of noisy hot spots and obtain a more accurate routability evaluation result. Finally, we develop a new metric
which represents congestion maps with higher fidelity. We apply the proposed techniques to several industrial circuits and
demonstrate that one can better predict and evaluate design routability, and congestion mitigation tools can perform much
better to improve the design routability.

Categories and Subject Descriptors: B.7.2 [Hardware]: Integrated Circuit—Design Aids - Routing

General Terms: Algorithms, Design, Experimentation, Measurement

Additional Key Words and Phrases: Physical design, Routing, Routability evaluation, Local resource modeling, Congestion
metric

1. INTRODUCTION
Routability has become an increasingly important and difficult issue in nanometer-scale VLSI designs,
and must be addressed across the entire physical synthesis tool stack. This in turn requires fast,
yet reasonably accurate techniques to identify routing-challenged regions (hot spots) for routability
optimization. This work focuses on the two key components of routability evaluation: (a) the method

This research was conducted when Y. Wei worked as an intern at the IBM Austin Research Laboratory, Austin, TX. Some
initial results of this work were published in the proceedings of the Design Automation Conference [Wei et al. 2012].
Author’s addresses: Y. Wei and S. S. Sapatnekar, Department of Electrical and Computer Engineering, University of Minnesota,
Minneapolis, MN; C. Sze, Z. Li and C. J. Alpert, IBM Austin Research Laboratory, Austin, TX; N. Viswanathan, IBM
Systems and Technology Group, Austin, TX; L. Reddy, A. D. Huber and D. Keller, IBM Systems and Technology Group,
Hopewell Junction, NY; G. E. Tellez, IBM Systems and Technology Group, Burlington, VT.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first
page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may
be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1084-4309/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:2 Y. Wei et al.

used to analyze the congestion of a given placement, and (b) the metric(s) used to score or represent
the congestion.

1.1. Congestion analysis techniques
Congestion analysis is related to, but different from, routing. The basic purpose of routing is to
find paths to connect all the nets to achieve a correct electrical connection of the circuit. Routing
is traditionally divided into two main stages due to its complexity: global routing and then detailed
routing. In the global routing stage, the routing region is partitioned into global routing cells (g-cells)
and only the g-cell-to-g-cell paths are computed for all the nets (see Section 2 for more details).
Next, detailed routing computes the pin-to-pin connection for all the nets, guided by the coarse paths
from global routing. Further, detailed routing is constrained by complex design rules, which are
usually ignored by global routing, in order to ensure manufacturability. Unlike routing, the goal
of congestion analysis is to predict routability, identify routing hot spots, and provide designers
or optimization tools fast feedback on congestion to improve routability. In congestion analysis, a
congestion map (e.g., Fig. 1(a)), i.e., a region-wise color-coded plot that denotes the congestion in
each region of a design, can be generated and used to visualize the congestion level in the design.
A thorough discussion about the differences between congestion analysis and routing can be found
in [Alpert and Tellez 2010].

Typical approaches for congestion analysis can be categorized as follows:

(1) Taking a design through detailed routing to determine whether it is routable or not.
(2) Using a probabilistic congestion estimation procedure without performing any routing [Lou et al.

2002; Westra et al. 2004].
(3) Performing fast global routing and using its solution to perform congestion analysis [Pan and

Chu 2007; Roy et al. 2009; Shojaei et al. 2011; Hu et al. 2013].

In principle, an approach based on detailed routing estimates is the most accurate, but is very time-
consuming and impractical during the early stages of design closure. Probabilistic methods are highly
inaccurate and fail to capture the behavior of global routing, especially in modern designs with
numerous IP blockages and a large number of metal layers with varying width and spacing. Lately,
the third method has become more attractive and mainstream due to the advent of fast, high-quality
global routers [Xu et al. 2009; Chang et al. 2008; Cho et al. 2007; Chen et al. 2009; Wu et al. 2010].
Although global-routing-based congestion analysis provides a happy medium between probabilistic
analysis and detailed routing, it suffers from two key drawbacks.

The first drawback in global-routing-based congestion analysis is that global routing solutions
cannot effectively predict the problematic regions identified by detailed routing, since they do not
effectively model local routing congestion. Here, local routing congestion, or simply, local congestion,
refers to the congestion that does not appear in global routing but shows up in detailed routing. This
mismatch appears mainly because the local routing resources, or simply, local resources, used for
local routing in detailed routing are not modeled in global routing (see Section 3.1 for detailed
discussions).

Roughly speaking, local routing refers to the routing performed in one g-cell. Local routing clearly
consumes varying amounts of routing resources depending on the factors such as design rules, the size
of the g-cell, and pin density. Fig. 1 demonstrates a concrete instance where ignoring local resources
in global routing can lead to significant misprediction of design routability. Without considering
local resources, the congestion analyzer only sees very few congestion hot spots in the “combined”
congestion map1 (the spots in yellow, orange, red or pink color in Fig. 1(a)), and cannot predict the
locations of opens/shots in detailed routing (the red dots in Fig. 1(b)), where detailed routing cannot
complete. Hence, to achieve more accurate routability evaluation, local resources must be modeled

1The “combined” congestion map combines all the layers by showing the maximal congestion among all the layers. All the
congestion plots in this paper without a qualifier show the combined maps. Moreover, the color map shown in Fig. 1(a) applies
to all the subsequent congestion plots skipping a color bar.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Techniques for Scalable and Effective Routability Evaluation A:3

(a) Combined congestion map from a
global-routing-based congestion analyzer

(b) The open/short map from a de-
tailed router

Fig. 1. Without considering local resources, global-routing-based congestion analyzers cannot predict the locations of
opens/shorts well.

in global routing. Further, any such method should be flexible enough to enable it to be adjusted
in a straightforward manner from one technology to the next (as design rules are different for each
technology). It is also desirable that the local resource model has good scalability on g-cell size so
that it can be applied with different g-cell sizes.

The other drawback in global-routing-based congestion analysis is that the routing solutions from
the congestion analyzers tend to have hot spots surrounded by noncongested spots, called “noisy”
hot spots (further discussed in Section 4), which can usually be mitigated easily by further routing
effort, and such noisy hot spots bring inaccuracy to the congestion analysis. The noisy hot spots
appear mainly because of the following factor. Due to a large number of invocations in the design
flow, congestion analysis tools tend to run very fast by limiting the routing effort, e.g., by limiting the
extent to which a net can detour [Alpert and Tellez 2010]. However, during the routing stage, many
of these constraints are naturally removed since nets are allowed greater flexibility in detouring. For
example, Fig. 2 shows the congestion maps on the design ckt i from an industrial routing tool in two
modes: congestion analysis mode and global routing mode. We observe that in Fig. 2(a), there are
quite a few noisy hot spots and they are dissolved by further routing effort in global routing mode
(Fig. 2(b)). These hot spots are “noise” that prevents us from obtaining more accurate routability
evaluation, and should be addressed properly.

0.2

0.4

0.6

0.8

1

(a) Congestion analysis mode

0.2

0.4

0.6

0.8

1

(b) Global routing mode

Fig. 2. Congestion maps from an industrial routing tool in two modes.

1.2. Metrics to score or represent congestion
Visual inspections of congestion plots, or congestion maps, often serve as a first-order method to
compare the routability of different design points. However, optimization tools and designers also

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:4 Y. Wei et al.

require a single metric that can accurately score or represent the design congestion. Commonly-used
metrics in academia and industry can be categorized as follows:
Overflow-based metrics include total overflow and maximal overflow that measure the excess of the
routing usage over routing capacity on the global routing edges in a global routing graph (defined in
Section 2). These metrics do not provide sufficient intuition (e.g., how good/bad is an overflow of
14, 253?), which makes it difficult to quantify how much better one design point is versus another.
Further, they may even fail to predict the routability correctly in some cases, as will be demonstrated
in Section 7.3.
Net-congestion-based metrics [Alpert and Tellez 2010] include2: (a) ACN(x), the average net
congestion, defined as the average congestion of the top x% congested nets, where the congestion
of a net is the maximum congestion among all the global routing edges traversed by the net. (b)
WCI(y), the worst congestion index, defined as the number of nets with congestion greater than
or equal to y%. In practice, ACN(20), WCI(90) and WCI(100) have been used to evaluate
routability. The main issue with these metrics is that they fail to differentiate between a net spanning
a single congested global routing edge and one that spans multiple congested edges.

In this paper, we propose techniques to enhance the accuracy and effectiveness of routability
evaluation. Our key contributions include:

— A study of the inaccuracies in existing global-routing-based congestion analyzers, specifically
due to the lack of local routing resource modeling and the existence of noisy hot spots in the
congestion maps.

— An analysis of the weaknesses in existing metrics to score or represent design congestion.
— Methods to model and incorporate the effects of local routing resource usage during global

routing. Compared with approaches without modeling local routing resources, our methods
improve congestion analysis in three aspects: (a) significant improvement in the accuracy of
congestion analysis, (b) better prediction of detailed routing issues such as opens and shorts, and
(c) accelerated congestion analysis with a larger g-cell size.

— A smoothing technique that reduces the noise in congestion maps and further improves the
accuracy of routability evaluation.

— A new congestion metric that provides better intuition and represents the design congestion with
high fidelity. This metric has been used in DAC 2012 placement contest [Viswanathan et al. 2012].

— Detailed empirical validation of our proposed techniques on advanced industrial designs.

The rest of this paper is organized as follows. We begin by presenting background and definitions
in Section 2. Next, we present our methods for modeling local routing congestion in Section 3, and
discuss the smoothing technique proposed to filter out the noise in routability evaluation in Section 4,
followed by a description of our new metric for routability evaluation in Section 5. In Section 6,
we discuss how our proposed techniques can be integrated together into the traditional routability
evaluation process. Empirical validation and concluding remarks are provided in Section 7 and 8,
respectively.

2. PRELIMINARIES
Typically, during global routing, the chip is tessellated into rectangular grids (or g-cells), and the
global routing graph (GRG), G = (V,E), is constructed. A node in V represents a g-cell in the
layout, and an edge (called a g-edge) in E denotes the boundary between two adjacent g-cells. An
example of the GRG is shown in Fig. 3.

We now introduce some notation and terms that will be used in the remainder of this paper. For
each edge e in the GRG, we define ce as edge capacity — the total or maximal capacity of the edge,
be as blockage usage, and we as the routing demand on the edge. In global routing, ce, be, and we are
generally expressed in the number of routing tracks, where a routing track is the routing resource
taken by a single wire passing through an edge in the GRG. We further define total routing usage ue

2We name the metrics differently from [Alpert and Tellez 2010] to facilitate later references.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Techniques for Scalable and Effective Routability Evaluation A:5

g-cells g-edges

Fig. 3. Global routing graph (GRG).

as sum of be and we. Then the overflow of an edge e can be defined as oe = max(ue − ce, 0). The
total overflow (TOF) of the layout is given by

∑
e∈E oe, and the maximal overflow (MOF) is given

by maxe∈E oe. The congestion of edge e, denoted as ge, is given by ge = ue/ce.

3. LOCAL CONGESTION MODELING
In this section, we will analyze the problems associated with existing congestion analysis methods,
discuss the sources of local resources, review the previous works related to local resource modeling,
and finally propose our methods for local resource modeling. For convenience, in this paper we will
use the terms “local resource modeling” and “local congestion modeling” interchangeably.

3.1. Limitations of existing global-routing-based congestion analysis methods
As mentioned in Section 1, global-routing-based congestion analysis is now mainstream. Examples
include FastRoute [Pan and Chu 2006] and NTHU-Route 2.0 [Chang et al. 2008], which are used
as congestion analyzers within routability-driven placers IPR [Pan and Chu 2007] and CRISP [Roy
et al. 2009], respectively. However, the major problem in these academic global routers or congestion
analyzers is in their inability to model local resource usage, which can lead to the inaccurate prediction
of routing hot spots (opens/shorts) in detailed routing.

Fig. 4. The local net (S, T) is ignored by traditional global routers.

There are two major consumers of local resources. The first of these are the wires used to connect
the local (sub-) nets, whose pins are all inside a single g-cell. As illustrated in Fig. 4, the two-pin net
(S, T) is a local net in the g-cell centered at b, and the local wire connecting S to T is not modeled
in global routing. For convenience, we denote these kinds of resources as local-net resources.
Traditional global routers generally abstract the routing problem and only focus on g-cell-to-g-cell
routing, while the resources used by local nets are ignored.

The second set of consumers, which we refer to as pin-access resources, are the resources used
for pin access in detailed routing, which are also ignored in traditional global routing. Fig. 5(a) shows
a standard cell with five signal pins, shown as blue shapes on metal layer 1 (M1). If we ignore these
pins, nine horizontal tracks (marked with number 1–9), on metal layer 2 (M2), are available for
global routing in this region. However, from the detailed routing results shown in Fig. 5(a), we can
see that horizontal track 5–7 will be mostly blocked in the region for pin access and are no longer
available for global routing. Note that only counting the area of wires on layer M2 connecting to
pins as local resources used by pins is not enough, since pin access causes many track fragments
between the short wires connecting to pins (Fig. 5(a) shows two examples), which are hard to use for
routing and should also be amortized to the pin-access resources. In addition, pin-access resources
also depend on the pin distribution. The closer pins are packed together, the more difficult it is for a

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:6 Y. Wei et al.

detailed router to access all the pins, since the wires connecting to some pins could block the pin
access to other pins and detour may become necessary in such a case. Therefore, more resources
could be consumed than the case where the pins are packed more loosely. As an example, Fig. 5(b)
shows the pin access for three standard cells with larger pin density3 than the cell shown in Fig. 5(a).
Due to denser pin distribution, pin access becomes more difficult in Fig. 5(b), and therefore, zigzag
wires and U-shaped wires have to be used to access the pins, which takes more resources than flat
wires or L-shaped wires used for pin access shown in Fig. 5(a). Even worse, a short is caused as
shown in Fig. 5(b).

(a) Pin access blocks track 5–7. (b) Pins with large density consume many routing tracks
and a short even occurs.

Fig. 5. Pin access consumes considerable local routing resources. In the legends, “V12” denotes the vias from layer M1 to
M2, and “V23” the vias from layer M2 to M3.

In summary, ignoring these local routing resources caused by local nets and pin access will
incorrectly make global routing see more tracks than are available, resulting in inaccurate routability
evaluation. This motivates the problem of modeling local resources, or local congestion, in global
routing. Next, we will first review the previous works for local resource/congestion modeling, and
then present our algorithms to address this problem.

3.2. Review of previous works for local congestion modeling
Since the fundamental task of routing is to connect the pins of the same net, pin density is closely
related to routing congestion, and high pin density is usually correlated with high routing conges-
tion [Taghavi et al. 2010]. Therefore, pin density has become a key factor to optimize in many
placers [Brenner and Rohe 2002; Roy et al. 2009; Hsu et al. 2011]. The general idea involved in
these works is to spread the cells so that the pin density is not high in a region. In the routing stage,
pin density is also used as a metric to drive routers to achieve more uniform wire distribution to
reduce the variations in the chemical mechanical polishing process [Cho et al. 2006; Chen et al.
2007]. Though these works have used pin density as a tool to drive placers or routers in optimization,
none of them explicitly studies the relation between pin density and the local congestion, i.e., how
the local congestion can be modeled by pin density in global routing stage to achieve a more accurate
routability evaluation.

In [Li et al. 2012], an algorithm is proposed to estimate the routing congestion of a circuit
considering the local-net resources. It first uses a Steiner tree algorithm to estimate the routes for all
the nets (including global nets) in the circuit, and then based on the Steiner solution, computes the
maximal track usage within a g-cell using a scan-line algorithm. Though the consideration of local
connections in a g-cell improves the accuracy of routability evaluation, it has the following problems.
Firstly, using Steiner solution for global nets to estimate the congestion can have large errors, since
in real routers, significant detours are used for the nets around the congested regions. Secondly, while

3Compared with the standard cell shown in Fig. 5(a), the three standard cells in Fig. 5(b) have only 1.2× larger area but 1.8×
more pins.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Techniques for Scalable and Effective Routability Evaluation A:7

this method acts more like a congestion estimator (similar to [Lou et al. 2002; Westra et al. 2004])
for a whole circuit, it does not work well in our scenario where the local congestion is to be modeled
at the global routing stage. This problem is illustrated in Fig. 6. We show two g-cells and assume that
the g-edge (a, b) has a capacity of 4 global routing tracks. Using the algorithm in [Li et al. 2012],
the maximal wire density in the g-cell centered at b would be 4 due to four local nets. However, for
global routing, if we reduce the capacity of g-edge (a, b) by 4, then this may be too pessimistic, since
there may still be some global nets that can be routed through the g-edge, as shown in Fig. 6.

x
a

x

x

x
x

x

x x

x

x
b

Maximal wire density: 4

x

x

Fig. 6. The maximal wire density model does not work well for the local congestion modeling in global routing.

In [Zhang and Chu 2012], an interleaved global routing and detailed routing framework, GDRouter,
is proposed to improve the detailed routing routability. To improve the consistency in routability
evaluation between global routing and detailed routing, three techniques are proposed. First, the cost
for each g-cell is calculated to consider pin distribution based on a Voronoi diagram method. Second,
the capacity of each g-edge is adjusted based on local routing usage estimated by spine routing,
which uses a single trunk tree for routing. Third, the capacity of each g-edge is further adjusted
by the number of global segments that cannot be assigned to a detailed routing track, which are
estimated by performing virtual routing, i.e., fast implementations of FastRoute [Xu et al. 2009] and
RegularRoute [Zhang and Chu 2011]. The first technique only uses the pin distribution to adjust the
cost of g-cells, but does not adjust the capacity of g-edges to consider the pin-access resources, and
thus ignores the fact that pin-access resources would also affect the capacity of g-edges. The second
technique could overestimate the local-net resource usage, since the spine routing tree could have
more wirelength than the Steiner tree that is used to estimate the local-net usage in advanced industrial
detailed routers such as [Gester et al. 2012; 2013]. The third technique involves running of the fast
version of global and detailed routers, which in practice could be computationally expensive when
applied to a congestion analyzer invoked tens of times in a physical synthesis flow. In summary, these
techniques have various limitations when they are used for local resource modeling in congestion
analysis.

Some industrial global routers or congestion analyzers also include some methods to model local
resources, e.g., some global routers include some form of detailed routing to consider the resources
consumed by local net connections and stacked vias [Gester et al. 2012; 2013]. However, these
approaches tend to be complex and computationally expensive when such a router acts as a congestion
analyzer and is repeatedly invoked during physical synthesis. This is shown in Section 7, where
we provide runtime data for such an industrial congestion analyzer. The aforementioned problems
motivate our work to develop more effective and efficient methods to model local resources when
using a global router for congestion analysis.

Next we will present and discuss three methods of local resource modeling: Method 1 based
on Steiner tree wirelength estimation, Method 2 based on pin-density estimation, and Method 3
combining techniques from Method 1 and Method 2 and including further enhancements. Before we
proceed further to discuss the details of each method, it will be helpful to briefly introduce how we
will evaluate the effects of our methods on the accuracy of routability evaluation. Given a design,
we first run an industrial congestion analyzer with complex and accurate local resource modeling
to get the reference congestion maps. Next, we run another global-routing-based fast congestion
analyzer with one of our methods to model local resources on the same design, to obtain another
set of congestion maps. Then we use the correlation between the two set of maps to evaluate the

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8 Y. Wei et al.

effects of our proposed method. Further details will be presented in Section 7.1 where we discuss the
experimental validation for the proposed methods.

3.3. Method 1: Estimation of local resources based on Steiner tree wirelength
In this section, we discuss how to estimate the local resources based on Steiner tree wirelength.

We first discuss the method for local-net resource modeling. We observe that the longer the local
wires are, the more likely they are to block global routing tracks. This observation can be formulated
by the following equation:

tb = lr/se, (1)

where tb is the number of routing tracks blocked by a local wire, lr is the length of the local wire,
and se is the length of a g-edge.

Equation (1) is adopted to calculate blocked tracks on a g-edge and can be easily extended to
the more complex cases. Consider the case of a multi-pin local net. To estimate local routing, we
first build a Rectlinear Steiner Minimum Tree (RSMT) for the pins4; in our experiments, we use
Flute [Chu and Wong 2008] for this purpose. We then break each horizontal tree segment into two
based on the x-coordinate of the g-cell center and apply Eq. (1) to calculate blocked global routing
tracks on the left and right g-edges associated with the g-cell. Similarly each vertical Steiner tree
segment can be broken using the y-coordinate of the g-cell center.

An example is shown in Fig. 7, where net (A,B) is a two-pin net while (A, J) and (B, J) are the
two segments of a Steiner tree. The global routing tracks blocked by net (A,B) in the horizontal
direction can be calculated based on segment (A, J). Since the g-cell center b is between A and
J , segment (A, J) blocks global routing tracks on g-edges (a, b) and (b, c). The blocked tracks on
g-edge (a, b) can be calculated as (xb − xA)/(xb − xa), where xb denotes the x-coordinate of g-cell
center b, and other notations are similarly defined. Similarly, the blocked global routing tracks on
g-edge (b, c) is (xJ − xb)/(xc − xb). The vertical tracks blocked by net (A,B) can be calculated
similarly, based on segment (J,B). As another example, when a segment is completely on the left of
(above) or right of (below) the g-cell center, such as the net (C,D) in Fig. 7, the blocked tracks can
all be attributed, respectively, to the left (top) or right (bottom) g-edge. The blocked tracks on g-edge
(b, c), in this case, can be calculated as (xD − xC)/(xc − xb). The proposed method can be easily
applied to more complex Steiner trees, for example net (A,B,C) in Fig. 8.

Fig. 7. Local routing resource estimation for two-pin nets.

Next we discuss how we model the pin-access resources. Since most traditional global-routing-
based congestion analyzers only produce the g-cell-center-to-g-cell-center connections for nets, we
must consider the synergy between global and local routing, i.e., how to connect to real pins. As an
approximation, the following method is used. We include the g-cell center as a dummy pin when
constructing the Steiner tree to model the local resources5. For example, for a net (D,E, F,G) shown
in Fig. 8, the Steiner tree connecting b, E, F,G is used to calculate the blocked global routing tracks
on the four boundaries of the g-cell with center b. Similarly, the Steiner tree connecting a,D is used
to calculate the blocked tracks corresponding to the g-cell with center a.

4We use RSMT since it provides a solution with minimum wirelength for a net and most modern routers use RSMT as the
initial solution for a net.
5Note that g-cell centers are added as dummy pins only for the nets with global wires. For a local net with all the pins inside a
g-cell, the g-cell center is not considered for Steiner tree construction since there is no global wire for this net.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Techniques for Scalable and Effective Routability Evaluation A:9

To further consider the track fragments blocked by the local wires connecting to pins as shown in
Fig. 5(a), we introduce a parameter p (p > 1) to scale the estimated local resources using the method
discussed above, where p will be tuned empirically for each technology.

Fig. 8. Local routing resources consumed by two nets.

In summary, to model local resources in global routing, we add a preprocessing step. Specifically,
we iterate through each net in the design, identify the local nets inside each g-cell, estimate the
local resources using the method presented in this section, and block the global routing tracks from
the related g-edges. Local wires inside a g-cell are usually short and for pin accessibility they are
typically routed in the second (M2) and third (M3) metal layers during detail routing. Hence, we only
block the global routing tracks on g-edges in the M2 and M3 layers during congestion evaluation.

3.4. Method 2: Estimation of local resources based on pin density
In this section, we present the second method for local resource modeling, which is even simpler
and faster than Method 1, yet is seen to provide similar effectiveness. This method is based on pin
density, and does not involve constructing Steiner trees to estimate the local resources. It is based on
the following observations:

— Each pin is associated with a set of local wires connected to it.
— The number of pins in a g-cell is a good indicator of the number of local wires, and is a first-order

estimate for routing tracks blocked by local wires within the g-cell.

Based on the above observations, we model the local resources Rl in a g-cell by

Rl = kn, (2)

where k is a technology-dependent parameter, and n is the number of pins from both local and global
nets in the g-cell.

As in Method 1, we use a preprocessing step with Method 2 in a global-routing-based congestion
evaluation tool. Specifically, we traverse all the g-cells and nets, and count the number of pins (n),
inside each g-cell. Following this, we block kn global routing tracks, due to the local wires in each
g-cell, on the four g-edges related to the g-cell. Similar to Method 1, we only block the global routing
tracks on g-edges in the M2 and M3 layers.

3.5. Method 3: An enhanced method to model local resources with better scalability
As Method 1 and Method 2 provide simple first-order models for local resources, there is some scope
for further improvement. Next, we will first discuss the limitations associated with the two methods,
and then present our enhanced method to model local resources.

3.5.1. Limitations in Method 1 and Method 2. As will be shown in Section 7.1.3, both Method 1
and Method 2 work well for small g-cell size, but do not scale well to large g-cell sizes. We will
analyze the reasons next.

In Method 1, to consider pin access resources, the local resource estimation counts the connection
from the real pins to the corresponding g-cell centers which act as dummy pins. This is based on
the assumption that all global wires are connected to g-cell centers. While this seems true in global

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10 Y. Wei et al.

x F

x
 D

b

a

Fig. 9. Artificially connecting pins to g-cell centers overestimates the routing resources used by the two-pin net (D,F).

routing stage, the real situation in detailed routing can be quite different. Fig. 9 shows an example,
where a two-pin net (D,F) in detailed routing may only consume the routing resources shown as
solid blue segments, while by artificially connecting pins to g-cell centers as in Method 1, the net
will consume resources shown as dashed red segments that significantly overestimate the routing
resources required. From the example, we can see that adding g-cell centers as dummy pins to
consider pin-access resources can bring errors, which will be amplified when g-cell size is increased,
since the wires from pin to g-cell center tend to be longer when g-cell size becomes larger.

There are two major reasons why Method 2 does not scale well with g-cell size. Firstly, Equation (2)
does not consider the potential relationship between k and g-cell size, and then the k-factor must be
tuned for each g-cell size. The dependence of k on the g-cell size is illustrated as follows. Fig. 10
shows four g-cells, a, b, c, d, with the size of 10 tracks, and in each there are 10 pins. Assume 10
pins block 5 tracks (showed as red segments) on each edge, and then k for g-cell size 10 is 0.5. Now
assume g-cell size increases to 20 tracks, and look at the g-cell F that contains g-cell a, b, c, d and
40 pins. Since the 40 pins now block 10 tracks on each edge, the k-factor for g-cell size 20 can be
calculated as 0.25. This example clearly shows the dependence of k on g-cell size. Secondly, the
estimation of local-net resources by pin-density in Method 2 ignores the real wirelength of local
nets, and can become inaccurate when g-cell size increases. For example, in Fig. 7, two two-pin nets
(A,B) and (C,D) have quite different Steiner wirelengths and likely consume different amount of
local resources, while Method 2 assumes they consume the same amount of local resources since they
both have 2 pins, which may bring error in local resource estimation. This error may be negligible
when g-cell size is small, but could become significant while a large g-cell size is used and the lengths
of wires connecting local nets with the same pin count can vary in a large range.

x

x

x

x
x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

a b

cd

F

Fig. 10. When g-cell size doubles, blocked tracks also double while the number of pins becomes four times.

In addition to the scalability problem, Method 2 also has other limitations, and can be improved
in the following two aspects. Firstly, in Method 2, when adjusting the capacity of four g-edges
associated with one g-cell, the amount of blockage added to each g-edge is the same, i.e., kn. This
can be further improved by considering the distribution of pins in the g-cell, i.e., if pins are closer
to one boundary of the g-cell, more blockages should be added to the g-edge across that boundary.
Secondly, Method 2 assumes n pins always consume the same local routing resources, kn, but this
can also be improved by considering the pin distribution. If the pins are packed within a region
so that their distance becomes smaller than a threshold distance, dth, it could become difficult to

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Techniques for Scalable and Effective Routability Evaluation A:11

access those pins, and more local resources tend to be used for pin access, as illustrated in Fig. 5(b).
Therefore, extra weights could be added to scale the local resources used by those pins.

3.5.2. The enhanced method to model local resources: Method 3. Motivated by solving the
problems in Method 1 and Method 2, we develop an enhanced method to model local resources,
Method 3. In Method 3, we use the following strategy to estimate the local routing resources: we
split the estimation of local resources into separate estimation of the local-net resources and the
pin-access resources, and use suitable techniques to estimate each category. Specifically, we use a
modified Steiner tree method to estimate the local-net resources, and an enhanced pin-density method
to estimate the pin-access resources with consideration of pin distribution. Finally, we combine the
estimation from the two methods as the final estimation. In this way, we make use of the advantages
from each method, and avoid the disadvantages.

Firstly, the modified Steiner tree method is used to estimate the local-net resources. Since, unlike
Method 1, we do not consider pin-access resources in this step, we do not add g-cell center as dummy
pins when constructing Steiner trees for local nets, and do not scale up the local-net resources. In this
way, only the local-net resources are estimated.

Secondly, the enhanced pin-density method is used to estimate the pin-access resources and there
are three major improvements. The first improvement is that we change our formulation to make the
estimation of the pin-access resources aware of g-cell size. We make the following assumption (note
that this assumption will be extended soon to consider the effects of pin distribution):

ASSUMPTION 1. Each pin will consume the same amount of local routing resource in terms of
area, denoted as ar.

For the convenience of derivation, we assume the unit for ar is nm2. Let au = P 2 be the unit area,
where P is the minimum wire pitch (unit: nm) on layer M2 (layer M3 usually has the same wire
pitch as layer M2). Here the pitch of layer M2 and M3 is used because local wires are generally
routed on these layers and their area is at least as large as au. Assume ar = qau, where q is a
technology-dependent parameter to be tuned. Given a g-cell c with n pins, the pin-access resources
consumed by the n pins will be qP 2n. Further, let S be the g-cell size (unit: nm). The routing
resources taken by a global routing track are PS. Then we can calculate the pin-access resources
consumed by n pins in the unit of global routing track, denoted as bp, as follows:

bp =
qP 2n

PS
=
qP

S
n. (3)

The g-cell size C, in the unit of routing tracks (more commonly used in practice), can be calculated
by C = S/P . Now combining (3), we have:

bp =
q

C
n. (4)

Note that bp is inversely proportional to C. Equation (4) verifies the observations from Fig. 10 that
the scaling factor associated with pin density n is a function of g-cell size.

The second improvement over Method 2 is that the pin-access resources will be scaled up to be
further aware of pin distribution, if the pins are packed together too close so that their distances
become smaller than a threshold distance, dth. Note that the distance discussed in this paper refers
to Manhattan distance. This enhancement is implemented by extending Assumption 1. Instead of
assuming every pin will consume the same amount of local routing resource ar, now we assume that
every pin Pi will consume resources in the amount of wiar, where wi is a weight (≥ 1) associated to
each pin Pi which will be computed according to the pin distribution around Pi. Using techniques
that are similar to those used to derive (4), we may calculate the pin-access resources blocked by n
pins in a g-cell c as

bp =
q

C

n∑
j=1

wj , (5)

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12 Y. Wei et al.

where wj is the weight for pin Pj(1 ≤ j ≤ n), the jth pin in the g-cell c. Weight wj is calculated by

wj = 1 +

ncp∑
k=1

W (dk,j), (6)

where ncp is the number of pins with distance to Pj smaller than dth, dk,j denotes the distance
between Pk and Pj , and W (dk,j) is a function of dk,j which defines how much extra weight should
be added to wj due to the small distance between the pin pair (Pk, Pj). Note that if ncp = 0, wj = 1,
i.e., no extra weight is added for pin Pj . In this work, we set dth equal to the expected distance of the
pins in a design, calculated as: dth =

√
(1− rmb)Ads/N , where Ads is the design area, N is the

total number of pins in the design, and rmb is the ratio of area of the macro blocks to the design area.
Here, the area of macro blocks is subtracted from the calculation, since it is usually impermissible to
place pins in such regions. In addition, the weighting function W (dk,j) used in this work is set to

W (dk,j) = 1.4760− arctan(0.5155 + 10dk,j/dth), (7)

where the constants in the function are chosen with the following considerations: W (0) = 1,
W (dth) = 0, and W increases slowly when dk,j is close to dth, while increases quickly when dk,j
becomes close to 0. The function is illustrated in Fig. 11.

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

d
k, j

 / d
th

W

Fig. 11. The function translating the distance of a pin pair to the weight on a pin.

A key step in computing bp by (5)–(7) is to compute the weight wi for each pin Pi, which requires
us to find all the pins with distance to Pi smaller than dth. For this purpose, we use a gridding method,
inspired by the work in [Heckbert 1997]. The pseudocode of our method is listed in Algorithm 1.
First, the layout is partitioned to uniform grids with size dth, and all the pins are mapped to each
grid. Note that this grid is much finer than the g-cell grid, typically more than 5× smaller, and is
only used to compute the weights of all the pins but not used in routing. Next, the weight of each
pin is initialized to be 1. Then we process the grid one by one from the bottom left corner to the
top right corner. For each grid Gx,y, we iterate through each pin Pj in it, and find all the pins with
distance to Pj smaller than dth by searching the current grid Gx,y and the four directly adjacent
grids. The five grids searched are illustrated in the shaded region in Fig. 12. Whenever we find a
pin Pk satisfying the distance constraint, i.e., dj,k < dth, a weight W (dj,k) is added to wj and wk.
The reason why we do not need to search other non-adjacent grids is that all the pins in a grid not
adjacent to Gx,y, such as pin Pl in Fig. 12, must have a distance to any pins in Gx,y not less than
dth, since the grid size is dth. In addition, when processing a grid Gx,y , we do not need to search the
other four adjacent grids in the left-bottom direction, since the pins in those grids, such as pin Pm in
Fig. 12, have been processed in an earlier iteration, and our searching process ensures any pair of pin
will be processed only once. Though there are several levels of loops in our algorithm, in most cases,
it has linear time complexity in terms of the number of pins N . Assume the largest pin density in a

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Techniques for Scalable and Effective Routability Evaluation A:13

Grids with size dth

x
x

x

x Pj

x
Pl

x

xx

x
x

x

x

x xx

x
xx

x

x

Pm

x xx

x

Gx, y Gx+1, y

Gx+1, y+1Gx, y+1Gx-1, y+1

Fig. 12. When searching for pins with distance to Pj smaller than dth, we will only search the five shaded grids.

grid with size dth is α for a given technology. Then for each pin, at most we need to search 5αd2th
pins, and therefore, the time complexity of the whole algorithm is O

(
αN

)
. In most cases, α could

be bounded by a constant for a given technology, and our algorithm runs in linear time.

ALGORITHM 1: Computing the weights for all the pins.
Input: All the pins Pi, 1 ≤ i ≤ N .
Output: Weight of each pin wi.
Initialize the weight of each pin to 1;
Partition the layout to nr × nc grids with size dth, and map all the pins to the grids;
for y = 0; y < nr; + + y do

for x = 0;x < nc; + + x do
Assign the number of pins in grid Gx,y to nx,y;
for j = 0; j < nx,y; + + j do

for k = j + 1; k < nx,y; + + k do
if pin Pj and Pk are not from the same net, and their distance dj,k is smaller than dth then

wj+ = W (dj,k);
wk+ = W (dj,k);

end
end
foreach pin Pk from grids Gx+1,y , Gx+1,y+1, Gx,y+1 and Gx−1,y+1 (ignoring the grid with
coordinates out of the design boundary) do

if pin Pj and Pk are not from the same net, and their distance dj,k is smaller than dth then
wj+ = W (dj,k);
wk+ = W (dj,k);

end
end

end
end

end

The third improvement over Method 2 is that the blockages added to each one of the four g-
edges associated with a g-cell will be redistributed by considering pin distribution, instead of equal
distribution as in Method 2. We will present our method for the horizontal g-edges, and the case
for the vertical g-edges is analogous. For a given g-cell b, as illustrated in Fig. 13, denote the two
associated horizontal g-edges as el and er, and the routing tracks blocked by the pins in g-cell b on
them as bl and br, respectively. Then we calculate the mean of the x-coordinates of all the pins in the

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14 Y. Wei et al.

g-cell b, denoted as µx. Let xl and xr be the x-coordinate of the left and right boundary of g-cell b,
respectively, and let S = xr − xl be the g-cell size. Then we distribute the pin-access resources bp
(computed by (5) and (6)) consumed by all the pins in g-cell b by the following formulae:

bl = bp
xr − µx

S
and br = bp

µx − xl
S

. (8)

The intuition behind these formulae is that if µx is closer to the left boundary of the g-cell, which
means more pins are closer to the left horizontal g-edge, we should block more capacity of the left
horizontal g-edge, and vice versa.

x

x

b

er

x

x

el

a c

xl xr

Fig. 13. The pin-access resources consumed by the pins in a g-cell on the horizontal layer will be redistributed to the left
and right g-edges associated with the g-cell based on the pin distribution.

Together with all the three improvements, our enhanced pin-access resources algorithm will work
in the following steps:

— Compute the weight for each pin using Algorithm 1.
— Iterate through each g-cell c: calculate the pin-access resources bp for the pins in c by (5), and

further redistribute the resources bp to the four g-edges associated with g-cell c on layer M2 and
M3 by (8).

After pin-access resources are computed, the local-net resources will be computed by the improved
Steiner method discussed earlier, and finally the blockages from two kinds of local resources will be
added to the g-edges on layer M2 and M3. The whole process still works as a preprocessing step,
just as in the case of Method 1 or Method 2.

4. FILTERING OUT THE NOISE IN ROUTABILITY EVALUATION
As mentioned in Section 1.1, the noisy hot spots in the congestion maps computed by a congestion
analyzer can mainly be attributed to the limited routing effort involved in congestion analysis, and
they are likely to be removed in real global routing process by additional routing effort. These noisy
hot spots prevent us from obtaining accurate routability evaluation (as compared to real global routing
results), and should be addressed properly in congestion analysis. In this section, we will first present
quantitative analysis on this problem, and then propose a smoothing technique to deal with it.

To quantitatively study this problem, we introduce a metric called noise ratio to measure the ratio
of noisy hot spots to the total number of hot spots in a map. If gth is the congestion threshold, then
a g-edge e with routing demand we > 0, and congestion ge ≥ gth will be treated as a hot spot.
In this work, gth is set to 80% according to the properties of the industrial routing toolkit we use.
Quantitatively, a hot spot is treated as a noisy hot spot when the difference between its congestion
and its two parallel adjacent g-edges in the same routing direction is larger than θgth, where θ is a
user-defined parameter. With θ = 0.25 (which is the setting used in this work), when routing with a
typical g-cell size, e.g., 40 tracks, the difference in the routing usage between a noisy hot spot and its
parallel adjacent g-edges will be larger than 40 · θgth = 8 tracks, which is large enough so that it is
likely that more routing effort in real global routing could more evenly redistribute the routing usage
among these g-edges. Based on these discussions, the noise ratio can be easily calculated given the
congestion data for all the layers. Continuing our analysis on the example shown in Fig. 2 (for better
readability, we copy the figures to Fig. 14), next we calculate the noise ratios for the routing solutions
from congestion analysis mode (Fig. 14(a)) and global routing mode (Fig. 14(b)) of an industrial

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Techniques for Scalable and Effective Routability Evaluation A:15

router (that has built-in local routing resource modeling). For the congestion analysis mode, the noise
ratio is 17.08%, while for the global routing mode, the noise ratio is reduced to 9.98%, which means
that the insufficient routing effort in congestion analysis results in many more noisy hot spots than
those in global routing.

0.2

0.4

0.6

0.8

1

(a) Map from congestion analysis

0.2

0.4

0.6

0.8

1

(b) Map from global routing

(c) Smoothed map using Gaussian
function

Fig. 14. The proposed smooth technique reduces the noisy hot spots in a congestion map.

To reduce the number of the noisy hot spots in the congestion maps and achieve more accurate
routability evaluation, a smoothing technique can be applied to the congestion maps obtained by a
congestion analyzer. Smoothing is a common technique widely used in many fields, such as signal
processing, image processing, and EDA. In the EDA field, smoothing techniques have been widely
used in placement algorithms, which use a bell-shaped function [Naylor et al. 2003; Kahng and Wang
2005; Chen et al. 2008b; Chen et al. 2008a; Jiang et al. 2008; Hsu et al. 2011] or the inverse Laplace
transform [Chan et al. 2005] to smooth the potential function (that specifies the total area of movable
blocks in a placement bin), so that optimization can proceed more effectively. In addition, smoothing
has also been used in the works related to design for manufacturability [Tian et al. 2001; Ouma et al.
2002; Wei and Sapatnekar 2010; Chen et al. 2010], where Gaussian function is used to smooth the
pattern density (that is the density of metal wires in a given region) across a layout.

However, to the best of our knowledge, smoothing techniques have not been directly applied to
congestion maps in the literature. In this work, we propose to use a smoothing technique to filter out
the noisy hot spots in the congestion maps obtained by a congestion analyzer. The objective of the
smoothing technique is not merely to correct for errors in congestion estimation, but also to mimic
the way in which real global routers work. For example, assume there are a large number of pins in
the two horizontally-adjacent g-cells, a and b. In congestion analysis, due to limited routing effort,
these pins are routed through the g-edge e connecting the two g-cells, which causes a congestion hot
spot Sh, while the g-edges in the same routing direction adjacent to e are not congested. In contrast,
in real global routing, it is likely these pins in g-cell a and b can be routed with a detour by crossing
the g-edges adjacent to e. In other words, the global router could further redistribute the congestion
on g-edge e to the adjacent g-edges by spreading the wires with some detour. Smoothing a congestion
map will reduce the difference in the congestion between a noisy hot spot and its neighboring g-edges,
which could obtain an effect that is similar to realistic routing, where greater detours are allowed.
Therefore, it is reasonable to apply smoothing technique on the congestion maps from congestion
analysis to mimic the behavior of a global router.

Unlike [Jiang et al. 2008], we apply a one-dimensional Gaussian function to smooth the congestion
map for each layer in the direction perpendicular to the preferred routing direction of that layer. The
reason to use a one-dimensional function is that in routing, to mitigate the congestion, spreading the
overflowing wires to the neighboring g-edges is directional, i.e., vertically/horizontally spreading on

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16 Y. Wei et al.

the horizontal/vertical layer. The Gaussian function used is given by

f(x) =
1

σ
√

2π
e−

x2

2σ2 , (9)

where σ is the standard deviation. Since the Gaussian function will be applied on a discrete congestion
map, the Gaussian function will be discretized to the GRG using a method similar to those in [Tian
et al. 2001; Wei and Sapatnekar 2010]. We first define the smoothing window size as (2l+1) g-edges,
and the smoothing function will be truncated beyond the smoothing window, which means that when
we calculate the smoothed congestion value at one g-edge, other g-edges with distance farther than l
will not be counted. In the Gaussian function, typical values for σ can be l, l/2 or l/3. Denote the
discretized function as f(i) with i as an integer. Note that f(i) will be 0 for i > l or i < −l due to
the truncation. After discretization, we should normalize the function values to make sure they sum
to 1. Given a congestion map for a layer, if we denote the congestion of a g-edge with coordinate
(x, y) in the map as g(x, y), then the smoothed congestion, ḡ(x, y), can be calculated by

ḡ(x, y) =

j=y+l∑
j=y−l

g(x, j)f(j − y) for horizontal layers,

i=x+l∑
i=x−l

g(i, y)f(i− x) for vertical layers.
(10)

In Eq. (10), when the indices of (x, j) [or (i, y)] are out of range (i.e., they lie outside the congestion
map), the value of g(x, j) [or g(i, y)] is set to g(x, y). Another caveat to use the smoothing technique
is that we have to be aware of the case where the routing demand on a g-edge e is small and then its
congestion after smoothing will become smaller than be/ce, i.e., the ratio of the blockage usage to the
capacity on the g-edge e (that is the minimum possible congestion on e with zero routing demand),
which is not realistic. For example, assume we have three adjacent g-edges with the following
situations:

— G-edge e0: ce0 = 40, be0 = 20, de0 = 0, ge0 = 50%.
— G-edge e1: ce1 = 40, be1 = 34, de1 = 2, ge1 = 90%.
— G-edge e2: ce2 = 40, be2 = 20, de2 = 0, ge2 = 50%.

Further assume the weights from a smoothing function (with l = 1) is: f(0) = 0.8, f(1) = f(−1) =
0.1. Then the smoothed congestion of g-edge e1 will become 82%, smaller than be1/ce1 = 85%,
which becomes unrealistic. To solve this problem, we change our implementation so that whenever
such a case occurs on g-edge e, we use be/ce as its congestion after smoothing, and then redistribute
the routing demand on g-edge e evenly to its two adjacent g-edges. In addition, in practice, the
smoothing technique can be used multiple times until the congestion map reaches the desired extent
of smoothness, specifically, until the noise ratio is reduced below a threshold, e.g., 5%.

We now test the smoothing technique on the routing solutions shown in Fig. 14(a), assuming
σ = l/2 = 1/2. Then the smoothing window size would be three g-edges, and the discretized
function will have three values: f(0) = 0.7979 and f(1) = f(−1) = 0.1080. After normalization,
f(0) = 0.7870 and f(1) = f(−1) = 0.1065. Then applying this smoothing function to the
congestion maps of all the layers from congestion analysis mode, we obtain the smoothed combined
congestion map shown in Fig. 14(c). We can see that as expected, the map in Fig. 14(c) is smoother
than the original map in Fig. 14(a). The noise ratio for the smoothed routing solution is calculated
as 4.37%, much smaller than 17.08% for the original solution. Moreover, the difference between
smoothed map and global routing map becomes smaller than that between congestion analysis map
and global routing map. This shows that our proposed smoothing technique can indeed filter out the
noisy hot spots, and improve the accuracy of the routability evaluation.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Techniques for Scalable and Effective Routability Evaluation A:17

5. METRICS FOR DESIGN CONGESTION
In this section, we will first discuss the limitations of existing routability metrics besides those
mentioned in Section 1.2, and then present our new metric.

5.1. Limitations of current metrics
TOF and MOF: Naı̈ve implementations of the TOF and MOF metrics treat the overflow in each
layer as identical; however, this is inaccurate as each layer has a different capacity. Normalizing
the overflow to the layer capacity can overcome this issue, but other problems remain. The TOF
metric does not capture the hot spots in the congestion map, i.e., the severity of congestion in the
worst regions of the chip. MOF fares only slightly better, capturing only the maximum overflow
value among all the g-edges in the routing graph, and it presents a fairly incomplete picture of the
congested regions in the design. These problems could make overflow metrics even fail to predict the
routability correctly in some cases, as will be demonstrated in Section 7.3.
ACN(20), WCI(100) and WCI(90): These metrics fail to differentiate between a net span-
ning a single congested g-edge and one that spans multiple congested g-edges.

Example 5.1. Consider two nets in the GRG: net A traverses g-edges with congestion 0.50, 0.70,
0.80, 0.90 and 1.10, while net B traverses g-edges with congestion 0.60, 0.80, 0.95, 1.05 and 1.10.
When calculating ACN(20), WCI(100) and WCI(90), both nets will be considered to have the
same congestion value of 1.10. However, their routability is different: clearly, net B is harder to route
compared to net A, as it traverses more number of g-edges with high congestion. This fact is not
captured by these net-congestion-based metrics.

Additionally, minor design changes can cause large fluctuations in the WCI(100) and WCI(90)
metrics.

Example 5.2. Assume a design has a g-edge e, with ce = 40, be = 0 and we = 39. Assume,
that we reroute a net to pass through this g-edge (say, to improve timing). Then the congestion
of e becomes 100%, implying that all 40 nets crossing e now have a congestion of 100%. As a
result, WCI(100) will now report 40 additional congested nets, when in reality we only rerouted a
single net. A similar example applies to the WCI(90) metric. Such instability renders these metrics
unsuitable for guiding routability optimization.

Although, ACN(20) avoids large swings due to minor design changes, it suffers from the limitation
of not accurately capturing design congestion (will be demonstrated in Section 7.3.1).

In addition, existing metrics improperly model the congestion along macro boundaries [Alpert
and Tellez 2010; Alpert et al. 2010], leading to an artificially high reported congestion. Referring
to Fig. 15, a net N routes to a pin on macro block B. Due to the blockage, the congestion of edge
e would be rated as being above 90%, but in practice, we find that such nets are easily routable.
Including these g-edges with artificially high congestion when calculating the metric introduces
unnecessary noise leading to improper estimation of the routability. Note that we only suggest
excluding the edges along macro boundaries when calculating the metric after global routing to
evaluate the routability, but the high congestion of these edges should not be ignored during the
global routing process.

5.2. New metric (ACE metric) for design congestion
To address the issues with existing metrics, we propose a new metric that is based on the histogram
of g-edge congestion. Our metric has two features:

— It downplays the effects of g-edges with artificially high congestion due to the presence of macro
blockages.

— It presents congestion as a histogram, instead of a single number.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:18 Y. Wei et al.

Fig. 15. An example showing a net N traversing g-cells that are 90% blocked due to a macro blockage. This leads to
artificially high reported congestion for g-edge e.

To accurately capture the congestion, our metric, denoted as ACE(x, y), computes the average
congestion of the top x% congested g-edges, while excluding g-edges that are along macro boundaries
and ≥ y% blocked. The role of the parameter y is to avoid counting the effects of g-edges with
artificially high congestion around macro boundaries. The value of y should be appropriately chosen.
If y is too small, we may exclude too many g-edges which may have real congestion around the
macro boundaries; if y is too large, we may over count the g-edges with high congestion caused by
macro blockages. In this work, y is set to 50 to get a tradeoff between the two cases, implying that
all g-edges along macro boundaries with ≥ 50% routing blockage are ignored when computing the
metric. For convenience, we use ACE(x) to denote ACE(x, 50) in this paper and the new metric
is called the ACE metric. In computing the ACE metric, we use a simple heuristic to detect the
g-edges along macro boundaries. Given a g-edge e, if either of the two adjacent g-edges on the same
routing layer is 100% blocked, then e is treated as a g-edge along macro boundaries. In addition, the
g-edges with high congestion purely from blockages, i.e., the g-edges with zero routing demand, will
also bring noises to the ACE metric, and therefore, the g-edges with zero routing demand will be
downplayed and their congestion is treated as zero when computing the ACE metric.

In practice, the new metric is most useful when expressed as a vector, for different values of
x, e.g., for x ∈ {0.5, 1, 2, 5, 10, 20}. ACE(x), for a small value of x (e.g., 0.5 and 1), provides
a highly local view, representing congestion in the regions with the highest contention for wiring
resources (hot spots). For larger values of x (e.g., 10 and 20), it provides a broader picture of the
design congestion.

6. HOW THE PROPOSED TECHNIQUES WORK TOGETHER
In order to improve the effectiveness of routability evaluation, we have introduced three techniques:
the methods to model local routing resources, a smooth technique to filter out noisy hot spots, and an
improved metric to represent congestion. In this section, we will discuss how these techniques work
together in a typical routability evaluation process.

Traditionally, there are two major steps in routability evaluation as shown in Fig 16(a). First, given
a placement, a global-routing-based congestion analyzer is invoked to obtain a routing solution and
the corresponding congestion maps. Secondly, a congestion metric is computed to represent the
congestion level of the placement, and used to estimate the routability.

The traditional routability evaluation can be improved using our proposed techniques. Firstly, we
add a preprocessing step to model the local routing resources before global-routing-based congestion
analysis really starts. Any one of the three methods (Method 1 to 3) discussed in Section 3 can be
used, but Method 3 is preferred due to its good accuracy and scalability with large g-cell sizes as
will be demonstrated in Section 7.1. With Method 3, we first calculate the local routing resources
consumed by all the local nets and pins, and then add them as the form of routing blockages to
the related g-edges on layer M2 and M3. These routing blockages added in the preprocessing step
will propagate to the congestion analyzer by some way such as file exchange. Alternatively, the
local routing resource model can be implemented and integrated inside the congestion analyzer as
a preprocessing function. Secondly, the congestion analyzer will be run with the blockages from

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Techniques for Scalable and Effective Routability Evaluation A:19

Run congestion analyzer

Compute congestion metric

Placement

(a) Traditional routability evaluation
process

Model local routing resources

Run congestion analyzer

Placement

Smooth congestion maps

Compute ACE metric

(b) Improved routability evaluation
process with proposed techniques

Fig. 16. Comparison of routability evaluation processes.

the preprocessing step. It is expected that the routing solution will have a higher congestion level
compared with that without local resource modeling. Thirdly, our proposed smoothing technique can
be applied on the congestion maps from the second step to filter out the noisy hot spots. Finally, the
ACE metric will be computed based on the smoothed congestion maps. The improved routability
evaluation process is shown in Fig. 16(b). It is worth pointing out that when computing the ACE
metric, the “blockages” added by the local routing resource modeling should be treated as routing
demand, since they are indeed the routing demand from local nets and pin access.

7. VALIDATION AND ANALYSIS
Our proposed techniques are implemented within a congestion analyzer that performs global routing
in the spirit of MaizeRouter [Moffitt 2008]. This section provides a detailed analysis of these
techniques on advanced industrial designs. All experiments were run on a 64-bit Linux server with 4
octa-core CPUs (Intel R© Xeon R© X7560 2.27 GHz).

In this section, we first validate the effectiveness of each proposed technique in Section 7.1–7.3.
Specifically, we first analyze the impact of methods about local resource modeling on routability
evaluation in Section 7.1, and then present the results of the smoothing technique in Section 7.2,
followed by the analysis of the impact of the proposed ACE metric in Section 7.3. Finally, in
Section 7.4, we demonstrate how our proposed techniques work together in the improved routability
evaluation process described in Section 6.

7.1. Impact of local resource modeling on routability evaluation
For the analyses presented in this section, we use the following congestion analyzers to evaluate the
impact of our proposed techniques for local resource modeling:

— Analyzer A0: A fast congestion analyzer that is based on MaizeRouter [Moffitt 2008], with the
ability to perform global routing on millions of nets in less than 10 minutes6. It does not include
any local resource modeling.

— Analyzer A1: Modification of Analyzer A0, incorporating the Method 1 for local resource
modeling.

— Analyzer A2: Modification of Analyzer A0, incorporating the Method 2 for local resource
modeling.

— Analyzer A3: Modification of Analyzer A0, incorporating the Method 3 for local resource
modeling.

— Reference Analyzer: An industrial congestion analyzer with complex modeling of local routing
resources, which is a component of a full-blown industrial routing toolkit7. The Reference Analyzer

6This is achieved by running on our Linux server with a proper g-cell size on the designs.
7This industrial routing toolkit is currently used in industry for real chip tape-out and has three major components: a congestion
analyzer, a global router, and a detailed router.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:20 Y. Wei et al.

has been proven to be sufficiently accurate in routability evaluation, and will be used to judge the
quality of all results. It typically runs at least 10 times slower8 than Analyzer A0–A3.

Note that Analyzer A1–A3 are adapted from Analyzer A0 by adding a preprocessing step before
global routing to model local routing resources using Method 1–3, respectively, and all other parts
such as the routing algorithm and configuration are exactly the same.

To quantitatively measure the correlation between Analyzer Ai (0 ≤ i ≤ 3) and the Reference
Analyzer, the average error (AVGE) between the congestion maps of Analyzer Ai (0 ≤ i ≤ 3) and
those from the Reference Analyzer, is computed for each design. For each g-edge e in the congestion
maps, the error is calculated as ∆e = |gye − gxe|,where gye is the congestion of e from Analyzer Ai
(0 ≤ i ≤ 3) and gxe is the corresponding congestion computed by the Reference Analyzer. The value
of AVGE is the average of ∆e over all the g-edges considered. Since, in practice, only the g-edges
with congestion over a threshold gth are of interest, when calculating AVGE, we only consider the
g-edges with congestion larger than gth (set to 80% as stated in Section 4) in either the Reference
Analyzer or Analyzers Ai (0 ≤ i ≤ 3): we denote this set of g-edges as Se. Note that Se will include
all the g-edges with “congestion mismatches” (a notation proposed in [Pan and Chu 2006]), i.e., the
g-edges with underestimation (congestion over gth in the Reference Analyzer but not in the other
Analyzer) and overestimation (congestion below gth in the Reference Analyzer but not in the other
Analyzer) in the congestion maps. In fact, we consider even more g-edges than [Pan and Chu 2006],
since the g-edges that are congested (ge > gth) in both Analyzer Ai (0 ≤ i ≤ 3) and the Reference
Analyzer will also be counted in the AVGE computation. Moreover, other error statistics, including
the number of g-edges considered in the AVGE computation (Ne = |Se|) and standard deviation of
the errors on all these g-edges (σe), will also be computed and presented for completeness.

In this set of experiments, nine designs from three technology nodes are tested, and their chief
characteristics are listed in the first three columns in Table I.

7.1.1. Tuning the parameters in local resource models. As discussed in Section 3, there is a
parameter in each of the three proposed local resource models, respectively: p in Method 1, k in
Method 2 and q in Method 3. The parameter has to be tuned for each method to be practically useful.
Next we will introduce the process to tune the parameters. Without loss of generality, we use q as an
example. We have the following two observations to guide our tuning process. Firstly, parameter q
for different circuits in the same technology can be quite similar. In Method 3, q is the ratio of the
estimated local resources consumed by a pin ar to the unit area au = P 2, where P is the minimum
wire pitch on layer M2 and M3. For different circuits in a technology, the local routing resources
consumed by each pin, ar, on average, should be similar, since design rules for different circuits in
the each technology are the same, such as the minimum area of a shape, the minimum width of wires
and the minimum distance between two wires on layer M2 and M3. Since ar is similar and au is
the same for different circuits in a technology, parameter q will be similar for different circuits in
the same technology. The experimental results in Section 7.1.2 and 7.1.3 will demonstrate that the
parameters tuned on one design work well for the other designs in the same technology, verifying
this observation. Secondly, q can be different for different technologies, because the design rules
are quite different for each technology, and thus ar and au can also be different. Based on these
observations, we only need to tune parameter q for a circuit in each technology.

Since automatic parameter configuration is a complex optimization problem that researchers are
still actively working on [Ansótegui et al. 2009; Eiben and Smit 2011; Bergstra and Bengio 2012]
and it is beyond the scope of this work, a heuristic tuning method is used in this work: a three-pass
tuning process. Firstly, a coarse tuning is performed. A series of trial values starting from XL to
XU with an increment I1, are tested, and then we select the three adjacent values (Xi−1, Xi, Xi+1),
where Xi produces the smallest error, specifically, AVGE. In the case Xi = XL or Xi = XU , we
set Xi−1 to XL or Xi+1 to XU , respectively. Secondly, a finer tuning pass is conducted. Another

8One goal of this work is to replace the Reference Analyzer in the routing toolkit by creating another congestion analyzer that
has good correlation with it but runs much faster than it.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Techniques for Scalable and Effective Routability Evaluation A:21

series of values starting from Xi−1 to Xi+1 with an increment I2, are tested, and then we select the
three adjacent values (Yj−1, Yj , Yj+1), where Yj produces the smallest error (the boundary cases
can be treated similar to the first pass). Note that I2 is usually much smaller than I1, e.g., I2 = 0.1I1.
Thirdly, a series of values starting from Yj−1 to Yj+1 with an increment I3, are tested, and then we
select the value that produces the smallest error. The increment I3 is usually much smaller than I2,
e.g., I3 = 0.1I2. In our experiments, we set XL = 0, XU = 10, I1 = 1, I2 = 0.1 and I3 = 0.01 by
our experience.

In addition, though three local resource models are proposed and will be analyzed in this work,
there will be only one winner among the three and thus only one parameter will need tuning in the
practical application of our method.

Table I. Major characteristics of the benchmarks and the tuned
parameters for each technology in Analyzer A1–A3.

Technology Circuits #nets
Tuned parameters

A1 (p) A2 (k) A3 (q)

32 nm

ckt fb 320,357 2.20 0.30 7.84
ckt dl16 1,191,615
ckt dl12 1,337,659

45 nm

ckt i 354,771 1.18 0.15 3.38
ckt y 324,102
ckt m 118,911

65 nm

ckt 12 1,660,223 1.90 0.27 6.90
ckt 18 533,530
ckt x 464,661

7.1.2. Improving congestion analysis accuracy. This section presents the impact of our methods
about local resources modeling on the overall accuracy of congestion analysis.

With the tuning process discussed in Section 7.1.1, the parameters for Method 1–3 are tuned for
the first design from each technology node shown in Table I, and then the tuned parameters are used
to test the other two designs in the same technology node. In this set of experiments, a g-cell size
equal to 20 tracks is used.

In Table I, the column “tuned parameters” lists the parameters tuned for the three methods of local
resource modeling9 and the error statistics including AVGE, σe and Ne are presented in Table II.
In Table II, the row “Average” shows the average values over all the designs. The AVGE data of
Analyzer A1–A3 are much better than those of Analyzer A0 while the data of σe and Ne are quite
similar for all the four analyzers, which indicates that the analyzers with the three proposed methods
for local resource modeling (Analyzer A1–A3) can achieve more accurate routability evaluation
than Analyzer A0 without any local resource modeling. This is also true for the designs which
the parameters are not tuned for, demonstrating the effectiveness of the proposed local resource
modeling methods. Furthermore, the three methods produce very similar accuracy on average, though
Method 2 is a little better than the other two methods in terms of AVGE. Note that the values of Ne

for Analyzer A1–A3 are a little larger than that for Analyzer A0, since by modeling local congestion,
more g-edges become congested in Analyzer A1–A3. Though some of these g-edges may even
overestimate the congestion compared with the Reference Analyzer, the overestimation is limited, as
for these analyzers, Ne is close to 1 and σe is limited.

To visually see the impact of local resource modeling on the accuracy of routability evaluation,
in Fig. 17, we show the results of running all the five analyzers on design ckt fb. From Fig. 17(b)
we see that Analyzer A0 with no modeling of local routing resources significantly underestimates

9The tuned parameters are different from those in [Wei et al. 2012], because our fast congestion analyzer have been improved
a lot to be able to make more routing effort in less runtime, compared with the version used in [Wei et al. 2012], and then
the local resources added now is more accurate, while those in [Wei et al. 2012] are likely fewer than required, since the not
enough routing effort may offset some local resources which should be added but in fact not.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:22 Y. Wei et al.

Table II. Comparison of the accuracy in routability evaluation using Analyzer A0–A3, with g-cell size 20 tracks.
Ne is shown as normalized by NRA

e that is the number of congested g-edges in the Reference Analyzer.

Circuits
AVGE (×10−2) σe (×10−2) Ne (normalized by NRA

e)
NRA

eA0 A1 A2 A3 A0 A1 A2 A3 A0 A1 A2 A3
ckt fb 15.41 9.21 9.08 9.18 15.94 15.75 15.69 15.85 1.000 1.026 1.028 1.024 80,831
ckt dl16 13.21 6.90 6.69 6.90 7.40 7.48 7.33 7.48 1.001 1.007 1.008 1.007 491,922
ckt dl12 14.75 9.66 9.49 9.59 10.46 10.28 10.37 10.33 1.000 1.003 1.004 1.003 407,830
ckt i 12.93 8.72 8.66 8.78 12.29 12.51 12.55 12.56 1.006 1.060 1.065 1.048 70,037
ckt y 12.23 8.76 8.87 8.79 9.55 9.40 9.85 9.37 1.009 1.022 1.027 1.021 81,282
ckt m 11.62 7.82 7.69 7.98 9.72 8.52 8.21 8.96 1.015 1.035 1.036 1.032 21,770
ckt 12 10.44 6.26 6.13 6.28 7.73 7.32 7.30 7.39 1.004 1.043 1.051 1.047 479,775
ckt 18 11.37 8.21 7.96 8.45 9.38 8.85 8.89 8.97 1.009 1.023 1.025 1.021 287,576
ckt x 8.13 5.84 5.67 5.87 6.11 5.71 5.55 5.73 1.009 1.037 1.042 1.036 252,730
Average 12.23 7.93 7.81 7.98 9.84 9.53 9.53 9.63 1.006 1.028 1.032 1.027 1

the actual congestion. Alternatively, the congestion maps from Analyzer A1–A3 (Fig. 17(c)-17(e))
are much closer to the one obtained from the Reference Analyzer10, both in terms of the congested
regions and their intensity. This result assumes significance in the context of using analyzers within
congestion mitigation tools such as CRISP [Roy et al. 2009], where the effectiveness of the tool is
highly dependent on accurately identifying the regions of high congestion as well as their relative
intensity.

(a) Reference Analyzer (b) Analyzer A0 (c) Analyzer A1 (d) Analyzer A2 (e) Analyzer A3

Fig. 17. Congestion maps for ckt fb with five analyzers using a g-cell size of 20 tracks.

7.1.3. Scalability of the proposed methods on increasing g-cell size. In last section, we have shown
that all the three proposed methods for local resource modeling work similarly well on the nine
designs when the g-cell size is set to 20. In this section, we will test their scalability on increasing
g-cell size.

We rerun the experiments on all the nine designs using the same tuned parameters but a g-cell
size of 80 tracks. In Table III, the error statistics including AVGE, σe and Ne are presented, and the
row “Average” shows the average values over all the designs. Comparing the error data in Table III
with those in Table II, we can see that different analyzers show different scalability. When using the
same parameters tuned with the g-cell size of 20 tracks, Analyzer A2, integrated with the simple
pin-density-based method (Method 2) for local resource modeling, on average, has the largest error
(in terms of AVGE and σe) among all the analyzers, and the error is even larger than Analyzer A0
without any local resource modeling on some designs11. Analyzer A1, integrated with the Steiner-
tree-based method (Method 1) for local resource modeling, has smaller errors (in terms of AVGE

10It is expected that the congestion maps obtained from Analyzer A1–A3 do not exactly match those from Reference Analyzer,
since they run much faster, and do not work as hard as the Reference Analyzer. However, Analyzer A1–A3 can generally
predict the hot spots well.
11The reason why in [Wei et al. 2012] Method 2 showed good scalability on design ckt 12 is that the blockages added from
local resources at that time were likely fewer than the real amount using the small parameter k = 0.05, which is only 19%
of the new parameter value 0.27. Thus, when using a large g-cell size 80, the scalability problem was not obviously visible
in [Wei et al. 2012].

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Techniques for Scalable and Effective Routability Evaluation A:23

Table III. Comparison of the accuracy in routability evaluation using different analyzers and pre-tuned
parameters from Table I, with g-cell size 80 tracks. Ne is shown as normalized by NRA

e (the same notation
as used in Table II).

Circuits
AVGE (×10−2) σe (×10−2) Ne (normalized by NRA

e)
NRA

eA0 A1 A2 A3 A0 A1 A2 A3 A0 A1 A2 A3
ckt fb 8.10 5.82 6.04 3.73 4.72 5.24 5.40 3.04 1.000 1.041 1.045 1.008 4,176
ckt dl16 13.10 5.95 7.58 6.47 4.26 4.12 4.76 3.45 1.000 1.015 1.018 1.004 28,803
ckt dl12 10.51 5.81 6.12 5.88 6.34 4.50 4.77 4.15 1.000 1.016 1.025 1.002 20,148
ckt i 7.97 10.27 13.96 5.43 5.89 8.93 9.66 6.09 1.003 1.146 1.193 1.088 3,713
ckt y 9.69 10.41 14.40 6.32 5.84 11.05 13.97 5.56 1.005 1.091 1.149 1.028 4,554
ckt m 9.11 9.11 14.48 4.70 6.04 7.34 11.59 4.13 1.048 1.209 1.411 1.106 1,011
ckt 12 9.23 8.41 11.12 4.49 4.69 5.82 6.47 3.51 1.002 1.133 1.174 1.036 26,116
ckt 18 8.48 5.58 8.27 5.82 7.05 6.32 7.35 5.90 1.006 1.124 1.180 1.021 15,567
ckt x 5.43 5.85 10.89 3.20 3.69 4.77 6.63 2.67 1.006 1.219 1.347 1.029 13,193
Average 9.07 7.46 10.32 5.12 5.39 6.46 7.85 4.28 1.008 1.110 1.171 1.036 1

and σe) than Analyzer A2 on all the designs, but has larger errors than Analyzer A0 for all the three
45 nm designs. Moreover, the values ofNe for Analyzer A1 and A2 are much larger than 1, indicating
these analyzers probably have significant overestimation problem, which can be verified in Fig. 18.
These results show the bad scalability in Method 1 and Method 2, which is caused by the factors
discussed in Section 3.5.1. In contrast, Analyzer A3, integrated with the enhanced method combining
the Steiner tree technique and the pin-density technique considering pin distribution (Method 3),
achieves the best scalability and the smallest error on average among all the four congestion analyzers
A0–A3. This shows the effectiveness of the proposed techniques in Method 3.

(a) Reference Analyzer (b) Analyzer A0 (c) Analyzer A1 (d) Analyzer A2 (e) Analyzer A3

Fig. 18. Congestion maps for ckt fb with five analyzers using a g-cell size of 80 tracks.

Fig. 18 shows the congestion maps from all the analyzers on design ckt fb with the g-cell size
set to 80 tracks. Analyzer A0 without local resource modeling still significantly underestimates the
actual congestion. Analyzer A1 and A2 both generate over-pessimistic congestion maps as compared
with the Reference Analyzer. The congestion map from Analyzer A3 is closest to that from Reference
Analyzer among all analyzers (A0–A3), demonstrating the good scalability of the proposed enhanced
method (Method 3).

7.1.4. Runtime and acceleration by using a larger g-cell. In this section, we will present the analysis
on the runtime of different methods for local congestion modeling and different analyzers, with g-cell
sizes of 20 and 80 tracks. We will show that the proposed local resource modeling methods only
take a small portion of the runtime of the whole congestion analysis, and with good local resource
modeling, congestion analysis can be accelerated by using a larger g-cell size.

In Table IV, the column “LRM (size 20)” lists the CPU time of the preprocessing step for local
resource modeling (LRM) in A1–A3 with a g-cell size of 20 tracks, “Total runtime” shows the CPU
time for Analyzer A0–A3 (“size 20”: g-cell size 20 tracks, and “size 80”: 80 tracks), and “RA20”

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:24 Y. Wei et al.

presents the CPU time of Reference Analyzer12 with a g-cell size of 20 tracks. In the row “ratio”, the
numbers in the column “LRM (size 20)” list the ratio of LRM CPU time to the total runtime of the
corresponding analyzer, and the other numbers show the CPU time normalized by that of Analyzer
A3 (g-cell size 20), averaged over all the designs. Let us first look at the runtime of different LRM
methods. From column “LRM (size 20)”, we can see that LRM with Method 2 (sub-column “A2”),
the pin-density method, runs fastest among all the three methods, due to its simplicity. Method 3
(sub-column “A3”), the enhanced method, is the slowest, but still fast enough in practice, taking up
only 5.9% of the total routing time on average13. Now look at the runtime of different analyzers with
g-cell size 20 tracks. Among Analyzer A0–A3, Analyzer A0 runs fastest since it does not have any
local resource modeling, and sees the least congestion, translating to the least routing effort. The
runtime of Analyzer A1–A3 with LRM is similar and a little longer than that of Analyzer A0, but
much shorter than that of the Reference Analyzer14.

Table IV. Runtime comparison for congestion analyzers with different g-cell sizes.

Circuits
LRM (size 20) (s) Total runtime (size 20) (s)

RA20 (s)
Total runtime (size 80) (s)

A1 A2 A3 A0 A1 A2 A3 A0 A1 A2 A3
ckt fb 3.5 2.6 6.1 36.7 57.5 63.7 70.1 1499.1 18.7 28.5 28.7 32.0
ckt dl16 12.8 9.5 25.2 656.4 896.2 953.6 1075.8 129927.5 107.1 171.8 173.3 186.1
ckt dl12 13.6 9.1 26.5 444.0 725.0 708.9 698.7 29614.2 105.0 157.4 160.0 168.8
ckt i 3.0 2.1 5.3 39.3 56.4 52.1 58.9 1564.1 19.0 25.3 25.9 29.2
ckt y 3.0 1.9 5.3 47.6 62.1 63.4 69.7 2790.4 16.9 25.5 25.7 26.9
ckt m 1.0 0.7 1.6 11.5 15.6 15.7 17.1 503.8 5.7 7.5 7.4 8.5
ckt 12 17.6 11.8 29.1 355.5 513.1 530.7 568.6 41425.5 118.0 159.0 168.3 183.8
ckt 18 5.8 3.5 9.7 227.1 321.3 323.9 361.0 8354.4 46.8 69.4 68.2 76.5
ckt x 4.9 3.5 8.8 111.8 167.7 178.3 198.7 4984.0 32.7 48.3 52.4 51.7
Ratio 3.8% 2.5% 5.9% 0.62 0.90 0.92 1.00 44.64 0.21 0.30 0.31 0.34

Considering accuracy, scalability and runtime, Method 3 is the winner among all the three methods
of local resource modeling, and we use Method 3 for all subsequent analyses in this paper.

Since our method can accurately incorporate the effects of local routing within a g-cell, it provides
the freedom to increase the size of the g-cell, thereby accelerating congestion analysis. As shown in
Table IV, with Method 3, when increasing g-cell size from 20 to 80, runtime is reduced by 66% on
average.

7.1.5. Better prediction of detailed routing issues. Often a design that seems routable after global
routing can end up with multiple opens/shorts at the end of detailed routing. Early prediction of
such issues without performing the time-consuming step of detailed routing is highly beneficial as
it enables designers to take appropriate measures to improve overall turn-around time for design
closure. As mentioned in Section 1, a global router that ignores the modeling of local resources may
significantly mispredict design routability and cannot predict the opens/shorts locations, as illustrated
in Fig. 1. These opens/shorts indicate the problematic locations in detailed routing, which, in our
experience, are usually due to high local congestion at these locations. Next, we will demonstrate
that our proposed local resource modeling method can enable the congestion analyzer to predict
detailed routing opens/shorts with high fidelity. Fig. 19 shows the comparison of the opens/shorts
plots (during an intermediate stage of an industrial strength detailed router) and the congestion

12The runtime shown in [Wei et al. 2012] for Reference Analyzer is the wall-clock time, which explains the different numbers
in the table.
13In [Wei et al. 2012], it is mentioned that Method 2 is 3.6 times faster than Method 1. However, the difference in the runtime
between the two methods has become smaller in this work, because data structure in the fast congestion analyzer used has
been improved since then, which sped up Method 1 more than Method 2 due to the different operations involved in the two
methods.
14Note that Reference Analyzer is using multi-threads routing, and the numbers listed for Reference Analyzer are total CPU
time of all the threads, while the wall time can vary depending on the number of threads used.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Techniques for Scalable and Effective Routability Evaluation A:25

maps from Analyzer A0 and Analyzer A3 on design ckt fb15. Comparing these plots, we see that
Analyzer A3 (with Method 3 to model local routing resources) clearly indicates congestion hot spots,
translating to the problematic regions in detailed routing, which are not captured by Analyzer A0.

(a) Congestion map from Ana-
lyzer A0

(b) Open/short map from de-
tailed routing

(c) Congestion map from Ana-
lyzer A3

Fig. 19. The open/short map and congestion plots for ckt fb. Analyzer A3 integrated with Method 3 to model local routing
resources could predict the problematic regions in detailed routing with higher fidelity than Analyzer A0.

To quantitatively measure the predictability of the analyzers, we compute the ratio of the number of
opens/shorts present in g-cells with congestion greater than 85% to the total number of opens/shorts
in the design. This ratio is called match ratio, which measures the extent of matching between
opens/shorts and the highly congested regions on the design. Here, using 85% as the threshold to
consider g-cells in the computation is based on our prior experience that regions with such high
global congestion are usually problematic in detailed routing. The match ratios for Analyzer A0
and A3 are computed as 0 and 0.98, respectively. In other words, Analyzer A3 is able to point to
the congested regions which capture 98% of all opens/shorts, while A0 does not capture any. This
further demonstrates the effectiveness of the proposed local resource model (Method 3) in enabling
the congestion analyzer to predict the problematic regions in detailed routing.

7.2. Impact of the smoothing technique on routability evaluation
As for the proposed smoothing technique, we have showed some results in Section 4 on a motivating
example, and next we will present more results on several industrial circuits in this section. In our
experiments, we use σ = l/2 = 1/2.

Table V shows the effects of applying the smoothing technique once to the solutions from a
congestion analyzer on several designs. In the table, column “C.A.” lists the results of an industrial
congestion analyzer, column “G.R.” the results of an industrial global router and column “Smooth”
the results after applying the proposed smoothing technique to “C.A.” results. It can be seen that the
proposed smoothing technique can reduce the noise ratio from more than 6% down to below 4%,
and the ACE metrics computed from the smoothed congestion maps become more accurate than
those from the congestion analyzer’s maps, when compared with those from the global router’s maps,
which demonstrates the effectiveness of the smoothing technique.

Fig. 20 shows the congestion maps for the congestion analysis solution, the smoothed solution
and the global routing solution on design ckt x. It can be seen that the congestion map from the
congestion analyzer has many more hot spots than that from the global router, and there are obvious
noisy hot spots in the map. After smoothing, the map becomes smoother with fewer noisy hot spots
than the original map, and the intensity of congestion is reduced by some extent, which causes the
calculated ACE metrics to be closer to those for the global routing solution. Note that the congestion

15For this experiment, a g-cell size of 40 tracks is used, and Fig. 19(a) and Fig. 19(b) are copied from Fig. 1 for the convenience
of comparison.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:26 Y. Wei et al.

Table V. Smoothing reduces noisy hot spots and improves the accuracy of routability evaluation by a congestion
analyzer.

Circuits
Noise ratio (%) ACE metrics (0.5, 1, 2, 5) (%)

C.A. Smooth G.R. C.A. Smooth G.R.
ckt fb 16.39 2.55 8.64 (92.7, 91.1, 89.3, 86.2) (91.0, 89.5, 87.8, 85.2) (88.9, 88.1, 86.9, 84.4)
ckt y 13.99 3.93 6.24 (99.9, 97.6, 95.8, 92.8) (98.9, 97.0, 95.1, 92.3) (95.5, 92.9, 90.2, 86.9)
ckt x 6.34 1.00 2.86 (97.2, 94.4, 92.2, 88.9) (96.6, 93.9, 91.6, 88.4) (93.2, 89.7, 87.3, 84.6)

maps after smoothing do not match well with those from the global router, because routing effort from
the congestion analyzer is much less than that from the global router, which cannot be compensated
by only using the smoothing technique.

(a) Congestion analysis

(b) After smoothing (c) Global routing

Fig. 20. Congestion maps on design ckt x show that smoothing helps improve the accuracy in routability evaluation
compared with the global routing solution.

7.3. Impact of the ACE metric on routability evaluation
7.3.1. Comparison of routability metrics. Visual inspection of a congestion plot is widely used

to quickly evaluate the routability of a design point. We now demonstrate that our new metric can
represent a congestion plot with higher fidelity compared to prior metrics for routability evaluation.
Fig. 21 displays the congestion plots from two global routing solutions on an identical placement
for the design ckt s, which is a 45 nm design with 1,006,029 nets. The corresponding values of the
different congestion metrics for the routing solutions are given in Table VI. For the ACE metric, the
congestion is expressed as an ordered pair representing (Horizontal, Vertical) layer congestion.

(a) Solution 1 (b) Solution 2

Fig. 21. Congestion plots for two routing solutions on design ckt s.

From Table VI, the overflow-based metrics16 indicate that Solution 1 has better routability, while
the net-congestion-based metrics indicate that Solution 2 is better, asACN(20) of Solution 2 is much

16To counteract the drawbacks of overflow metrics discussed earlier, when we calculate overflow, the capacity is scaled down
to 80% of the original, and the overflow is in unit of number of minimum-width tracks, e.g., one overflowed track on a layer
with 4× width tracks would be counted as four in the overflow number.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Techniques for Scalable and Effective Routability Evaluation A:27

better than that of Solution 1, even though WCI(90) and WCI(100) are slightly worse. However, a
visual examination of the congestion plots indicates that they are quite similar, demonstrating the
deficiencies in the existing metrics. Alternatively, our new metric correctly identifies the congestion
of these two routing solutions to be similar.

Table VI. Congestion metrics for two routing solutions on design
ckt s.

Metrics Solution 1 Solution 2
Overflow based TOF 194373 217499

metrics MOF 10 11
ACN(20) 84.41 77.97

Net congestion WCI(90) 39494 40548
based metrics WCI(100) 274 276

ACE(0.5) (90.47, 90.54) (90.27, 90.46)
ACE(1) (89.23, 89.12) (89.13, 89.10)

New metric (%) ACE(5) (85.93, 85.45) (86.14, 85.49)
ACE(10) (84.16, 83.39) (84.59, 83.51)
ACE(20) (82.48, 81.58) (82.57, 81.53)

The significant difference in the ACN(20) values for the two comparable routing solutions can
be explained by Fig. 22(a) which plots the distribution of the worst congestion on the nets. In
Fig. 22(a), the dash lines with labels indicate the minimum congestion for the top 20% congested
nets: 80% for Solution 1 and 60% for Solution 2. In computing the ACN(20) metrics, a number
of nets with low congestion (around 60%) are included for Solution 2, while only the nets with
congestion ≥ 80% are considered for Solution 1. This leads to the difference in the two ACN(20)
values. Alternatively, Fig. 22(b) plots the distribution of congestion on the g-edges, where the dash
line with a label indicates the minimum congestion for the top 20% congested g-edges: 80% for both
solutions. Furthermore, we observe that the distributions for the two routing solutions are similar
above 80%. This explains why the ACE metrics shown in Table VI for the two solutions are similar,
which matches our visual observation that the two solutions have similar congestion.

(a) Distribution of net congestion (b) Distribution of g-edge congestion

Fig. 22. The distribution of congestion for two routing solutions of ckt s (the distribution of congestion < 50% is skipped
since it is not important).

7.3.2. Further comparison between total overflow metric and ACE metric. In this section, we further
demonstrate the limitations of the TOF metric in predicting design routability, and the ability of the
ACE metric to accurately represent the design congestion.

For our experiments, we evaluate the placements from two of the top-performing teams (Rip-
ple [He et al. 2011] and SimPLR [Kim et al. 2011]) in the ISPD-2011 routability-driven placement
contest [Viswanathan et al. 2011].

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:28 Y. Wei et al.

(a) Ripple with TOF of 542, 786 (b) SimPLR with TOF of 514, 614

Fig. 23. The congestion maps and TOF values for Ripple and SimPLR placement solutions on superblue12. The regions
colored purple indicate the congestion hot spots.

We recall that TOF was the primary routability evaluation metric used during the ISPD-2011
contest. Let us consider the Ripple and SimPLR placements for the design superblue12. The TOF
values as reported by the ISPD-2011 contest congestion analyzer are: Ripple (542, 786) and Sim-
PLR (514, 614), indicating that the SimPLR placement has better routability. Fig. 23 shows the
corresponding congestion maps17. From Fig. 23, we make two observations. First, on this design,
Ripple seems to spread cells more than SimPLR. As a result, the congestion hot spots for Ripple are
more distributed than the hot spots for SimPLR. Second, the regions colored purple, with congestion
> 120%, are much larger in SimPLR’s congestion map as compared to Ripple’s. Based on these two
observations and our experience on industry designs, we believe that the SimPLR placement is worse
in terms of routability as compared to the Ripple placement. However, this is not captured by the
TOF metric, highlighting its limitations.

Table VII. The ACE metric (shown as percentage) computed on routing solu-
tions for Ripple’s and SimPLR’s placement solutions on superblue12.

Solutions ACE(0.5) ACE(1) ACE(2) ACE(5) ACE(10) ACE(20)
Ripple 126.25 123.00 120.62 114.32 109.10 104.55
SimPLR 130.89 126.34 123.17 118.97 113.49 106.74

Next, we compute the ACE metric on the same routing solutions as in Fig. 23, and show the results
in Table VII. Note that only the maximum from horizontal and vertical layers is shown for each
ACE(x) value. From Table VII, we see that ACE(0.5) and ACE(1) for SimPLR are higher than
that for Ripple, implying that the hot spots in the SimPLR congestion map have higher congestion
than the ones in the Ripple congestion map. Moreover, all the ACE values for SimPLR are worse
than Ripple. Together, they indicate that SimPLR has worse routability compared to Ripple on this
design. This correlates well with our observations from the congestion maps.

These observations indicate that ACE metric can represent the congestion map with higher fidelity
than TOF metric.

17Since ISPD-2011 contest used an academic congestion analyzer with a congestion target/threshold different from the
industrial analyzers we used in this work, a color map other than that in Fig. 1(a) is used here.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Techniques for Scalable and Effective Routability Evaluation A:29

7.3.3. Guiding routability optimization. In this section, we will discuss the performance of different
metrics in guiding routability optimization, and demonstrate that a good congestion metric such as
the ACE metric is essential to effectively guide routability optimization. We will first explain the
experiments in details using circuit ckt y as an example, and then present the results on the other two
circuits.

In our experiments, we employ CRISP [Roy et al. 2009], an incremental placer that iteratively
spreads logic cells in congested regions to improve the routability of a design. To track its progress,
CRISP relies on a congestion metric to compare the routability of placements over successive
iterations. It terminates if the metric does not improve for two consecutive iterations. In other words,
it returns the placement solution from iteration i if the congestion metrics for both iterations i+ 1
and i+ 2 are worse than that for iteration i.

We first employ the ACN(20) congestion metric to guide CRISP and check the stopping criterion
as outlined above. A plot of the progression of the ACN(20) metric across CRISP iterations on
circuit ckt y is shown in Fig. 24(a). We see that CRISP terminates after just four iterations and returns
the placement solution from the second iteration. The reason for the early termination of CRISP is
as follows: CRISP spreads cells in the most congested regions of the design. This may reduce the
number of nets in regions with 100% congestion (WCI(100)), but increase the number of nets in
regions with over 90% congestion (WCI(90)). As a result, the ACN(20) metric may not change,
or in fact degrade (Fig. 24(a), iterations three and four). Such a scenario can cause CRISP to exit
prematurely without resolving all the congestion issues.

1 1.5 2 2.5 3 3.5 4
88.15

88.2

88.25

88.3

88.35

88.4

88.45

#Iteration

M
e
tr

ic
s

ACN(20)

(a) CRISP terminates after four iterations when
using the ACN(20) metric.

0 5 10 15 20 25 30
85

90

95

100

105

110

#Iteration

M
e

tr
ic

s

ACE(0.5)

ACE(1)

ACE(2)

ACE(5)

(b) CRISP iterates more when using the ACE met-
ric for congestion evaluation.

Fig. 24. The ACE metric provides a more accurate view of the congestion, enabling CRISP to be more effective.

Next, we replace the ACN(20) metric with a set of values obtained from the ACE metric. As
mentioned before, the ACE metric expresses congestion as an order pair of (Horizontal, Vertical)
layer congestion values. We use the maximum of these two values to check the stopping criterion
for CRISP. In this experiment, we use ACE(0.5), ACE(1), ACE(2) and ACE(5) and adopt the
following strategy: during each iteration, we determine the four metric values, and consider it as
an improvement in congestion if there is a reduction in any one of the metric values. Same as
before, CRISP terminates if the congestion evaluated by the ACE metric does not improve for two
consecutive iterations. Note that using the ACE metric does not affect the strategy of CRISP to
mitigate congestion. The ACE metric is just a metric to score or represent congestion, and it does not
change the congestion profile of a placement and the congested bins wherein CRISP needs to operate
and alleviate congestion. CRISP uses the same strategy as before to move cells in each iteration:
identify the most congested bins, inflate the cells in the those bins, spread the cells out of congested
bins and assign them to legal locations. The effect of CRISP using a set of metric values derived

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:30 Y. Wei et al.

from the ACE metric is shown in Fig. 24(b), wherein CRISP runs for up to 26 iterations on ckt y,
and returns the solution in iteration 24.

The intuition behind using a set of edge-congestion-based metric values is as follows: since
CRISP spreads cells from the topmost congested g-cells, it should reduce the congestion on the
topmost congested g-edges. This is captured by the ACE(0.5) metric value. In doing so it may
increase the congestion on other g-edges, but this is still acceptable as it is reducing the peak of the
congestion histogram. Over successive CRISP iterations, the ACE(0.5) metric value may saturate,
but a reduction in any of the other metric values implies that CRISP is still improving congestion,
except that it is now targeting g-edges that are deeper in the congestion histogram.

(a) Using the ACN(20) metric (b) Using the ACE metric

Fig. 25. Post-CRISP congestion plots for ckt y when using different metrics to check the stopping criterion.

In addition, Fig. 25 shows the post-CRISP congestion plots for ckt y when employing the two
congestion metrics. Compared with the solutions obtained by using ACN(20) (Fig. 25(a)), there is a
significant improvement in the design routability (Fig. 25(b)) by running CRISP for more iterations,
as enabled by the ACE metric.

Table VIII. Comparison of the solutions obtained by CRISP driven by ACN(20) and the ACE metric, respectively.
“#iter” lists the iteration number of the CRISP solutions, while ACN(20) and ACE metrics (shown in percentage)
indicate the congestion level of the solutions.

Circuits
CRISP driven by ACN(20) (%) CRISP driven by ACE metric (%)

#iter ACN(20) ACE metrics (0.5, 1, 2, 5) #iter ACN(20) ACE metrics (0.5, 1, 2, 5)
ckt y 2 88.15 (107.93, 104.69, 100.77, 95.18) 24 83.68 (92.35, 91.04, 89.60, 87.15)
ckt sb2 1 81.36 (86.73, 85.04, 83.22, 81.10) 30 79.56 (82.14, 81.38, 80.64, 80.00)
ckt pf 2 87.73 (96.08, 94.67, 92.80, 89.08) 14 87.01 (95.41, 93.72, 91.52, 88.04)

Besides ckt y, we have also found the similar results on circuits from other technologies. Table VIII
summarizes the results on ckt y and another two 32 nm designs including ckt sb2 and ckt pf when
using ACN(20) and the ACE metric to drive CRISP, respectively. From the table, we can see that
the ACE metric can drive CRISP to iterate more and obtain solutions with better routability than the
ACN(20) metric.

7.4. Impact of all techniques working together
We have discussed the individual impact of our proposed techniques, and in this section, we will
demonstrate how they work together in the routability evaluation process described in Section 6.

Assume there are two placements A and B for ckt y shown in Fig. 26, and an EDA tool needs to
compare their routability and return the one with better routability. For this purpose, the improved
routability evaluation process (Fig. 16(b)) will be used. As a comparison, the results using the
traditional process (Fig. 16(a)) will also be shown.

First, a congestion analyzer will be invoked on the given two placements to obtain congestion
maps. We use Analyzer A0 and A3 (introduced in Section 7.1) for traditional routability evaluation
process and the improved process, respectively. Fig. 27 shows the congestion maps obtained by

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Techniques for Scalable and Effective Routability Evaluation A:31

(a) Placement A (b) Placement B

Fig. 26. Two placements for design ckt y.

(a) For placement A (b) For placement B

Fig. 27. Congestion maps from Analyzer A0 for ckt y.

(a) For placement A (b) For placement B

Fig. 28. Congestion maps from Analyzer A3 for ckt y.

(a) For placement A

(b) For placement B

Fig. 29. Smoothed congestion maps based on solutions from
Analyzer A3 for ckt y.

running the Analyzer A0 on placements A and B, while Fig. 28 shows the maps obtained from
Analyzer A3. We have two observations:

(1) There are many more hot spots in the congestion maps from Analyzer A3 than from Analyzer
A0, which is expected due to the modeling of local routing resources in Analyzer A3. Looking at
the congestion map for placement B from Analyzer A0 (Fig. 27(b)), we may think placement
B is probably routable, since there are only a few hot spots that are well distributed. However,
when looking at the plot from Analyzer A3 in Fig. 28(b), we will think placement B is probably
unroutable, since there are several large areas of hot spots in the congestion map.

(2) When comparing the congestion maps for placement A and B from either Analyzer A0 or A3,
we find in common that the congestion hot spots in maps for placement B are more distributed
and have smaller intensity than for placement A, and it is likely that placement B has better
routability than placement A.

As a next step in the improved routability evaluation process, we apply the smoothing technique
discussed in Section 4 to the congestion maps from Analyzer A3, and obtain the smoothed congestion
maps shown in Fig. 29.

Table IX. Routing metrics for two placements A and B on design ckt y from traditional and improved routability
evaluation processes.

Placement
Traditional process Improved process (%) Detailed routing

TOF ACE(0.5) ACE(1) ACE(2) ACE(5) ACE(10) ACE(20) #errors Time (h)
A 801,520 111.7 108.2 104.1 98.1 93.1 86.6 2,424 49.5
B 804,540 102.7 101.2 99.4 96.2 92.9 87.2 816 29.0

Next, we compute the congestion metrics. We use TOF metric in traditional evaluation process,
and the ACE metric in the improved process. The computed metrics are listed in Table IX. The TOF
value for placement A is smaller than that for placement B, and then the traditional evaluation process
will return placement A as the better solution in terms of routability. Now, looking at the ACE metric
(only the maximum between horizontal and vertical layers is reported), we can see that ACE(0.5)
and ACE(1) for placement A are higher than that for placement B, implying that the hot spots in
the congestion maps for placement A have higher congestion than those in the congestion maps

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:32 Y. Wei et al.

for placement B. Metrics ACE(2) and ACE(5) for placement A are also worse than placement B,
while ACE(10) and ACE(20) for both placements are very close, smaller than 1%. Based on these
data, the improved routability evaluation process will consider placement B as a better solution than
A in terms of routability.

To practically judge which placement has better routability, we run an industrial detailed router
on the two placements, and report the results in Table IX. We find that although neither of the two
placements is routable, placement B has relatively better routability than placement A, since both the
number of routing errors and runtime (wall-clock time reported) on placement B are much better than
those on placement A. This verifies our visual observation that placement B has better routability
than A. Moreover, this experiment highlights the drawbacks in the traditional evaluation process:

(1) Due to the lack of local routing resource modeling, the traditional routability evaluation tends to
be optimistic.

(2) Due to the limitations in TOF metric, the conclusion from the traditional routability evaluation
process could be inaccurate.

At the same time, the detailed routing results confirm the advantages of the improved routability
evaluation process integrated with our proposed techniques.

Another conclusion can be drawn from this experiment. We have seen that the metrics ACE(x),
x ∈ {0.5, 1, 2, 5} for placement A are considerably higher than those for placement B, which
correctly indicates that placement B has better routability than A, and is consistent with the results of
detailed routing. However, theACE(10) andACE(20) metrics for placement B are almost the same
or even slightly worse than A, which does not match the fact that placement B has better routability
than A. This is because when we use a large value for x, i.e., go too deep in the histogram of g-edge
congestion to compute the ACE metrics, the g-edges with small congestion are also counted in,
which brings noise to the routability evaluation. Therefore, a conclusion drawn from this experiment
is that we should not use an excessively high value for x in ACE(x) when using the ACE metric to
evaluate routability, and the values x = 0.5, 1, 2, 5 are suggested.

8. CONCLUSION
Fast and accurate routability evaluation techniques are critical to address the increasingly important
and difficult issue of routing closure in nanometer-scale physical synthesis. In this work, we have
addressed two important aspects of routability evaluation: the accuracy of congestion estimation and
a metric for evaluating the routability of a design.

We have shown that ignoring the effects of local congestion can result in large errors during
congestion analysis. This observation motivates our models for local routing resources:

(1) Method 1: Based on the Steiner tree wirelength of the local nets;
(2) Method 2: Based on the pin density in each g-cell;
(3) Method 3: An enhanced method combining the good techniques in Method 1 and Method 2, and

further considering the scalability on increasing g-cell size and pin distribution.

Experimental results show that the proposed models can improve the accuracy and fidelity of
congestion analysis, and better predict detailed routing issues such as opens and shorts. In particular,
Method 3 has the best scalability on g-cell size among the three methods, which enables designers to
use large g-cells to accelerate the process of congestion analysis, thereby speeding design closure.

Furthermore, we have discussed the effects of noisy hot spots in the congestion maps on routability
evaluation, and proposed a smoothing technique, which could be used to obtain more accurate
routability evaluation, as demonstrated in our experiments on several industrial circuits.

In addition, we have analyzed the limitations of existing congestion metrics including overflow,
etc., and proposed a new metric, the ACE metric, based on g-edge congestion. We have demonstrated
that the ACE metric can represent a congestion plot with higher fidelity than other traditional metrics
such as overflow. Moreover, we have showed that with the ACE metric, a routability-driven placer

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Techniques for Scalable and Effective Routability Evaluation A:33

can perform better and improve the routability of designs significantly than that with the ACN(20)
metric.

Finally, we have presented how our proposed techniques work together in the routability evaluation
process and have demonstrated that the improved process with our proposed techniques can predict
the routability more effectively and accurately than the traditional routability evaluation process.

ACKNOWLEDGMENTS

The authors would like to thank Dirk Müller and Laleh Behjat for constructive discussions.

REFERENCES
ALPERT, C. AND TELLEZ, G. 2010. The importance of routing congestion analysis. DAC Knowledge Center Online Article.

http://www.dac.com/back end+topics.aspx?article=47&topic=2.
ALPERT, C. J., LI, Z., MOFFITT, M. D., NAM, G. J., ROY, J. A., AND TELLEZ, G. 2010. What makes a design difficult to

route. In Proceedings of the ACM International Symposium on Physical Design. ACM, New York, NY, USA, 7–12.
ANSÓTEGUI, C., SELLMANN, M., AND TIERNEY, K. 2009. A gender-based genetic algorithm for the automatic configuration

of algorithms. In Principles and Practice of Constraint Programming. Springer, Heidelberg, Germany, 142–157.
BERGSTRA, J. AND BENGIO, Y. 2012. Random search for hyper-parameter optimization. The Journal of Machine Learning

Research 13, 281–305.
BRENNER, U. AND ROHE, A. 2002. An effective congestion driven placement framework. In Proceedings of the ACM

International Symposium on Physical Design. ACM, New York, NY, USA, 6–11.
CHAN, T., CONG, J., AND SZE, K. 2005. Multilevel generalized force-directed method for circuit placement. In Proceedings

of the ACM International Symposium on Physical Design. ACM, New York, NY, USA, 185–192.
CHANG, Y.-J., LEE, Y.-T., AND WANG, T.-C. 2008. NTHU-Route 2.0: A fast and stable global router. In Proceedings of the

IEEE/ACM International Conference on Computer-Aided Design. IEEE Press, Piscataway, NJ, USA, 338–343.
CHEN, H., CHOU, S., AND CHANG, Y. 2010. Density gradient minimization with coupling-constrained dummy fill for CMP

control. In Proceedings of the ACM International Symposium on Physical Design. ACM, New York, NY, USA, 105–111.
CHEN, H.-Y., CHOU, S.-J., WANG, S.-L., AND CHANG, Y.-W. 2007. Novel wire density driven full-chip routing for CMP

variation control. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design. IEEE Press,
Piscataway, NJ, USA, 831–838.

CHEN, H.-Y., HSU, C.-H., AND CHANG, Y.-W. 2009. High-performance global routing with fast overflow reduction. In
Proceedings of the Asia-South Pacific Design Automation Conference. IEEE Press, Piscataway, NJ, USA, 582–587.

CHEN, T., CHAKRABORTY, A., AND PAN, D. Z. 2008a. An integrated nonlinear placement framework with congestion and
porosity aware buffer planning. In Proceedings of the ACM/IEEE Design Automation Conference. ACM, New York, NY,
USA, 702–707.

CHEN, T., JIANG, Z., HSU, T., CHEN, H., AND CHANG, Y. 2008b. NTUplace3: An analytical placer for large-scale
mixed-size designs with preplaced blocks and density constraints. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 27, 7, 1228–1240.

CHO, M., LU, K., YUAN, K., AND PAN, D. Z. 2007. BoxRouter 2.0: Architecture and implementation of a hybrid and
robust global router. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design. IEEE Press,
Piscataway, NJ, USA, 503–508.

CHO, M., PAN, D., XIANG, H., AND PURI, R. 2006. Wire density driven global routing for CMP variation and timing.
In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design. ACM, New York, NY, USA,
487–492.

CHU, C. AND WONG, Y.-C. 2008. Flute: Fast lookup table based rectilinear Steiner minimal tree algorithm for VLSI design.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 27, 1, 70–83.

EIBEN, A. E. AND SMIT, S. K. 2011. Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm and
Evolutionary Computation 1, 1, 19–31.

GESTER, M., MÜLLER, D., NIEBERG, T., PANTEN, C., SCHULTE, C., AND VYGEN, J. 2012. Algorithms and data structures
for fast and good VLSI routing. In Proceedings of the ACM/EDAC/IEEE Design Automation Conference. ACM, New
York, NY, USA, 459–464.

GESTER, M., MÜLLER, D., NIEBERG, T., PANTEN, C., SCHULTE, C., AND VYGEN, J. 2013. BonnRoute: Algorithms and
data structures for fast and good VLSI routing. ACM Transactions on Design Automation of Electronic Systems 18, 2,
32:1–32:24.

HE, X., HUANG, T., XIAO, L., TIAN, H., CUI, G., AND YOUNG, E. 2011. Ripple: An effective routability-driven placer by
iterative cell movement. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design. IEEE
Press, Piscataway, NJ, USA, 74–79.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:34 Y. Wei et al.

HECKBERT, P. 1997. Fast surface particle repulsion. Tech. Rep. CMU-CS-97-130, Carnegie Mellon University, Pittsburgh,
PA, USA.

HSU, M., CHOU, S., LIN, T., AND CHANG, Y. 2011. Routability-driven analytical placement for mixed-size circuit designs.
In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design. IEEE Press, Piscataway, NJ,
USA, 80–84.

HU, J., KIM, M.-C., AND MARKOV, I. 2013. Taming the complexity of coordinated place and route. In Proceedings of the
ACM/EDAC/IEEE Design Automation Conference. ACM, New York, NY, USA, 1–7.

JIANG, Z., SU, B., AND CHANG, Y. 2008. Routability-driven analytical placement by net overlapping removal for large-scale
mixed-size designs. In Proceedings of the ACM/IEEE Design Automation Conference. ACM, New York, NY, USA,
167–172.

KAHNG, A. B. AND WANG, Q. 2005. Implementation and extensibility of an analytic placer. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 24, 5, 734–747.

KIM, M.-C., HU, J., LEE, D.-J., AND MARKOV, I. 2011. A SimPLR method for routability-driven placement. In Proceedings
of the IEEE/ACM International Conference on Computer-Aided Design. IEEE Press, Piscataway, NJ, USA, 67–73.

LI, Y., FARSHIDI, A., BEHJAT, L., AND SWARTZ, W. 2012. High performance post-placement length estimation techniques.
International Journal of Information and Computer Science 1, 6, 144–152.

LOU, J., THAKUR, S., KRISHNAMOORTHY, S., AND SHENG, H. S. 2002. Estimating routing congestion using probabilistic
analysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 21, 1, 32–41.

MOFFITT, M. D. 2008. MaizeRouter: Engineering an effective global router. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 27, 11, 2017–2026.

NAYLOR, W. C., DONELLY, R., AND SHA, L. 2003. Non-linear optimization system and method for wire length and delay
optimization for an automatic electric circuit placer. U.S. Patent 6671859 Bl.

OUMA, D. O., BONING, D. S., CHUNG, J. E., EASTER, W. G., SAXENA, V., MISRA, S., AND CREVASSE, A. 2002.
Characterization and modeling of oxide chemical-mechanical polishing using planarization length and pattern density
concepts. IEEE Transactions on Semiconductor Manufacturing 15, 2, 232–244.

PAN, M. AND CHU, C. 2006. FastRoute: A step to integrate global routing into placement. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design. ACM, New York, NY, USA, 464–471.

PAN, M. AND CHU, C. 2007. IPR: An integrated placement and routing algorithm. In Proceedings of the ACM/IEEE Design
Automation Conference. ACM, New York, NY, USA, 59–62.

ROY, J. A., VISWANATHAN, N., NAM, G.-J., ALPERT, C. J., AND MARKOV, I. L. 2009. CRISP: Congestion reduction by
iterated spreading during placement. In Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design. ACM, New York, NY, USA, 357–362.

SHOJAEI, H., DAVOODI, A., AND LINDEROTH, J. T. 2011. Congestion analysis for global routing via integer programming.
In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design. IEEE Press, Piscataway, NJ,
USA, 256–262.

TAGHAVI, T., ALPERT, C., HUBER, A., LI, Z., NAM, G.-J., AND RAMJI, S. 2010. New placement prediction and mitigation
techniques for local routing congestion. In Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design. IEEE Press, Piscataway, NJ, USA, 621–624.

TIAN, R., WONG, D. F., AND BOONE, R. 2001. Model-based dummy feature placement for oxide chemical-mechanical
polishing manufacturability. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 20, 7,
902–910.

VISWANATHAN, N., ALPERT, C., SZE, C., LI, Z., AND WEI, Y. 2012. The DAC 2012 routability-driven placement contest
and benchmark suite. In Proceedings of the ACM/EDAC/IEEE Design Automation Conference. ACM, New York, NY,
USA, 774–782.

VISWANATHAN, N., ALPERT, C. J., SZE, C., LI, Z., NAM, G.-J., AND ROY, J. A. 2011. The ISPD-2011 routability-driven
placement contest and benchmark suite. In Proceedings of the ACM International Symposium on Physical Design. ACM,
New York, NY, USA, 141–146.

WEI, Y. AND SAPATNEKAR, S. S. 2010. Dummy fill optimization for enhanced manufacturability. In Proceedings of the
ACM International Symposium on Physical Design. ACM, New York, NY, USA, 97–104.

WEI, Y., SZE, C., VISWANATHAN, N., LI, Z., ALPERT, C. J., REDDY, L., HUBER, A. D., TELLEZ, G. E., KELLER, D.,
AND SAPATNEKAR, S. S. 2012. GLARE: Global and local wiring aware routability evaluation. In Proceedings of the
ACM/EDAC/IEEE Design Automation Conference. ACM, New York, NY, USA, 768–773.

WESTRA, J., BARTELS, C., AND GROENEVELD, P. 2004. Probabilistic congestion prediction. In Proceedings of the ACM
International Symposium on Physical Design. ACM, New York, NY, USA, 204–209.

WU, T.-H., DAVOODI, A., AND LINDEROTH, J. T. 2010. A parallel integer programming approach to global routing. In
Proceedings of the ACM/IEEE Design Automation Conference. ACM, New York, NY, USA, 194–199.

XU, Y., ZHANG, Y., AND CHU, C. 2009. FastRoute 4.0: Global router with efficient via minimization. In Proceedings of the
Asia-South Pacific Design Automation Conference. IEEE Press, Piscataway, NJ, USA, 576–581.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

Techniques for Scalable and Effective Routability Evaluation A:35

ZHANG, Y. AND CHU, C. 2011. RegularRoute: An efficient detailed router with regular routing patterns. In Proceedings of
the ACM International Symposium on Physical Design. ACM, New York, NY, USA, 45–52.

ZHANG, Y. AND CHU, C. 2012. GDRouter: Interleaved global routing and detailed routing for ultimate routability. In
Proceedings of the ACM/EDAC/IEEE Design Automation Conference. ACM, New York, NY, USA, 597–602.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Article A, Pub. date: January YYYY.

