
12

Optimized 3D Network-on-Chip Design Using Simulated Allocation

PINGQIANG ZHOU, University of Minnesota
PING-HUNG YUH, National Taiwan University
SACHIN S. SAPATNEKAR, University of Minnesota

Three-dimensional (3D) silicon integration technologies have provided new opportunities for Network-on-
Chip (NoC) architecture design in Systems-on-Chip (SoCs). In this article, we consider the application-
specific NoC architecture design problem in a 3D environment. We present an efficient floorplan-aware 3D
NoC synthesis algorithm based on simulated allocation (SAL), a stochastic method for traffic flow routing,
and accurate power and delay models for NoC components. We demonstrate that this method finds greatly
improved solutions compared to a baseline algorithm reflecting prior work. To evaluate the SAL method, we
compare its performance with the widely used simulated annealing (SA) method and show that SAL is much
faster than SA for this application, while providing solutions of very similar quality. We then extend the
approach from a single-path routing to a multipath routing scheme and explore the trade-off between power
consumption and runtime for these two schemes. Finally, we study the impact of various factors on the
network performance in 3D NoCs, including the TSV count and the number of 3D tiers. Our studies show
that link power and delay can be significantly improved when moving from a 2D to a 3D implementation,
but the improvement flattens out as the number of 3D tiers goes beyond a certain point.

Categories and Subject Descriptors: B.7.2 [Integrated Circuits]: Design Aids

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: 3D, NoC, application-specific, simulated allocation

ACM Reference Format:
Zhou, P., Yuh, P.-H., and Sapatnekar, S. S. 2012. Optimized 3D network-on-chip design using simulated
allocation. ACM Trans. Des. Autom. Electron. Syst. 17, 2, Article 12 (April 2012), 19 pages.
DOI = 10.1145/2159542.2159544 http://doi.acm.org/10.1145/2159542.2159544

1. INTRODUCTION

Three-dimensional (3D) integrated circuits, in which multiple tiers are stacked above
each other and vertically interconnected using through-silicon vias (TSVs), are emerg-
ing as a promising technology for SoCs [Banerjee et al. 2001; Davis et al. 2005; Lim
2005; Xue et al. 2003]. As compared to 2D designs, 3D circuits permit reduced latencies
for critical interconnect structures, resulting in higher system throughput, perfor-
mance, and power, and allowing other benefits, such as heterogeneous integration. All
of these flexibilities enable the design of new, high-performance System-on-Chip (SoC)
structures that were previously thought to have prohibitive overheads. In spite of well-

This work was supported in part by the SRC under contract 2008-TJ-1819.
Some initial results of this article are published in Proceedings of the Annual Asia and South Pacific Design
Automation Conference [Zhou et al. 2010].
Authors’ addresses: P. Zhou and S. S. Sapatnekar, Electrical and Computer Engineering Department, Uni-
versity of Minnesota; email: pingqiang@umn.edu; P.-H. Yuh, Computer Science and Information Engineer-
ing Department, National Taiwan University.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of
this work in other works requires prior specific permission and/or a fee. Permissions may be requested from
the Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1084-4309/2012/04-ART12 $10.00

DOI 10.1145/2159542.2159544 http://doi.acm.org/10.1145/2159542.2159544

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 2, Article 12, Publication date: April 2012.

12:2 P. Zhou et al.

known challenges, such as thermal bottlenecks (to which several solutions have been
proposed), the benefits of 3D integration are considerable. In the context of intrachip
communication, 3D technologies have created significant opportunities and challenges
in the design of low-latency, low-power, and high-bandwidth interconnection networks.

In 2D SoCs, choked by interconnect limitations, networks-on-chip (NoCs), composed
of switches and links, have been proposed as a scalable solution to the global com-
munication challenges. Compared to previous architectures for on-chip communica-
tion, such as bus-based and point-to-point networks, NoCs have been shown to provide
better predictability, lower power consumption, and greater scalability [Benini and
Micheli 2002; Dally and Towles 2001].

3D circuits enable the design of more complex and more highly interconnected sys-
tems. In this context, NoCs promise major benefits but impose new constraints and
limitations. Compared to wire interconnects, NoCs not only enable scalable and par-
allel communication within and across 3D tiers but also reduce the number of TSVs
for vertical interconnects. However, 3D NoC design introduces new issues, such as
the technology constraints on the number of TSVs that can be supported, problems
related to optimally determining tier assignments, and the placement of switches in
3D circuits, and accurate power and delay modeling issues for 3D interconnects.

This work addresses the problem of designing application-specific 3D NoC architec-
tures for custom SoC designs in conjunction with floorplanning. Specifically, our work
determines both the NoC topology and the floorplan of the NoC switches and cores. We
propose a synthesis method to find the best topology for the application under different
optimization objectives, such as power and network latency, and determine the paths
for traffic flows. We use a 3D, thermally aware floorplanner to assign the cores to
different 3D tiers while optimizing chip temperature and find an initial floorplan for
the cores on each tier. Given the positions of cores, we use a stochastic flow allocation
method, Simulated Allocation (SAL), to route the traffic flows and build the topology
for the application, initially using a simple strategy for determining the approximate
locations of the switches. When the best topology is found, a fast floorplanner is
applied to further optimize the positions of the added switches. Accurate power and
delay models for switches and links are integrated into our algorithm.

Our approach has three significant features that together make it uniquely differ-
ent from competing approaches. First, we use improved traffic flow routing using SAL
that accommodates a realistic objective function that has components that are nonlin-
ear and/or unavailable in closed form. Second, we interleave floorplanning with NoC
synthesis, using specific measures that encourage convergence by discouraging blocks
from moving from their locations in each iteration. Third, we use an accurate NoC
delay model that incorporates the effects of queueing delays and network contention.

NoC synthesis can be based on either single-path or multipath routing: single-path
routing can guarantee in-order delivery of packets and is much simpler to implement;
multipath routing can exploit path diversity to evenly distribute the traffic across
the network and to relieve traffic congestion, but the packets are sent in out-of-order
fashion and re-ordering mechanisms are needed at the reconvergent nodes [Murali
et al. 2006]. We demonstrate that our SAL approach can work with either single-path
or multipath routing schemes.

Our algorithm is extremely flexible and is applicable to both 2D and 3D layouts, but
we demonstrate that the use of 3D designs results in significantly reduced NoC power
and latency, as compared to optimal 2D implementations.

2. CONTRIBUTIONS OF OUR WORK

There has been a great deal of prior work on NoCs alone and on 2D and 3D layout alone
but less on integrating the two. In the area of designing NoC architectures for 3D ICs,

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 2, Article 12, Publication date: April 2012.

Optimized 3D Network-on-Chip Design Using Simulated Allocation 12:3

most of the literature has focused on regular 3D NoC topologies, such as meshes [Addo-
Quaye 2005; Feero and Pande 2007; Kim et al. 2007; Matsutani et al. 2007; Pavlidis
and Friedman 2007], which are appropriate for regular 3D designs [Li et al. 2006;
Morrow et al. 2007]. However, most modern SoC architectures consist of heteroge-
nous cores, such as CPU or DSP modules, video processors, and embedded memory
blocks, and the traffic requirements among the cores can vary widely. Therefore, regu-
lar topologies, such as meshes, may have significant area and power overhead [Murali
et al. 2009; Yan and Lin 2008b], and tuning the topology for application-specific solu-
tions can provide immense benefits.

The synthesis of an application-specific NoC topology includes finding the optimal
number and size of switches, establishing the connectivity between the switches and
with the cores, and finding deadlock-free routing paths for all the traffic flows. For
2D systems, the problem of designing application-specific NoC topologies has been ex-
plored by several researchers [Ahonen et al. 2004; Hansson et al. 2005; Murali et al.
2006; Srinivasan et al. 2005; Yan and Lin 2008a]. Srinivasan et al. [2005] present a
three-phase NoC synthesis technique consisting of sequential steps that floorplan the
cores, then perform core-to-router mapping, and finally generate the network topology.
Murali et al. [2006] present an NoC synthesis method that incorporates the floorplan-
ning process to estimate link power consumption and detect timing violations. Several
topologies, each with a different number of switches, are explored—starting from one
where all the cores are connected to one switch, to one where each core is connected to
a separate switch. The traffic flows are ordered so that larger flows are routed first.

In the 3D domain, Yan and Lin [2008b] present an application-specific 3D NoC syn-
thesis algorithm that is based on a rip-up-and-reroute procedure for routing flows in
which the traffic flows are ordered in the order of increasing rate requirements so that
smaller flows are routed first, followed by a router merging procedure. Murali et al.
[2009] propose a 3D NoC topology synthesis algorithm, which is an extension to their
previous 2D work [Murali et al. 2006], previously described. The 3D NoC synthesis
problem has been shown to be NP-hard in Seiculescu et al. [2009].

Our work is motivated by the following observations.

— The final results of application-specific NoC topology synthesis depend on the order
in which the traffic flows are routed. In some cases, routing larger flows first pro-
vides better results [Hansson et al. 2005; Murali et al. 2006], while in others, routing
the smaller flows first may yield better results [Yan and Lin 2008b]. A strategy is
required to reduce the dependency of the results on flow ordering.

— In all of the works mentioned previously, the average hop count is used to approx-
imate the average packet latency in NoCs. This ignores the queueing delays in
switch ports and the contention among different packets for network resources,
such as switch ports and physical links, and cannot reflect the impact of physical
core-to-switch or switch-to-switch distances on network latency. More accurate de-
lay models (that include the effects of queueing delay and network contention) and
better delay metrics should be applied for NoC performance analysis.

— The delays and power dissipation for physical links in NoCs are closely linked to
the physical floorplan and topology of cores and switches. We show in Section 6 that
interleaving floorplanning and the NoC topology synthesis process lead to superior
results.

We address these important problems in application-specific NoC topology syn-
thesis. Our solution to overcoming the ordering problem is based on the use of a
multicommodity flow network formulation for the NoC synthesis problem. The advan-
tage of such an approach is that it takes a global view of the problem and eliminates

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 2, Article 12, Publication date: April 2012.

12:4 P. Zhou et al.

the problem, previously described, of finding the best order in which to route the
traffic flows. The multicommodity flow problem is a well-known approach for solving
such problems but has seen little use in NoC design, with a few exceptions. Hu et al.
[2005, 2006] propose a scheme to optimize NoC power consumption through topology
exploration and wire-style optimization, subject to the average communication latency
constraints. Their scheme, however, does not handle layout synthesis issues and
assumes simple linear objective functions.

Our work utilizes a stochastic SAL approach to efficiently solve the multicommodity
flow problem under a nonlinear objective function that can be evaluated by an oracle
but is hard to express in closed form. The SAL framework has previously been
used to solve multicommodity flow problems in computer network design. We also
use an accurate delay model for switches in NoCs which considers the queueing
delay and network contention. Finally, our algorithm performs the floorplanning of
cores/switches and NoC topology synthesis in an integrated iterative loop, attempting
to find the optimal solution for the problem of application-specific NoC design.

Our work targets SoC applications, which have static or semi-static traffic char-
acteristics in the network. Dynamic traffic behaviors are observed in the many-core
processors, but such applications are beyond the scope of this article. In the context
of synthesizing application-specific 3D NoC architectures for custom SoC designs, this
article makes the following contributions.

— We present an efficient floorplan-aware 3D NoC synthesis algorithm based on simu-
lated allocation, a stochastic method for traffic flow routing, and accurate power and
delay models for NoC components. The effects of these strategies have been verified
by the experiment results.

— We perform a comparative study between single-path and multipath routing
schemes in the SAL framework. Simulation results show that a trade-off exists
between single-path and multipath routing systems in terms of network power con-
sumption and the efficiency of solving multicommodity flow problems.

— We also compare our stochastic SAL approach with simulated annealing (SA). Our
results show that SAL is much faster than SA in finding approximately the same-
quality solutions.

— After that, we present the impact of TSV count on the network performance in 3D
NoCs. Our results show that within a certain extent, TSV count can be effectively
reduced with a mild penalty on the network performance.

— Finally, we investigate the impact of 3D integration on the NoC architecture design.
Our studies show that link power and delay can be largely improved when moving
to 3D implementation, at the cost of the TSV area and chip temperature. We also
observe that the improvement on link delay and power flattens out as the number
of 3D tiers goes beyond a certain point.

3. PROBLEM INPUTS, OBJECTIVES, AND CONSTRAINTS

The input to our application-specific 3D NoC synthesis problem is a directed graph
G(V, E, λ), called the core graph. Each node vi ∈ V represents a core (either a pro-
cessing element or a memory unit), and each directed edge evi,v j ∈ E denotes a traffic
flow from source vi to destination v j. The bandwidth of traffic flow from core vi to v j is
given by λ(evi,v j) in MB/s. In addition, NoC architectural parameters, such as the NoC
operating frequency f and the data link width W are also assumed to be provided as
inputs. The operating frequency is usually specified by the design, and the data link
width is dictated by the IP interface standards.

Our 3D NoC synthesis framework permits a variety of objectives and constraints,
including considerations that are particularly important in 3D (such as power

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 2, Article 12, Publication date: April 2012.

Optimized 3D Network-on-Chip Design Using Simulated Allocation 12:5

Fig. 1. Application-specific 3D NoC synthesis flow.

dissipation, temperature, and the number of TSVs) and NoC-specific issues (such
as minimizing the average/maximum network latency, limitations on the maximum
bandwidth), as well as general factors (such as the design area). In addition, the
solution must be free of deadlocks, which can occur during routing flows due to cyclic
dependencies of resources, such as buffers. We use the turn-prohibition algorithm
presented in Mark et al. [2003] to ensure that our topology is deadlock-free. The
specific optimization objectives in each step of our approach are described in Section 4.

The output of our 3D NoC synthesis solution is an optimized custom, deadlock-free
network topology with predetermined paths on the network for routing the traffic flows
in the core graph and the floorplan of the cores and switches in the NoC, such that the
constraints are satisfied.

4. THE OVERALL DESIGN FLOW

The design flow of our NoC synthesis algorithm is presented in Figure 1. Given a
core graph, we first obtain an initial floorplan of the cores using a thermally aware
floorplanner. This precedes the 3D NoC synthesis step and is important because the
core locations significantly influence the NoC architecture. Associating concrete core
positions with the NoC synthesis step better enables it to account for link delays and
power dissipation.

Our 3D NoC synthesis algorithm is performed on a directed routing graph G′(V ′, E′),
where V ′ is the vertex set, which is the union of core set V in the input core graph
G(V, E, λ) and the set of added switches Vs. We assume that the maximum number
of switches that can be used in each 3D tier l equals the number of cores in that tier,
although it is easy to relax this restriction. The edge set E′ is constructed as follows:
we connect cores in a tier l only to the switches in the same tier l and adjacent tiers
l−1, l+1, and the switches from all the 3D tiers form a complete graph. A custom NoC
topology is a subgraph of the routing graph G′.

The 3D NoC synthesis problem can be viewed as a multicommodity flow (MCF)
problem. For a core graph G(V, E, λ) and a corresponding routing graph G′(V ′, E′)
(corresponding to a flow network), let c(u, v) be the capacity of edge (u, v) ∈ E′. The

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 2, Article 12, Publication date: April 2012.

12:6 P. Zhou et al.

capacity c(u, v) equals to the product of the operating frequency f and data link width
W. Each commodity Ki = (si, ti, di), i = 1, · · · , k corresponds to the weight (traffic flow)
along edge esi,ti in the core graph from source si to destination ti, and di = λ(esi,ti) is the
demand for commodity i. Therefore, there are k = |E| commodities in the core graph.
Let the flow of commodity i along edge (u, v) be fi(u, v). Then, the MCF problem is to
find the optimal assignment of flow which satisfies the following constraints.

Capacity constraints:
∑k

i=1 fi(u, v) ≤ c(u, v);
Flow conservation:

∑
ω∈V ′,u�=si,ti fi(u, ω) = 0,

where ∀v, u fi(u, v) = − fi(v, u);
Demand satisfaction:

∑
ω∈V ′ fi(si, ω) =

∑
ω∈V ′ fi(ω, ti) = di.

Superficially, this idea seems similar to that of Hu et al. [2006], where an MCF
formulation is proposed. However, that work is directed to 2D NoC synthesis with
a single objective of minimizing NoC power, modeled as a linear function of the flow
variables fi(u, v). The corresponding Linear Programming (LP) problem is solved using
an approximation algorithm. Our more general formulation integrates more objectives
and more accurate modeling for NoC components. In fact, most components of our
objective function are nonlinear or, as in the case of network latency, unavailable in
closed form, rendering an LP-based approach impossible.

We choose to apply an SAL-based flow allocation approach that is particularly suit-
able for solving the MCF problems where the objective function is in such a form (see
Section 5.1 for details). The SAL procedure yields the NoC topology and the paths for
all the traffic flows in the core graph. In our article, we first present the SAL approach
using single-path routing and then show how to extend it to deal with the multipath
routing problem in the experimental section.

After the 3D NoC synthesis step, the actual switches and links in the synthesized
3D NoC architecture are fed back to the floorplanner to update the floorplan of the
cores and used switches, and the refined floorplan information is used to obtain more
accurate power and delay estimates. The process continues iteratively: with the
refined floorplan, a new SAL-based 3D NoC synthesis procedure is invoked to find a
better synthesis solution, and so on.

The specific optimization objectives used in various steps of our approach are as
follows.

— For the initial floorplanning step, we optimize a linear combination of chip temper-
ature and weighted intercore distance (Section 5.4).

Objective cost = w1 ∗ temperature + w2 ∗ inter-core distance, (1)

where w1 = 1 and w2 = 5 are default weights.
— For NoC topology construction, we optimize a linear combination of the network

power, average network latency, and TSV count, with constraints on link bandwidth.

Objective cost = w1 ∗ power + w2 ∗ latency + w3 ∗ TSV count, (2)

where w1 = 10, w2 = 5, and w3 = 3 are default weights.
— For subsequent steps that floorplan the cores and switches, we optimize a linear

combination of design area, link power, link delay, and chip temperature.

Objective cost = w1 ∗ area + w2 ∗ power + w3 ∗ delay + w4 ∗ temperature, (3)

where w1 = 10, w2 = 5, w3 = 3, and w4 = 1 are default weights.

In Equations (1)–(3), we normalize the metrics, such as power and latency, using
their initial numbers from a preliminary solution of the NoC synthesis. In a practical

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 2, Article 12, Publication date: April 2012.

Optimized 3D Network-on-Chip Design Using Simulated Allocation 12:7

setting, the weights of these metrics in each cost function are user-specified and can
be chosen depending on the emphasis that the user wishes to place on each of these
metrics.

5. TECHNICAL DETAILS

In this section, we present the major elements in our 3D NoC synthesis algorithm. We
first introduce the SAL algorithm—the approach to synthesizing the NoC topology—
in Section 5.1. In Sections 5.2 and 5.3, we present the delay model and the method
for estimating the path cost used in our SAL algorithm. Finally, we introduce the 3D
floorplanner for the initial floorplanning step and subsequent floorplan refinement of
cores and NoC switches.

5.1. Simulated Allocation Algorithm

Simulation Allocation (SAL) [Pióro and Gajowniczek 1997; Pióro and Medhi 2004] is a
stochastic approach for finding near-optimal solutions for the multicommodity traffic
flow problems in computer network design. It has been shown to be simpler, but often
faster and more efficient, than other stochastic algorithms, such as simulated anneal-
ing and evolutionary algorithms. We adopt the SAL framework from Pióro and Medhi
[2004] but adapt it to solve the 3D NoC synthesis problem in our work. The details of
the SAL algorithm used in our work are described in Algorithm 1.

In the core graph G(V, E, λ), let

— Pi be the number of available paths for traffic demand Ki = (si, ti, di);
— xip be the amount of traffic flow realizing the traffic Ki = (si, ti, di) allocated to path

p in routing graph G′;
— x = {xip : i = 1, 2, · · · , k, p = 1, 2, · · · , Pi} be the allocation state;
— |x| =

∑
i
∑

p xip be the total allocated traffic flow;
— H =

∑
i di be the total amount of traffic flow.

Note that in this section, we use single-path routing to introduce how the SAL
method works. In Section 6.3, we extend SAL to deal with multipath routing prob-
lems. For single-path routing, we assume that each commodity is nonbifurcated, and
in the routing graph, at most k paths (one per commodity) will have nonzero flows.
Therefore, even though the number of paths can be exponentially large, it is never
necessary to enumerate Pi; storing the allocation state x does not impose a significant
memory overhead.

The SAL algorithm may start with a given partial allocation state x0 or with the
zero state (xip ≡ 0). In each step, it chooses (with state-dependent probability q(|x|))
between allocation(x), that is, adding the traffic flow for one non-allocated commodity
to the current state x, and disconnect(x), that is, removing the traffic flow for one
allocated commodity from current state x. After a sequence of such moves, from time
to time, the algorithm will reach a full allocation state, yielding a feasible solution for
the considered problem. The procedure terminates when the number of visited full
allocation states reaches a user-specified limit N or no better solution is found within
M-visited full allocation states.

Procedure allocation(x) selects one currently non-allocated commodity Ki = (si, ti, di)
at random and allocates it to one of the allowable paths that have enough residual
capacity to support Ki in the routing graph. The path for allocating Ki is chosen to
be the minimum cost path p with respect to the cost function for the NoC topology
construction step. Then we add flow xip = di to the current state x and reduce the
capacities of the links on the selected path p in the routing graph by di. When routing
commodity Ki, several new links and switches from the routing graph may be added to

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 2, Article 12, Publication date: April 2012.

12:8 P. Zhou et al.

ALGORITHM 1: Simulated Allocation (SAL)
n = 0; counter = 0; x = 0; Fbest = +∞ ;
repeat

if random(0, 1) < q(|x|) then
allocation(x);

end
disconnect(x);
if |x| = H then

n = n + 1;
counter = counter + 1;
if F(x) < Fbest then

Fbest = F(x);
xbest = x;
counter = 0;

end
end

until n = N or counter = M;

the NoC topology, and the sizes of the switches on the path p may need to be adjusted
accordingly.

Procedure disconnect(x) selects an allocated commodity Ki = (si, ti, di) at random
and removes the corresponding flow xip from current state x. We then increase the
capacities of the links on the path p by di. If some links/switches become unused in the
resulting solution, such links/switches are also removed from the NoC topology. The
sizes of the switches on the path p may need to be adjusted accordingly.

Function q(γ), defined for 0 ≤ γ ≤ H, has the following properties.⎧⎪⎨
⎪⎩

q(0) = 1,

q(H) = 0,
1
2 < q(γ) ≤ 1, 0 < γ < H.

According to Pióro and Medhi [2004], if

q(|x|) = q0 >
1
2

for 0 < γ < H,

then the expected average number of steps (allocations and disconnections) required
to reach a full allocation state starting from state x is no greater than

(H − |x|)/(2q0 − 1).

For instance, if q0 = 2
3 , then a full allocation state will be reached from the zero alloca-

tion state in only 3H steps.

5.2. Analytical Switch Delay Modeling for NoCs

Accurate delay models for switches are required as an input to our 3D NoC synthe-
sis problem, since we need the models to 1) estimate the switch delay when routing a
traffic flow in the allocation(x) step in Section 5.1, and 2) evaluate the final 3D NoC
synthesis solutions. In our work, we utilize the analytical delay model presented in
Ogras and Marculescu [2007], which includes the effects of queueing delay and net-
work contention. The model considers first-come-first-serve input buffered switches
and targets wormhole flow control under deterministic routing algorithms.

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 2, Article 12, Publication date: April 2012.

Optimized 3D Network-on-Chip Design Using Simulated Allocation 12:9

Let S be the packet size and Hi the service time for a header flit passing through
switch i. The service time of a packet passing through switch i, excluding the queueing
delay, is

Ti = Hi +
S− W
f · W

, (4)

where W is the data link width, and f is the operating frequency. For switch i, let

— p be the total number of ports;
— λij be the traffic arrival rate at port j ;
— Nj be the average number of packets in the buffers of input port j, and N =

[N1, N2, . . . , Np]T ;
— c jk be the probability that packets of input ports j and k compete for the same output

port, and Cj be the row vector Cj = [c j1, c j2, . . . , c jp];
— R be the residual service time seen by the incoming packets defined as follows. If

another packet n is being served when packet m arrives, then R is the remaining
time before packet n leaves the switch.

Then we can write the equilibrium condition for the switch as

(I − T�C)N = �R̄, (5)

where � = diag{λi1, λi2, . . . , λip}, C = [C1, C2, . . . , Cp]T , and R̄ = ([R, R, . . . , R]1×p)T .
The switch model described by Equation (5) provides a closed form expression for

the average number of packets at each input port of the switch i, given the traffic
arrival rate (�), the packet contention probabilities (C), switch design specifications
(Hi, W), and packet size S.

We further use this switch model to compute the average packet latency from source
core s to destination core d (used in Equation (2)) as

Lsd =
∑

i∈∏
sd

(Hi + τi) + Dsd +
S− W
f · W

, (6)

where

—
∏

sd is the set of switches along the path of the packets sent from source s to the
destination d;

— τi is the average waiting time of the incoming packets at switch i, which can be
estimated as τi = Nj/λij by Little’s theorem [Little 1961]; and

— Dsd is the total link delay from s to d.

For further details, the reader is referred to Ogras and Marculescu [2007].

5.3. Switch Location Estimation and Path Cost Estimation

When routing a flow from source s to destination d in the allocation(x) step (refer to
Section 5.1), our objective is to find a minimum cost path in the routing graph. While
the initial solution considers the physical locations of only the cores, as flow alloca-
tion proceeds, new switches will be included in the NoC topology, and their physical
positions must be estimated to compute the link power and delay.

We estimate the switch locations in the following way. For a newly added switch i,
the switch is initially placed at the centroid of the source and the destination nodes of
switch i in the routing graph. Given these initial estimates of the positions of the newly
added switches, we apply Dijkstra’s shortest-path algorithm on the routing graph to
find the minimum cost path for the traffic flow, which is required by allocation(x).

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 2, Article 12, Publication date: April 2012.

12:10 P. Zhou et al.

Here, the path cost is the cost for NoC topology synthesis, as shown in Equation (2).
When the 3D NoC synthesis step is complete, we feed the actual switches and links in
the synthesized architecture to the floorplanner to update the switch locations for more
accurate power and delay estimation. Since the floorplanner is stochastic, it is possible
for the new floorplan to be vastly different from the one that was used to generate the
NoC topology, negating the assumptions used to build the topology. To avoid this, we
add a penalty to the objective function of the floorplanner to ensure that the blocks do
not move far away from their initial locations and optimize the precise locations of the
switches, which were initially placed in (possibly illegal) centroid locations.

5.4. 3D Floorplanning

As described in Section 4, an initial step of thermally aware floorplanning is applied
to assign the cores into 3D tiers under thermal considerations and to optimize the
positions of the cores so that highly communicating cores are placed close to each other.
In our implementation, we use the 3D thermally aware floorplanner tool in Hung et al.
[2006] based on a B�-tree floorplan model. The floorplanner uses a built in thermal
analysis technique based on the HS3D [Hung et al. 2006] tool. Of course, any other
similar tools can also be integrated into our program.

For each edge evi,v j which connects two cores vi and v j, the edge weight of evi,v j is set
to be the product of edge bandwidth λ(evi,v j) and the distance dij between vi and v j. Our
cost function is a weighted sum of the chip temperature and the sum of these edge
weights. Therefore, we use the floorplanner to find a good initial floorplan of cores that
favors our next step of 3D NoC synthesis.

During initial floorplanning, we only consider the communicating cores, since no
switches have been introduced at this time. Once a full allocation of traffic flows is
found, the topology of the NoC is determined, including the switches that are used to
route traffic. We then invoke the floorplanner to find a refined floorplan of cores and
NoC switches under an objective function that is a linear combination of design area,
link power, link delay, and chip temperature.

6. EXPERIMENTAL RESULTS

6.1. Experimental Setup

We have implemented 3D-SAL-FP, our SAL-based 3D NoC synthesis algorithm with
floorplan feedback, in C++. All experiments were conducted on an Intel Pentium 4
CPU 3.20GHz machine with 2G memory running Linux.

The design parameters are set as 900MHz clock frequency, 512-bit packets, 4-flit
buffers, and 32-bit flits. We use Orion [Kahng et al. 2009; Wang et al. 2002] to estimate
the power dissipation of the switches. The link power and delay are modeled based on
the equations from Pavlidis and Friedman [2007]. Considering that the delay and
power of TSV (interdie interconnect) in 3D circuits is much smaller (at least one order
in magnitude) than that of the intradie interconnect wires [Loi et al. 2007; Yan and Lin
2008b], we ignore the delay and power of TSVs in this work. The delays of switches
are estimated using the model described in Section 5.2. All switches and links are
evaluated under a 45nm technology.

Several parameters affect the efficiency and performance of the SAL algorithm
(Section 5.1). In choosing the q(γ) function for SAL, we found that for 0 < γ < 1,
a constant function q(γ) = q0 = 0.9 can produce good solutions. The user-specified
iteration limit N is empirically set to three times that of k (the number of commodities
in the core graph), and M is set to be 50 or 100, depending on the size of the MCF
problem. We find that the best solutions are often obtained within k-visited full
allocation states for all the benchmarks.

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 2, Article 12, Publication date: April 2012.

Optimized 3D Network-on-Chip Design Using Simulated Allocation 12:11

6.2. Impact of Each Strategy Applied in Our Algorithm 3D-SAL-FP

Our algorithm 3D-SAL-FP (based on single-path routing) improves upon the previous
algorithms of Murali et al. [2009] and Yan and Lin [2008b] by 1) using a more sophis-
ticated traffic flow routing algorithm (SAL); 2) adding a feedback loop of floorplanning
and NoC synthesis to refine the NoC architecture; and 3) using a more accurate switch
delay model that includes the effects of queueing delay and network contention. To
show the separate impact of these techniques on the NoC design, we have implemented
three other 3D NoC synthesis algorithms.

The four algorithms that we will compare in our results are as follows.

— Baseline1, based on the work by Murali et al. [2009], has two stages: 3D NoC
synthesis and floorplanning of the synthesized NoC architecture. At the 3D NoC
synthesis stage, a simple delay model (average hop count) is used to approximate
the average network latency, and the traffic flows are routed in fixed order (in the
order of decreasing flow rate). In the next stage, we find the floorplan of cores and
used switches in the NoC architecture.

— Baseline2 differs from Baseline1 in that it applies an improved traffic flow routing
strategy (SAL) in the 3D NoC synthesis stage.

— Baseline3 improves upon Baseline2 by feeding back the results of the floorplanning
stage to refine the NoC synthesis. The process continues iteratively: after the 3D
NoC synthesis step, the actual switches and links in the synthesized solution are
fed back to the floorplanner to refine the floorplan of the cores and used switches.
With the refined floorplan, a new NoC synthesis procedure is invoked to find a
better synthesis solution, and so on.

— 3D-SAL-FP is our proposed approach and differs from Baseline3 in that it uses the
accurate switch delay model (described in Section 5.2) to incorporate the queueing
delay and network contention issues.

We then applied these four algorithms to design 3D application-specific NoC topolo-
gies. We compared these algorithms to a set of existing published benchmarks and
several large synthetic 3D benchmarks. Since large standard benchmarks are not
available, we use the method proposed in Yan and Lin [2008b] to build large, syn-
thetic 3D benchmarks, which can be viewed as the “many-core” version of the small
published ones. This method is based on the NoC-centric bandwidth version of Rent’s
rule proposed by Greenfield et al. [2007]. For the small published benchmarks, two
3D tiers are used, where each tier contains one layer of devices and multiple layers of
interconnect. For all of the large synthetic benchmarks, four 3D tiers are used.

The corresponding results are shown in Tables I and II. For each algorithm, we
report the following: the network power (in mW, including switch power and link
power), the average network latency (in ns, evaluated by the accurate delay model),
the number of TSVs, and the maximum chip temperature (in ◦C). Considering that
SAL is a stochastic approach, we run each algorithm ten times and present data in the
tables showing the best results among all the runs. The same strategy is applied to
the experiments in the subsequent sections.

We can observe that using the improved traffic flow routing algorithm, the Base-
line2 algorithm outperforms Baseline1, achieving 23% power saving for the published
benchmarks, 10% reduction in chip temperature, and better network performance.
The corresponding numbers for synthetic benchmarks is 21% in power saving and
9% in chip temperature reduction. Furthermore, Baseline3 uses the feedback from
the floorplanning step to improve upon Baseline2 and shows 34% reduction in the
power dissipation for both published and synthetic benchmarks, about 20% reduction
in chip temperature, and 10% reduction in average network latency. Finally, with our

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 2, Article 12, Publication date: April 2012.

12:12 P. Zhou et al.

Ta
bl

e
I.

C
om

pa
ris

on
of

T
hr

ee
A

lg
or

ith
m

s
on

S
ev

er
al

S
m

al
lP

ub
lis

he
d

B
en

ch
m

ar
ks

B
en

C
or

es
F

lo
w

s
B

as
el

in
e1

B
as

el
in

e2
B

as
el

in
e3

3D
-S

A
L

-F
P

P
ow

er
D

el
ay

#
of

T
m

ax
P

ow
er

D
el

ay
#

of
T

m
ax

P
ow

er
D

el
ay

#
of

T
m

ax
P

ow
er

D
el

ay
#

of
T

m
ax

S
w

it
ch

L
in

k
T

ot
al

T
S

V
s

S
w

it
ch

L
in

k
T

ot
al

T
S

V
s

S
w

it
ch

L
in

k
T

ot
al

T
S

V
s

S
w

it
ch

L
in

k
T

ot
al

T
S

V
s

P
IP

8
8

54
5

59
3.

8
8

66
.4

44
4

48
3.

7
6

60
.6

39
4

43
3.

6
7

58
.2

38
4

42
3.

2
6

55
.1

M
W

D
12

13
94

8
10

2
4.

1
10

72
.8

74
7

81
4.

0
9

66
.5

65
6

71
3.

8
12

62
.5

65
6

71
3.

5
9

62
.3

V
O

P
D

12
15

99
11

11
0

7.
3

14
67

.8
82

10
92

7.
2

7
64

.5
73

10
83

6.
9

7
59

.4
72

9
81

5.
1

9
50

.9

M
E

P
G

4
12

26
16

5
15

18
0

10
.3

14
70

.8
10

8
15

12
3

10
.1

13
64

.7
88

12
10

0
9.

0
14

58
.2

90
13

10
3

6.
3

14
59

.6

IM
P

27
96

61
2

90
70

2
9.

4
42

78
.8

41
3

99
51

2
8.

0
44

65
.2

33
5

87
42

2
7.

8
42

55
.7

34
6

79
42

5
6.

4
40

56
.9

1
1

1
0.

77
0.

95
0.

90
0.

66
0.

91
0.

82
0.

66
0.

74
0.

80

Ta
bl

e
II.

C
om

pa
ris

on
of

T
hr

ee
A

lg
or

ith
m

s
on

La
rg

e
S

yn
th

et
ic

B
en

ch
m

ar
ks

B
en

C
or

es
F

lo
w

s
B

as
el

in
e1

B
as

el
in

e2
B

as
el

in
e3

3D
-S

A
L

-F
P

P
ow

er
D

el
ay

#
of

T
m

ax
P

ow
er

D
el

ay
#

of
T

m
ax

P
ow

er
D

el
ay

#
of

T
m

ax
P

ow
er

D
el

ay
#

of
T

m
ax

S
w

it
ch

L
in

k
T

ot
al

T
S

V
s

S
w

it
ch

L
in

k
T

ot
al

T
S

V
s

S
w

it
ch

L
in

k
T

ot
al

T
S

V
s

S
w

it
ch

L
in

k
T

ot
al

T
S

V
s

B
1

56
19

6
10

33
29

1
13

24
16

.3
11

9
15

7.
8

95
6

30
2

12
58

16
.0

13
2

14
5.

4
80

8
20

9
10

17
15

.0
13

9
12

8.
3

78
5

21
4

99
9

6.
7

13
2

13
3.

2

B
2

80
96

78
3

12
8

91
1

7.
9

11
7

13
3.

5
56

1
11

8
68

9
7.

9
11

6
11

9.
6

49
0

99
58

9
7.

6
12

4
10

7.
1

49
4

96
59

0
4.

6
12

6
10

7.
5

B
3

69
13

6
86

6
21

0
10

76
13

.1
12

2
15

0.
6

49
4

24
3

73
7

12
.0

95
13

4.
4

50
9

16
5

67
4

11
.5

10
5

11
8.

2
50

4
14

1
64

5
9.

4
11

6
11

8.
0

B
4

11
4

39
6

31
28

82
7

39
55

15
.9

19
6

16
6.

4
22

30
88

8
31

18
15

.5
21

4
15

1.
6

18
26

64
3

24
69

13
.9

19
2

12
8.

6
17

21
63

2
23

53
7.

3
20

8
13

7.
0

B
5

12
4

26
6

18
27

84
8

26
75

13
.9

25
4

13
5.

9
15

17
68

6
22

03
11

.8
26

4
12

5.
2

13
52

43
2

17
84

11
.4

25
6

10
4.

4
13

38
46

8
18

06
9.

1
24

1
10

2.
7

1
1

1
0.

79
0.

94
0.

91
0.

66
0.

89
0.

79
0.

65
0.

56
0.

80

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 2, Article 12, Publication date: April 2012.

Optimized 3D Network-on-Chip Design Using Simulated Allocation 12:13

more accurate delay model, 3D-SAL-FP improves upon Baseline3 with 26% reduction
in average network latency for published benchmarks and 44% for the synthetic
benchmarks. Since the objective function for these algorithms is a linear combination
of several metrics, the use of different sets of weighting factors can result in different
Pareto-optimal solutions. For a fair comparison, we have used identical weighting
factors for all four algorithms discussed. In the solutions shown here, 3D-SAL-FP
performs significantly better than Baseline3 in reducing the delay and is slightly
better, on average, (and sometimes worse on specific examples) in terms of power and
temperature. By altering the weights, other trade-off points may be identified.

6.3. 3D-SAL-FP Based on Multipath Routing

In Section 6.2, our 3D-SAL-FP algorithm is based on single-path routing, which means
that each commodity (traffic flow in the given core graph) is nonbifurcated, and we
choose one single path in the routing graph for one commodity. In this section, we
extend 3D-SAL-FP to work with multipath routing, where each commodity can be split
into several subflows, and each subflow can be routed independently in the routing
graph.

Let L be the capacity of each subflow, then a commodity with traffic demand di can
be split into �di/L� subflows. Here we use the capacity L to control the granularity of
the subflow, so that the size of the MCF problem in multipath routing can be controlled.
In our experiments, L is set individually for each benchmark because the values of the
traffic demand di vary greatly from benchmark to benchmark. After splitting the com-
modities in the core graph, we treat each of the resulting subflows as a single routing
unit and select one minimum cost path to route it. Since the subflows constituting the
same commodity can be routed on different paths on the routing graph, we refer to the
new routing problem supporting subflows as multipath routing. In fact, the costs for
the switches and links in the routing graph are state-dependent: when the subflows
are routed one after another, it is highly possible for the subflows of one commodity to
be routed on different paths.

Figure 2 presents the comparison results of single-path and multipath routings.
The results are normalized to the single-path case. Considering that multipath rout-
ing can reduce the peak link bandwidth needs and therefore lower network operating
frequency [Murali et al. 2006], we evaluate the network power consumption using the
optimized frequency number corresponding to the peak link bandwidth in the NoC
synthesis solution. Given the peak link bandwidth, we can obtain the optimized NoC
frequency as optimized frequency = peak link bandwidth/link width.

From Figure 2, we can see that, on average, multipath routing can obtain 35% power
savings compared to single-path routing. The overhead in runtime for multipath rout-
ing is more than 3 times that of most of the benchmarks. This is because 1) it takes
longer time for SAL to find a full allocation solution in multipath routing, and 2) SAL
needs to explore an expanded solution space for the multipath case. However, this
overhead is related to the increased search space and will affect any other algorithm
(e.g., SA) that solves this problem formulation.

6.4. Comparison of SAL and Simulated Annealing

In this section, we compare the performance of our single-path-based SAL algorithm
with another widely used stochastic approach, Simulated Annealing (SA), by replacing
SAL with SA in the 3D-SAL-FP implementation. We implement two kinds of SA moves
in our work.

(1) Consider that in Algorithm 1, the SAL approach applies two basic moves,
allocation(x) and disconnect(x). In order to perform a fair comparison, we

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 2, Article 12, Publication date: April 2012.

12:14 P. Zhou et al.

Fig. 2. Comparisons of single-path and multipath routing schemes.

integrate these two basic moves into the SA engine: in SA, given one full
allocation state x, a move to a neighbor full allocation state neighbor(x) is im-
plemented as a series of single-flow moves (allocation(x) and disconnect(x)), as
introduced in Section 5.1. We refer to this SA implementation as Single-flow SA.

(2) Given one full allocation state x, a move to a neighbor full allocation state neigh-
bor(x) can be obtained in one of two ways.
— Disable one of the used switches and reroute all the traffic flows passing

through that switch.
— Disable one of the used links and reroute all the traffic flows passing through

that link.
For this SA implementation, several flows may be rerouted in one single move,
so we refer to it as Multi-flow SA.

The performance and runtime of the SA algorithm is affected by several parameters,
such as the initial and end temperatures Ti and Te, the inner loop number Ninner at each
temperature, and the temperature reduction parameter τ . We investigate the impact
of runtime on SA’s performance with one randomly selected benchmark IMP. Figure 3
shows the simulation results when Single-flow SA is applied. We use the following cost
function to evaluate the final 3D NoC solutions.

cost = w1∗chip area + w2∗network power + w3∗network latency + w4∗TSV count, (7)

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 2, Article 12, Publication date: April 2012.

Optimized 3D Network-on-Chip Design Using Simulated Allocation 12:15

Fig. 3. The impact of runtime on the performance of SA for benchmark IMP.

where the default weights are w1 = 1, w2 = 10, w3 = 5, and w4 = 3. We normalize all
the costs to the baseline case with a runtime of 120 seconds. We tune the parameters
for an appropriate runtime/quality trade-off from SA. For example, for benchmark
IMP, Figure 3 shows that as we increase the runtime of SA from 120 seconds to 2,398
seconds, the improvement to the objective function shows diminishing returns: the
improvement is very small, but the increase in the runtime is about 20 times. We
factor this into our experiments, and the runtime of SA for the benchmarks ranges
from several minutes to several hours.

Figure 4 presents the results of SAL and two SA implementations on both the pub-
lished and synthetic benchmarks. We use the cost function shown in Equation (7),
where all results are normalized to the SAL case. Figure 4 shows that in terms of
the quality of the solutions, SAL performs approximately as well as SA, but that the
execution times are much smaller than those of SA. For example, for the large bench-
mark B5 with 124 cores and 266 flows, the cost reported by SAL is about 3% less than
that of Single-flow SA, while the speedup is about 18 times. Compared to Multi-flow
SA, Single-flow SA has longer execution time for most of the benchmarks because it
needs more moves to find a neighbor full allocation state, but it can find slightly better
solutions in most cases.

6.5. Exploration of TSV Count

Next, we explore the trade-offs associated with using more or fewer TSVs in the design.
In 3D circuits, more TSVs imply more vertical interconnects, which mean that the
latency can be reduced in the resulting NoC topology. However, the corresponding
overhead includes increased design area and excessive utilization of a valuable vertical
resource (note that TSVs are also required for routing supply nets, clock nets, thermal
vias, etc.). In this section, we explore the trade-off between TSV count and network
latency. The single-path-based 3D-SAL-FP algorithm is applied for this experiment.

Figure 5 shows the trade-off curve when we gradually increase the weight of TSV
w4 (Equation (2)) from 1 to 18. As we can see from this figure, the number of TSVs can
be largely optimized when we increase w4 from 1 to 6, and the increase of the network
latency is less than 2%. After that point, the TSV count gradually levels off, and the
network latency increases much faster. The minor nonmonotonicities in this figure can
be attributed to the nature of the stochastic approach.

6.6. Delay and Power Reduction Potential in 3D NoCs

In this section, we further investigate the impact of 3D integration on the NoC ar-
chitecture design. The benchmark B3 (with 69 cores and 136 flows) was selected, and

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 2, Article 12, Publication date: April 2012.

12:16 P. Zhou et al.

Fig. 4. Comparisons with SA.

our 3D-SAL-FP algorithm was applied to synthesize this benchmark with different
numbers of 3D tiers, from 1 to 4. The 1-tier case is the design that uses conventional
2D technology. The results are shown in Table III. For each case, we list the following
results: the design footprint, the network power, the maximum path length, the
maximum total link delay, the maximum network latency, the average network
latency, the total number of TSVs, the maximum chip temperature, and the CPU time.

Our results show a clear trade-off when implementing NoC architecture using 3D
circuits: as the number of 3D tiers increases, the footprint size continues to decrease,
together with the maximum length of the path to route the packets. The reduced path
length further brings down the maximum link delay and the total link power at the
cost of an increased number of TSVs and higher chip temperature. In addition, we
can observe that although 3D circuits have the potential to reduce the link delay and
power, the improvement flattens out as the number of 3D tiers goes beyond a certain
point. For example, as shown in Table III, the network latency does not decrease much
as we go from three layers to four.

7. CONCLUSION

We have proposed an efficient algorithm 3D-SAL-FP to synthesize application-specific
3D NoC architectures. Our algorithm utilizes a stochastic approach called simulated

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 2, Article 12, Publication date: April 2012.

Optimized 3D Network-on-Chip Design Using Simulated Allocation 12:17

Fig. 5. The trade-off between number of TSVs and average network latency for benchmark B1.

Table III. Comparison of the Impact of Different Numbers of 3D Tiers on NoC Architecture Design
for Benchmark B3

Layers
Footprint

Network Power Max Path Max Link Max Network Avg Network # of Tmax Time
(mm2)

Switch Link Total Length Delay Latency Latency TSVs (◦C) (s)
(mW) (mW) (mW) (mm) (ns) (ns) (ns)

1 216.8 510.5 288.4 798.9 22.1 6.45 14.40 12.42 0 43.8 85.8

2 110.3 505.8 189.2 695.0 17.0 4.95 12.28 9.56 86 63.7 83.9

3 72.0 510.7 164.8 675.5 11.9 3.50 11.51 9.49 94 96.2 87.3

4 56.1 504.8 141.0 645.8 9.2 2.68 11.32 9.44 116 118.0 87.4

allocation (SAL) to reduce the dependency of NoC design results on flow ordering. We
also use an accurate delay model for switches in NoCs, which considers the queueing
delay and network contention. Finally, our algorithm performs the floorplanning of
cores/switches and NoC topology synthesis in an integrated iterative loop, attempting
to find the optimal solution for the problem of application-specific NoC design.

Experimental results on a set of benchmarks show that our algorithm can produce
greatly improved solutions, compared to the baseline algorithm with fixed-order flow-
routing, simple delay model and without feedback from floorplanning step, reflecting
prior work. In comparison with SA, we show that SAL can find approximately the
same quality solutions but with better computational efficiency.

We have also investigated several degrees of freedom in this space. First, our
comparative study between single-path and multipath routing schemes in the SAL
framework shows that multipath routing can achieve large power savings with
slightly larger computation times. Second, when we study the impact of TSV count on
the network performance in 3D NoCs, we find that there is a “sweet spot” where the
TSV count is effectively controlled without much penalty on the network performance.
Third, we investigate the benefits that 3D circuits can bring to the NoC architecture
design and show that link power and delay can be largely improved when moving to
3D implementation, at the cost of TSV and chip temperature.

ACKNOWLEDGMENTS

The authors would like to thank Professor Yuan Xie at Pennsylvania State University for providing the 3D
floorplanner.

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 2, Article 12, Publication date: April 2012.

12:18 P. Zhou et al.

REFERENCES
ADDO-QUAYE, C. 2005. Thermal-aware mapping and placement for 3-D NoC designs. In Proceedings of the

IEEE International System-on-Chip Conference. 25–28.
AHONEN, T., BIN, H., AND NURMI, J. 2004. Topology optimization for application-specific networks-on-chip.

In Proceedings of the International Workshop on System Level Interconnect Prediction. 53–60.
BANERJEE, K., SOURI, S. J., KAPUR, P., AND SARASWAT, K. C. 2001. 3-D ICs: A novel chip design for

improving deep-submicrometer interconnect performance and systems. Proc. IEEE 89, 5.
BENINI, L. AND MICHELI, G. D. 2002. Networks on chips: A new SoC paradigm. Computer 35, 1, 70–78.
DALLY, W. J. AND TOWLES, B. 2001. Route packets, not wires: On-chip inteconnection networks. In Pro-

ceedings of the ACM/IEEE Design Automation Conference. 684–689.
DAVIS, W. R., WILSON, J., MICK, S., XU, J., HUA, H., MINCO, C., SULE, A. M., STEER, M., AND FRANZON,

P. D. 2005. Demystifying 3D ICs: The pros and cons of going vertical. IEEE Des. Test Comput. 22, 6,
498–510.

FEERO, B. AND PANDE, P. P. 2007. Performance evaluation for three-dimensional networks-on-chip. In
Proceedings of the IEEE Annual Symposium on VLSI. 305–310.

GREENFIELD, D., BANERJEE, A., LEE, J.-G., AND MOORE, S. 2007. Implications of Rent’s rule for NoC
design and its fault-tolerance. In Proceedings of the ACM/IEEE International Symposium on Networks-
on-Chip. 283–294.

HANSSON, A., GOOSSENS, K., AND RǍDULESCU, A. 2005. A unified approach to constrained mapping and
routing on network-on-chip architectures. In Proceedings of the International Conference on Hardware-
Software Codesign and System Synthesis. 75–80.

HU, Y., CHEN, H., ZHU, Y., CHIEN, A. A., AND CHENG, C.-K. 2005. Physical synthesis of energy-efficient
networks-on-chip through topology exploration and wire style optimizations. In Proceedings of the
International Conference on Computer Design. 111–118.

HU, Y., ZHU, Y., CHEN, H., GRAHAM, R., AND CHENG, C.-K. 2006. Communication latency aware low power
NoC synthesis. In Proceedings of the ACM/IEEE Design Automation Conference. 574–579.

HUNG, W.-L., LINK, G. M., XIE, Y., VIJAYKRISHNAN, N., AND IRWIN, M. J. 2006. Interconnect and
thermal-aware floorplanning for 3D microprocessors. In Proceedings of the International Symposium
on Quality Electronic Design. 98–104.

KAHNG, A., SAMADI, K., LI, B., AND PEH, L.-S. 2009. ORION 2.0: A fast and accurate NoC power and area
model for early-stage design space exploration. In Proceedings of the Design, Automation and Test in
Europe.

KIM, J., NICOPOULOS, C., PARK, D., DAS, R., XIE, Y., NARAYANAN, V., YONSIF, M. S., AND DAS,
C. R. 2007. A novel dimensionally-decomposed router for on-chip communication in 3D architectures.
In Proceedings of the International Symposium on Computer Architecture. 138–149.

LI, F., NICOPOULOS, C., RICHARDSON, T., XIE, Y., NARAYANAN, V., AND KANDEMIR, M. 2006. Design and
management of 3D chip multiprocessors using network-in-memory. In Proceedings of the International
Symposium on Computer Architecture. 130–141.

LIM, S. K. 2005. Physical design for 3D system on package. IEEE Des. Test Comput. 22, 6, 532–539.
LITTLE, J. D. C. 1961. A proof for the queuing formula: L = λW. Oper. Res. 9, 3, 383–387.
LOI, I., ANGIOLINI, F., AND BENINI, L. 2007. Supporting vertical links for 3D networks-on-chip: Toward an

automated design and analysis flow. In Proceedings of the International Conference on Nano-Networks.
1–5.

MARK, D. S., KARPOVSKY, M., AND ZAKREVSKI, L. 2003. Application of network calculus to general topolo-
gies using turn-prohibition. IEEE/ACM Trans. Netw. 11, 3, 411–421.

MATSUTANI, H., KOIBUCHI, M., AND AMANO, H. 2007. Tightly-coupled multi-layer topologies for 3-D NoCs.
In Proceedings of the International Conference on Parallel Processing. 75–75.

MORROW, P., BLACK, B., KOBRINSKY, M. J., MUTHUKUMAR, S., NELSON, D., PARK, C.-H., AND WEBB,
C. 2007. Design and fabrication of 3D microprocessors. In Proceedings of the Materials Research Society
Symposium.

MURALI, S., MELONI, P., ANGIOLINI, F., ATIENZA, D., CARTA, S., BENINI, L., DE MICHELI, G., AND
RAFF, L. 2006. Designing application-specific networks on chips with floorplan information. In Proceed-
ings of the IEEE/ACM International Conference on Computer-Aided Design. 355–362.

MURALI, S., SEICULESCU, C., BENINI, L., AND MICHELI, G. D. 2009. Synthesis of networks on chips for
3D systems on chips. In Proceedings of the Asia-South Pacific Design Automation Conference. 242–247.

OGRAS, U. Y. AND MARCULESCU, R. 2007. Analytical router modeling for networks-on-chip performance
analysis. In Proceedings of the Design, Automation and Test in Europe. 1096–1101.

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 2, Article 12, Publication date: April 2012.

Optimized 3D Network-on-Chip Design Using Simulated Allocation 12:19

PAVLIDIS, V. F. AND FRIEDMAN, E. G. 2007. 3-D topologies for networks-on-chip. IEEE Trans. VLSI
Syst. 15, 10, 1081–1090.

PIÓRO, M. AND GAJOWNICZEK, P. 1997. Solving multi commodity integral flow problems by simulated
allocation. Telecomm. Syst. 7, 1–3, 17–28.

PIÓRO, M. AND MEDHI, D. 2004. Routing, Flow, and Capacity Design in Communication and Computer
Networks. Morgan Kaufmann Publishers Inc., San Francisco, CA.

SEICULESCU, C., MURALI, S., BENINI, L., AND MICHELI, G. D. 2009. SunFloor 3D: A tool for networks on
chip topology synthesis for 3D systems on chip. In Proceedings of the Design, Automation and Test in
Europe. 9–14.

SRINIVASAN, K., CHATHA, K. S., AND KONJEVOD, G. 2005. An automated technique for topology and route
generation of application specific on-chip interconnection networks. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design. 231–237.

WANG, H., ZHU, X., PEH, L.-S., AND MALIK, S. 2002. Orion: A power-performance simulator for intercon-
nection networks. In Proceedings of the Annual IEEE/ACM International Symposium on Microarchitec-
ture. 294–305.

XUE, L., LIU, C. C., KIM, H.-S., KIM, S. K., AND TIWARI, S. 2003. Three-dimensional integration: Tech-
nology, use, and issues for mixed-signal applications. IEEE Trans. Electron Devices 50, 3, 601–609.

YAN, S. AND LIN, B. 2008a. Application-specific network-on-chip architecture synthesis based on set
partitions and Steiner trees. In Proceedings of the Asia-South Pacific Design Automation Conference.
277–282.

YAN, S. AND LIN, B. 2008b. Design of application-specific 3D networks-on-chip architectures. In Proceedings
of the International Conference on Computer Design. 142–149.

ZHOU, P., YUH, P.-H., AND SAPATNEKAR, S. 2010. Application-specific 3D network-on-chip design using
simulated allocation. In Proceedings of the Asia-South Pacific Design Automation Conference. 517–522.

Received March 2011; revised June 2011, September 2011; accepted November 2011

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 2, Article 12, Publication date: April 2012.

