
1

STEM: A Scheme for Two-phase
Evaluation of Majority Logic

Meghna G. Mankalale, Zhaoxin Liang, and Sachin S. Sapatnekar

Abstract—The switching time of a magnet in a spin current
based majority gate depends on the input vector combination,
and this often restricts the speed of majority-based circuits. To
address this issue, this work proposes a novel two-phase scheme
to implement majority logic and evaluates it on an all-spin logic
(ASL) majority-based logic structures. In Phase 1, the output
is initialized to a preset value. Next in Phase 2, the inputs
are evaluated to switch the output magnet to its correct value.
The time window for the output to switch in Phase 2 is fixed.
Using such a scheme, an n-input AND gate which requires a
total of (2n − 1) inputs in the conventional implementation can
now be implemented with only (n+ 1) inputs. When applied to
standard logic functions, it is demonstrated that the proposed
method of designing ASL gates are 1.6–3.4× faster and 1.9–
6.9× more energy-efficient than the conventional method, and
for a five-magnet full adder, it is shown that the proposed ASL
implementation is 1.5× faster, 2.2× more energy-efficient, and
provides a 16% improvement in area.

Index Terms—Spintronics, All-spin logic, Majority logic, Two-
phase logic.

I. INTRODUCTION

Spintronics is widely viewed as a promising technology
for the post-CMOS era [1]. Several new concepts for imple-
menting logic functions using spin-based devices have been
proposed in this regard, including quantum cellular automata
(QCA) [2]–[4], all-spin logic (ASL) [5], charge spin logic [6],
and magnetoelectric-based logic [7], [8]. The fundamental
logic building blocks implemented with these devices are
based on the majority logic paradigm, where the input states
compete with each other and the majority prevails as the output
logic state. In this work, we propose a scheme that speeds
up the implementation of majority-logic-based devices using
a two-phase method, and we demonstrate this idea with the
help of ASL gates.

The simplest ASL gate is an inverter [9], shown in Fig. 1,
which consists of a ferromagnet at the input and another at
the output, with a non-magnetic channel between the two. An
applied voltage Vdd on the input magnet results in electron
flow due to charge current from Gnd to Vdd. The input magnet
polarizes the charge current and generates a spin current.
The spins that align with the direction of the magnetization
pass through the magnet and those that are opposite to it are
reflected onto the channel. This creates an accumulation of
electron spins at the start of the channel beneath the input
magnet. These spins then diffuse through the spin channel to

The authors are with the Department of Electrical and Computer Engineer-
ing, University of Minnesota, Minneapolis, MN 55455, USA. This work was
supported in part by C-SPIN, one of the six SRC STARnet Centers, sponsored
by MARCO and DARPA.

the output end and switch the output magnet using spin torque
transfer (STT) mechanism. The structure of a buffer is similar
to that of an inverter, but it uses an applied voltage of −Vdd
at the input end instead.

Input 
ferromagnet

(FM)

Output
ferromagnet

(FM)

Vdd

Gnd

Non-magnetic 
(NM) channel

Vclk Charge 
current

Spin current

Fig. 1. A schematic of an all-spin logic inverter.

In a conventional ASL majority (MAJ) gate [5], input
magnets are used to inject spin currents that are sent along
a channel. The spin currents from each of the input magnets
compete, and the net spin current that reaches the output end
is an algebraic sum of the spin current from each input magnet
to the output. The delay is a function of the input vector
combination. Combinations where all inputs assume the same
logic value inject noncompeting spin currents. For these cases,
the net current at the output is larger, and hence the delay
is lower than cases where some spin current contributions
cancel others. We propose an alternative logic implementation
that exploits the timing difference between the evaluation of
the output for various logic states. We refer to our approach
as STEM, a Scheme for Two-phase Evaluation of Majority
logic. Under this scheme, the output magnet is initialized to a
predefined logic stage in the first phase; in the second phase,
currents from a subset of input magnets compete to evaluate
the output to its correct logical value.

Two-phase schemes have been used in the past in the context
of majority logic. For QCA [10], [11], the first phase pulls
the quantum nanodots from “null” state to “active” state by
altering their energy profile, while the second phase evaluates
the output logic state through the interaction with neighboring
quantum nanodots. Recent work in [12] uses a two-phase
scheme for ASL logic, where a bias voltage applied to the
magnets in the first stage orients the magnetization along
the hard axis, and the output is evaluated in the second
stage to switch the output magnet to the correct state. In
short, all of these approaches initialize the system to a state
between the logic 0 and logic 1 states so that part of the
transition is completed during the first phase. In contrast,
we do not attempt to place the gate in such an intermediate
state, which can sometimes be unstable. Furthermore, unlike



2

these prior approaches, our work explicitly leverages the delay
dependence of the logic gate on the input vector to develop
faster and more energy-efficient logic.

The remainder of the paper is organized as follows. In
Section II, we describe the conventional implementation of
majority logic in ASL and how such an implementation can
be used to build (N)AND/(N)OR gates. Next, an overview of
STEM is provided in Section III, followed by a more detailed
discussion of its circuit-level implementation in Section IV. A
detailed performance model, described in Section V, is then
used to apply STEM on a set of standard logic functions and
a full adder in Section VI. Finally, concluding remarks are
presented in Section VII.

II. CONVENTIONAL MAJORITY LOGIC IMPLEMENTATIONS

In this section, we first demonstrate the basics of the
majority logic function used to implement spin-based majority
gates or AND/OR/NAND/NOR gates, and then show that this
structure can result in large disparities in the delay, depending
on the input vector combination. Due to this disparity, in many
cases the circuit may be active for an unnecessarily long time,
sinking power.

A. The majority logic function

The majority logic function, MAJk operates on a set of k
binary logic inputs and outputs the value that represents the
majority. For an odd number of inputs, the output is always
binary. A three-input majority logic function, MAJ3(A,B,C),
operates on Boolean inputs A, B, and C to produce an output
Z, as illustrated in Fig. 2(a). The corresponding truth table in
Fig. 2(b) illustrates the notion that the signal that propagates
to the output is 3× stronger when all inputs are identical as
compared to the other cases, and to a first order, this translates
to a 3× faster switching speed for the stronger signal.

(a) (b)
A B C Z Strength

∝ 1/Delay
0 0 0 0 3×
0 0 1 0 1×
0 1 0 0 1×
0 1 1 1 1×
1 0 0 0 1×
1 0 1 1 1×
1 1 0 1 1×
1 1 1 1 3×

Fig. 2. (a) The MAJ3(A,B,C) function and (b) its truth table, indicating the
delay associated with evaluating each state.

B. Realizing AND/OR gates using majority logic

In prior work, techniques for implementing n-input gates
that realize AND, OR, NAND, and NOR functionalities based
on majority logic primitives have been proposed [9]. An n-
input AND gate, illustrated in Fig. 3(a) for n = 3, is realized
using a majority gate with (2n− 1) inputs, which include the
n inputs of the AND gate and (n − 1) fixed inputs at logic
0. The majority function achieves a value of 0 only when all
n inputs to the AND gate are at logic 1. Similarly, an n-
input OR gate augments the n inputs with (n−1) fixed inputs

(a)

(b)
A B C F1 F2 Z Strength

∝ 1/Delay
0 0 0 0 0 0 5×
0 0 1 0 0 0 3×
0 1 0 0 0 0 3×
0 1 1 0 0 0 1×
1 0 0 0 0 0 3×
1 0 1 0 0 0 1×
1 1 0 0 0 0 1×
1 1 1 0 0 1 1×

Fig. 3. (a) The AND3 function A∧B∧C implemented with a MAJ5 gate, and
(b) the analysis of its delay as a function of the input state.

at logic 1. The implementation of NAND and NOR gates
requires an inversion after the AND and OR functionalities,
respectively, and in some technologies, this inversion can be
applied inexpensively. For instance, as indicated in Section I,
an ASL implementation simply requires an inversion of the
Vdd and Vss polarities for the gate.

Fig. 3(b) illustrates the net signal strength associated with
the majority function evaluation for an AND3 gate using a
MAJ5 structure. Since the strength of the signal can vary by
5× over all inputs, this implies that the gate delay can be 5×
faster for the 000 case, as compared to the 011, 101, 110, and
111 inputs.

III. STEM: A TWO-PHASE MAJORITY LOGIC SCHEME

In this section, we will describe an alternative implemen-
tation of the gates described above. The method proceeds in
two phases:
• Phase 1: Initialization: The output is initialized to a

specific value.
• Phase 2: Evaluation: The gate inputs are applied to

potentially update the output, but the evaluation step is
terminated at time Teval.

This method is superficially similar to the idea of domino logic
in CMOS circuits, where the output is initially precharged
to logic 1, and then evaluated and conditionally discharged.
However, in domino logic, the initialization phase typically
corresponds to a precharge that sets the output to logic 1,
which is conditionally discharged during the evaluation phase;
as we will see, the approach used here is different.

We demonstrate our idea on an implementation of the
majority function, MAJ3(A,B,C). In the initialization phase
the output is set to the value of one of the inputs, say A,
as shown in Fig. 4(a). During the evaluation phase, the other
two inputs are applied to a two-input majority gate that drives



3

(a) (b)

Fig. 4. Two-phase operation for the MAJ3 gate under inputs 010: (a) the
initialization phase and (b) the evaluation phase.

the output, as illustrated in Fig. 4(b). If the two inputs are the
same, they clearly form a majority and overwrite the output. If
they are unequal, then they leave the initialization undisturbed,
again resulting in the correct output. Note that the only case
in which the logic is switched is when the inputs B and C
both disagree with input A, and the switching time is 2Teval,
based on the assumptions in Fig. 3(b).

In the conventional scheme, the magnets corresponding to
A, B, and C must be symmetric and must contribute an equal
spin current. However, in our scheme, the precharging magnet,
corresponding to A above, could be arbitrarily strong and
could potentially perform precharge very quickly. The other
magnets, corresponding to B and C in our example, must be
symmetric and could be smaller, to achieve a better power-
delay tradeoff.

A B C Output Output
(Phase 1) (Phase 2)

0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 0 1
1 0 0 1 0
1 0 1 1 1
1 1 0 1 1
1 1 1 1 1

TABLE I
THE PROPOSED STEM METHOD FOR IMPLEMENTING THE MAJORITY

FUNCTION, MAJ3(A,B,C).

An AND2 gate is implemented in majority logic as a MAJ3
gate with one input set to logic 0: this idea can therefore be
used above. In this case, the constant logic 0 input can be used
in the precharge phase, so that precharge could proceed in
parallel with computing the values of the inputs to the AND2
gate, which may come from a prior logic stage.

For an AND gate with a larger number of inputs, such
as an AND3 gate, a similar idea may be used, but now an
evaluation deadline is introduced. For the AND3 gate, for all
eight input combinations for such a gate, the results at the end
of Phases 1 and 2 are shown in Table II. Note that while several
combinations (011, 101, and 110) would normally evaluate to
a majority value of logic 1, the net spin current, shown in
the table, is 3× weaker than the 111 case, implying that the
amount of time required to change the state of the output
magnet is about 3Teval. This large gap not only provides fast
evaluation, but also provides a safe margin beyond Teval, so
that it is unlikely that marginally early evaluations of the 011,
101, or 110 case (e.g., due to process variations) will corrupt
the output value.

The advantage of using the STEM technique is threefold:
1) As pointed out above, STEM can improve gate delays.
2) STEM often requires fewer magnets to implement var-

ious gate structures, implying that the gate area is
reduced. For example, for the n-input AND gate, a
single fixed input magnet (Fig. 5) can initialize the
output magnet to logic state 0 in Phase 1, as against
the (n − 1) fixed inputs required for the conventional
ASL implementation, resulting in a savings of (n − 2)
magnets.

3) For AND gates implemented using STEM, this reduction
in the number of input magnets reduces the number of
spin currents that are sent to compete at the output,
and thus directly results in a more energy-efficient
implementation.

Fig. 5. A STEM-based implementation of the AND3 gate.

A B C Output Net spin Output
(Phase 1) current (Phase 2)

0 0 0 0 −3Is 0
0 0 1 0 −Is 0
0 1 0 0 −Is 0
0 1 1 0 +Is 0
1 0 0 0 −Is 0
1 0 1 0 +Is 0
1 1 0 0 +Is 0
1 1 1 0 +3Is 1

TABLE II
IMPLEMENTING THE AND3 FUNCTION, A∧B∧C, USING STEM. HERE, Is

REPRESENTS THE CURRENT ARRIVING AT THE OUTPUT FROM A SINGLE
INPUT MAGNET.

IV. APPLYING THIS SCHEME AT THE CIRCUIT LEVEL

A. Gate-level control signals

The previous section presented an outline of the two-phase
STEM scheme. We now concretely show the use of clocking
signals at the gate level that enable the deployment of this
scheme, ensuring that the initialization and evaluation phases
are correctly scheduled.

Fig. 6. A detailed view of the AND2 gate showing control signals for the
initialization and evaluation phases.



4

We show the example of an AND2 gate in Fig. 6. First,
the “init” signal is activated during the initialization phase to
transmit data from the fixed-zero input to the output magnet.
After initialization is completed, the evaluation phase, enabled
by the “eval” signal, is activated to alter the initialized output
value, if necessary. Note that for an AND2 gate, the length of
the “eval” pulse is unconstrained, but for other types of gates,
such as the AND3 gate described in Table II, the minimum
and maximum pulse width are both constrained: under the
coarse delay model proposed earlier, the minimum width of
the signal is Teval, and the maximum width is 3Teval.

B. A simple example

Fig. 7. An example circuit, implemented using STEM.

Consider the circuit shown in Fig. 7, consisting of three
AND2 gates. The evaluation of the three gates proceeds along
the schedule shown in Fig. 8(a), as follows:
• We assume that the input magnets connected to the

primary inputs P, Q, R, and S are initialized when the
computation starts.

• When the computation begins, the gate at the first level,
g1, is initialized.

• After initialization is complete, the gate is evaluated, and
simultaneously, gate g2 is initialized.

• In the next time step, g2 is evaluated and g3 is initialized,
and finally, g3 is evaluated.

Note that when the next level of logic is a (N)AND or (N)OR
gate, its initialized value is a constant. Therefore, for such
scenarios, it is possible to simultaneously initialize the next
level of logic in parallel with the evaluation of the current
level. For a majority gate, such simultaneous initialization is
not possible, as we will see in the next subsection.

The timing of these signals is detailed in Fig. 8(b). We
denote the widths of the initialization and evaluation pulses
for each gate by tinit and teval, respectively. For this simple
example, all gates are identical and therefore have the same
value of tinit and the same value of teval; however, in general,
tinit 6= teval. The clocking complexity for the “init” and “eval”
signals is comparable to that of CMOS domino logic, and
similar methods can be used for generating these clock signals
globally and distributing them.

Clearly, the time required to evaluate each gate is tinit +
teval. Since tinit for g2 overlaps with teval for g1, the
initialization of g2 can occur immediately after g1 is evaluated.
Similarly, the evaluation pulse to g3 is applied teval units after
the evaluate pulse to g2 is applied. The same logic can be
applied to say that the evaluation pulses to successive stages
must also be delayed by time teval.

(a)
time g1 g2 g3

0 init – –
t1 eval init –
t2 – eval init
t3 – – eval

(b)

Fig. 8. (a) An overview of the scheduling of the initialization and evaluation
phases for the circuit in Fig. 7. (b) A timing diagram showing the “init” and
“eval” signals for each gate.

Further, it can be seen that the total evaluation time for this
structure (or any structure with only (N)AND/(N)OR gates)
is tinit + 3teval, implying that the initialization cost must
be paid just once for the first gate, and the evaluation cost
dominates for long chains of gates. Note also as observed
in Section III, the initialization can generally be made much
faster than evaluation. This can be done since the size of the
initializing magnet can be made much larger than the others
and can also be placed closer to the output magnet as there
is no need for symmetry with the other magnets, as in the
conventional implementation.

C. The five-magnet adder

The implementation of majority logic allows a spintronic
full adder to be implemented using five magnets [13], [14],
as shown in Fig. 9. We will refer to the corresponding ASL
circuit as the conventional implementation. In this section, we
show that we can achieve a faster full adder implementation
with STEM using the same number of magnets.

MAJ3

MAJ5

a b cin

cout

sout

Fig. 9. The structure of the five-magnet full adder.



5

(a)
a b cin cout c′out Strength sout

0 0 0 0 1 3× 0
0 0 1 0 1 1× 1
0 1 0 0 1 1× 1
0 1 1 1 0 1× 0
1 0 0 0 1 1× 1
1 0 1 1 0 1× 0
1 1 0 1 0 1× 0
1 1 1 1 0 3× 1

Fig. 10. The truth table for sout in the five-magnet full adder.

The principle of the conventional five-magnet adder is that it
operates in two stages. In the first stage, the value of the output
carry, cout, is computed using the function MAJ3(a,b,cin). In
the second stage, the value of the sum, sout, is calculated as
MAJ5(a,b,cin,c′out,c

′
out). In the conventional implementation,

the delay of the full adder is the sum of the delay of MAJ3 gate
to calculate cout in the first stage and the delay of MAJ5 gate
to calculate sout. Both MAJ3 and MAJ5 gate are implemented
using conventional ASL. The results of this computation are
as shown in columns 4 and 7 of Fig. 10. The layout of this
adder is shown in Fig. 11(a).

(a) (b)

Fig. 11. Top view of the layout of the full adder implemented using (a) the
conventional ASL scheme and (b) STEM.

The STEM-based full adder, whose layout is shown in
Fig. 11(b), modifies the above scheme and is implemented as
described below. As in the conventional adder, the first stage
of logic computes cout as MAJ3(a,b,cin), but in this case, the
MAJ3 gate is built using STEM, as explained in Section II-A.
To implement the STEM MAJ5 structure, we observe that the
original circuit is similar to the structure in Fig. 3(a), except
that the fixed magnets carry the value of c′out. This indicates
that a two-phase STEM structure similar to Fig. 5, but with
modified initialization, can be used to implement MAJ5.

The sequence of operations, illustrated in Fig. 12, is:
1) In MAJ3 Phase 1, input a is first used to initialize cout

by applying an “init” signal to magnet a.
2) In MAJ3 Phase 2, the “eval” signal is activated on

inputs b and cin and their value is used to evaluate and
potentially update the cout magnet.

3) Since the cout signal acts as the initializing signal for
sout, the “init” signal that effects this transfer can only
be applied after cout has been computed. Note that this
implies that unlike the AND gate example previously
described, there is no overlap with the evaluation phase
of the previous stage.

4) Finally, in MAJ5 Phase 2, we compute MAJ3(a,b,cin)
and use the resulting spin current to attempt to update

the sout magnet. Note that the lengths of the paths from
each of these three input magnets to sout are balanced
to ensure equal contributions for the MAJ3 function.

The evaluation times for MAJ3 and MAJ5 are denoted as
teval,1 and teval,2, respectively and will typically be different.
As we will show in Section VI-C, the timing signals and
their sequence can be optimized to reduce the number of
global clock signals, but for this clocking scheme, let the
time required to initialize cout in the first step and sout in
the third step be denoted as tinit,1 and tinit,2, respectively.
The circuit delay is then given by Tadder,STEM = tinit,1 +
tinit,2 + teval,1 + teval,2.

Fig. 12. A timing diagram for the five-magnet adder.

The timing requirements for the fourth step, MAJ5 Phase
2 are similar to those for the structure in Fig. 5, where we
allow a limited time to perform the update. In particular, this
time is chosen such that a 3× current strength (corresponding
to the 000 or 111 combinations) can write the magnet, but
any of the other input combinations (which all correspond to
1× current strengths) do not have sufficient time to switch the
output magnet. This places both an upper and lower bound
on teval,2, the time required to implement MAJ5 Phase 2, but
in practice the large gap between the delay for a 1× vs. 3×
current implies that the upper bound is not a significant factor.
For the adder that is evaluated in Section VI using precise
timing models, the 1× signal is found to be 2.7× more than
teval,2, while the value of teval,1 is similar to that of teval,2.

The STEM-based full adder above uses c′out to initialize
sout. An alternative implementation of the full adder using
STEM could be to initialize sout with one of the input
magnets, a, b, or cin: let us say we use a. This implementation
would have the advantage of allowing sout to be initialized
in parallel with the evaluation of cout using the MAJ3 gate.
However, in the second phase of evaluation, the majority of
b, cin, c′out and c′out is used to update the sout magnet. The
slowest successful switch corresponds to the case where either
b or cin (but not both) agree with c′out, resulting in a 3×
switching current in the direction of c′out and a 1× current
opposing it. Hence, the net current is 2×, as against the 3×
current for the implementation above. This is found to be a
dominant factor in determining the delay of the adder. Thus,
this alternative implementation of the full adder under STEM
is outperformed by the implementation described above.



6

V. ASL PERFORMANCE MODELING

The metrics used to motivate our approach in the previous
sections were based on coarse estimates based on the spin
current. To evaluate the approach, it is essential to use accurate
models for the delay and energy of the two-phase and con-
ventional circuit implementations. In this section, we provide
a brief overview of the spin circuit model used to evaluate
ASL devices. Based on [15], the ferromagnet (FM) and the
nonmagnetic (NM) channel in Fig. 1 are each represented by
a π-model, shown in Fig. 13, where p and q are the end points
of the magnet or the channel in the direction of current flow.

The series and shunt conductance matrices used in the π-
model for FM and NM, respectively denoted by Gse and Gsh,
are given by:

GseFM =
AFM

ρFMLFM

[
1 β

β β2 +
(

(1−p2)LFM

λsf,FM

)
cosech

(
LFM

λsf,FM

)]
(1)

GshFM =
AFM

ρFMLFM

[
0 0

0
(

(1−p2)LFM

λsf,FM

)
tanh

(
LFM

2λsf,FM

)]
(2)

GseNM =
ANM

ρNMLNM

[
1 0

0
(

LNM

λsf,NM

)
cosech

(
LNM

λsf,NM

)] (3)

GshNM =
ANM

ρNMLNM

[
0 0

0
(

LNM

λsf,NM

)
tanh

(
LNM

2λsf,NM

)] (4)

Fig. 13. π-model for either FM or NM connected between nodes p and q.

where A, ρ, λsf , p, and L denote the cross-sectional area,
resistivity, spin-diffusion length, spin polarization, and the
length, respectively, and the subscript denotes whether the
attribute corresponds to the FM or the NM. The spin current
(Is) and the charge current (Ic) between nodes p and q obey
the relation:[

Ic,pq
Is,pq

]
=
[
Gse

]
2×2

[
Vc,p − Vc,q
Vs,p − Vs,q

]
+
[
Gsh

]
2×2

[
0
Vs,p

]
(5)

Using these matrices, the stamps for the individual circuit
elements are built to populate the nodal analysis matrix, Gckt.
The circuit equation is then given by:[

Gckt
]
2k×2kV = I (6)

where k represents the number of nodes in the circuit, V =
[~V1 · · · ~Vk]T represents the vector of nodal voltages, and I
corresponds to the vector of excitations to the circuit. The
system of equations in Equation (6) is solved to obtain the
spin and charge nodal voltages and branch currents. The spin
current, Is at the output magnet is used to calculate the delay

of the gate, Tgate and the switching energy of the gate, Egate
as:

Tgate =
2qNsf

Is
(7)

Egate = VddIcTgate (8)

where Ns refers to the number of Bohr magnetons in FM, q
the electron charge, Ic the total charge current involved in the
switching process, and f is a constant [16]. We perform the
ASL modeling and simulations on MATLAB tool.

VI. RESULTS

We now evaluate the delay and energy associated with ap-
plying the STEM scheme in an ASL technology and compare
it to the conventional ASL implementation. We first examine
gates that implement basic logic functions and then evaluate
the five-magnet adder. The simulation parameters for the
ASL structures, including technology-dependent parameters
and physical constants, are shown in Table III. The input
and output FMs are all based on perpendicular magnetic
anisotropy (PMA). In contrast with magnets with in-plane
magnetic anisotropy (IMA) such magnets are more compact
since they do not require a specific aspect ratio in the plan
of the layout to achieve shape anisotropy, and their dipolar
coupling to neighboring magnets is weaker [17].

Our evaluations below focus on the energy dissipated in the
magnets. Conventional ASL uses access transistors to control
the current sent through the magnets [18]. To a first order,
the energy dissipated in access/gating transistors is similar
in conventional ASL and in STEM since a similar current
is delivered in each case: conventional ASL uses a smaller
number of large access transistors, while STEM uses a larger
number of smaller access transistors. This is due to the fact
that in conventional ASL, a single clock signal clocks all the
magnets, while in the case of STEM, a subset of magnets are
clocked by the “init” signal with the rest being clocked by the
“eval” signal. We neglect transistor energy because substantial
amounts of sharing of these transistors is possible in large
circuits, and it is difficult to estimate the energy impact on
these smaller circuits. This caveat should be kept in mind while
interpreting the energy numbers reported here, keeping in mind
that these are energy improvements at the gate level. This
assumption does not affect the reported delay improvements.

Parameters Value
Spin polarization factor, p 0.8
Resistivity of magnet, ρFM [5] 170 Ωnm
Resistivity of channel, ρNM [5] 7 Ωnm
Spin flip length of magnet, λsf,FM [5] 5 nm
Spin flip length of channel, λsf,NM [5] 500 nm
Magnet dimension (length×width×thickness) 30×10×3 nm3

Channel width 10 nm
Channel thickness 10 nm
Bohr magneton, µB 9.274×10−24JT−1

Saturation magnetization, Ms [5] 780 emu/cc
Charge of an electron 1.6× 10−19 C
Input voltage 100 mV

TABLE III
PARAMETERS USED TO MODEL ASL STRUCTURES IN OUR SIMULATIONS.



7

A. Evaluating STEM on individual logic gates

We examine the performance of gates that implement basic
logic functionalities, as described in Section III. We focus on
AND and MAJ gates with various numbers of inputs. The
implementation of NAND, NOR, and OR gates is very similar
to AND gates, and the results for the AND gate carry over to
these types of gates. We obtain the delay and energy of the
AND and MAJ gates modeled using the method described in
Section V in MATLAB.

For both the AND and MAJ gates, during Phase 1, only one
magnet initializes the output magnet. Therefore, the initializa-
tion delay, tinit is equivalent to one inverter delay. As stated
in Section III, unlike the conventional ASL implementation
which requires all input magnets to have the same size, the
initializing input is freed of this constraint since it does not
compete with any other magnet. Therefore, although Fig. 4(a)
shows the initializing magnet to be unit-sized, in principle it
is possible to upsize this magnet to speed up initialization.
We consider various scenarios where the strength of the
initialization magnet can be increased to Q× by increasing
the area (length × width) of the unit-sized magnet (whose
dimensions are defined in Table III) by a factor of Q, where
Q = [2, 4, 8, 16]. Regardless of this choice, in Phase 2, input
magnets of size 1× will evaluate and switch the output magnet
to the correct state.

(a)

(b)

Fig. 14. (a) The delay and energy and (b) the energy-delay product for the
initialization phase, as a function of the strength of the initialization magnet.

The energy, delay, and energy-delay product for initializa-
tion are plotted in Fig. 14. In this work, we choose the solution
with the optimal energy-delay product, corresponding to a 1×
magnet. This result can be explained by the fact that due to
spin losses in the channel, increasing the input magnet size
does not reduce the delay sufficiently to compensate for the
corresponding increase in energy. Therefore, we use the 1×

(a)

(b)

Fig. 15. Comparison between the (a) delay and (b) energy of the conventional
ASL implementation and the proposed STEM approach.

magnet for initialization, which corresponds to tinit = 104ps
and initialization energy of 0.2pJ. In other words, based on
this analysis, although it is possible to speed up initialization,
we choose to go with the solution that is similar to the
conventional ASL scheme. The circuit-level analysis in Sec-
tion IV-B as well as the adder optimizations to be proposed in
Section VI-C both support this choice, since the initialization
phase can be overlapped with evaluation for all but the first
stage of logic. If it is important to reduce the circuit delay, the
tinit value of only the first logic stage can be made faster, at
the expense of a special narrow clock signal for this stage.

We compare the delay and energy associated with the
conventional ASL implementation and STEM with respect
to the AND2, AND3, AND4, MAJ3, and MAJ5 logic gates,
and display the results in Fig. 15. For each logic gate, the
delay for the STEM implementation refers to the sum of the
initialization delay, tinit and the evaluation delay, teval. We
note that this may understate the advantage of STEM: as
observed in Section IV-B, the tinit phase can be overlapped
with the evaluation of the next gate since the delay penalty
for initialization is paid only once in the first logic stage.
Compared to STEM, the AND2, AND3, and AND4 imple-
mentations using conventional ASL are, respectively, 1.6×,
2×, and 3.4× slower and 2.3×, 1.9×, and 6.9× less energy-
efficient. The large delay and energy improvements for AND4
are primarily due to a reduction from a total of seven input
magnets with the conventional ASL implementation to five
input magnets for STEM.

From a delay and energy perspective, the MAJ3 gate is
substantially similar to the AND2 structure and sees the same



8

level of improvement. A similar analysis on MAJ5 gates shows
that the conventional ASL implementation is 2.3× slower than
STEM, while being 2.5× less energy-efficient. As before, the
advantage of STEM is larger for gates with more inputs.

(a)

(b)

(c)

Fig. 16. Cumulative distribution function of (a) the initialization delay and
(b) evaluation delay of the AND3 gate implemented using STEM technique,
and (c) the delay of the AND3 gate using conventional implementation.

B. Impact of thermal fluctuations on the switching delay

The switching delay of a ferromagnet in Equation (7) is
obtained as a deterministic number by solving the Landau-
Lifshitz-Gilbert-Slonczewski (LLGS) equation [16]. However,
the switching process is indeterministic owing to the impact
of random thermal fluctuations. Here, we study the variations
in the switching delay with the example of an AND3 gate
using the HSPICE model for stochastic LLGS [19] at room
temperature. The AND3 circuit is modeled using the method
described in Section V. The spin current, Is, at the output
magnet obtained by solving Equation (6) is provided to the
stochastic LLGS solver to obtain a distribution for the delay.

The cumulative distribution function (CDF) of the initializa-
tion and the evaluation delay of the AND3 gate implemented
using STEM scheme is shown in Figs. 16(a) and 16(b),
respectively, while the corresponding CDF for the conventional
implementation is shown in Fig. 16(c). The deterministic delay
of Equation (7) corresponds to the 99 percentile switching

probability obtained from the stochastic LLGS solver. The 99
percentile point of the delay of the AND3 gate implemented
using STEM scheme is the sum of the 99 percentile point of
the initialization and the evaluation delays. This ensures that
the initialization of the output magnet of the AND3 is complete
before the evaluation phase begins. The AND3 STEM delay is
thus obtained as 438 ps. The 99 percentile point corresponds
to a delay of 870 ps for the AND3 gate implemented con-
ventionally, which is approximately twice that of the STEM
implementation. These numbers are consistent with the delays
reported in Fig. 15(a).

We make two important observations from Fig. 16:
1) The delay distribution of the AND3 gate implemented

with the conventional scheme is broader compared to
that of the AND3 gate implemented with the STEM
scheme. This result is consistent with the findings
in [20], which shows that the broadening of the delay
distribution occurs when the magnitude of the spin
current that switches the output magnet is lowered. A
lower spin current requires a larger initial angle of the
magnetization which in turn leads to a larger time for
the magnetization to achieve the 99 percentile point. In
the case of the conventional AND3 implementation, the
magnitude of the spin current that switches the output
magnet is less than that compared to the STEM scheme
as explained in detail in Sections II-A and II-B, leading
to a broader delay distribution.

2) The stochastic nature of the magnet switching during the
initialization and the evaluation phase for STEM dictates
the pulse widths of the “init” and the “eval” signals.
This is to ensure that the initialization (evaluation) of
the output magnet is complete when the “init” (“eval”)
signal is deasserted.

C. Evaluating the five-magnet adder

Fig. 17. A simplified timing scheme for the five-magnet adder.

We show the impact of using STEM for implementing
the five-magnet adder, as described in Section IV-C, and
compare the delay and energy savings with respect to the
conventional ASL implementation. We model the adder circuit
in MATLAB using the method described in Section V. Using



9

the notation defined in Section IV-C, the layout shown in
Fig. 11(b), and the simulation parameters in Table III, we find
that tinit,1 = 425 ps, teval,1 = 370 ps, tinit,2 = 304 ps, and
teval,2 = 356 ps.

These results can be explained by referring to the four-step
operation of the full adder implemented with STEM presented
in Section IV-C.

• The initialization of cout is performed using input a in
step one. The requirement to achieve symmetry between
the input magnets, a, b, and cin, for the evaluation of
sout in step four, prevents us from placing input magnet
a closer to cout, for a faster initialization in step one. This
results in a 1X current strength initializing cout, while
in step two, a 2X current from input magnets, b and
cin, from STEM MAJ3 implementation evaluates cout.
Therefore, tinit,1 > teval,1.

• In step three, cout initializes sout, while in step four,
sout is evaluated as MAJ3(a,b,cin). Thus, there is no
requirement for symmetry between the input magnets
and cout for the evaluation of sout. This allows the
placement of sout such that we obtain a compact layout
for the full adder with STEM scheme as shown in
Fig. 11(b). In comparison, the full adder layout obtained
using the conventional implementation occupies more
area as seen from Fig. 11(a). The evaluation of sout in the
conventional implementation as MAJ5(a,b,cin, c′out,c

′
out)

requires careful balancing of channel segment lengths to
achieve symmetry between the input magnets and cout,
thereby occupying more area.

• Moreover, a 3X net current evaluates sout in step four
compared to the 2X current strength that evaluates cout
in step two. Therefore, we obtain teval,1 > teval,2.

• The channel length between input magnet a and cout is
longer compared to the channel length between sout and
cout. This results in tinit,1 > tinit,2.

We begin with the basic timing diagram of Fig. 12. The tim-
ing diagram with the relative pulse-widths of the initialization
and evaluation signals for the full adder implemented using the
STEM technique is shown in Fig. 17. Since it is preferable to
generate a single evaluation pulse that can be applied to the
gates, we set a safe value of tinit = max(tinit,1, tinit,2)
and teval = max(teval,1, teval,2) applied to both gates. We
therefore delay the “eval” signal to sout by (tinit,1 − tinit,2)
time units, and extend the tinit,2 pulse duration to equal tinit
time units. We also extend the “eval” signal to sout for an
additional (teval,2−teval,1) units. The resulting timing diagram
shown in Fig. 17 is identical to Fig. 12 with tinit = tinit,1 =
tinit,2 and teval = teval,1 = teval,2. The total delay of the
full adder implemented with the STEM scheme is given by,
Tadder,STEM = 2(tinit + teval).

Adder implementation Delay (ps) Energy (pJ) Area (nm2)
Conventional ASL 2349 13.6 11250
STEM 1590 6.3 9450

TABLE IV
A COMPARISON OF THE DELAY, ENERGY, AND AREA OF THE

CONVENTIONAL ASL FIVE-MAGNET ADDER IMPLEMENTATION WITH
STEM.

For the simulation parameters in Table III and under the spin
circuit model in Section V, the delay, energy, and area for the
full adder in the conventional ASL implementation and STEM
are shown in Table IV. The full adder delay using conventional
ASL scheme, Tadder,conv , is the sum of the delays of MAJ3
gate (to calculate cout) and the MAJ5 gate (to calculate sout).
Here, both MAJ3 and MAJ5 gates are implemented using
the conventional ASL scheme. Compared to the conventional
implementation, we see that the full adder implemented with
STEM is 1.5× faster and 2.2× more energy-efficient, and
provides a 16% improvement in area.

VII. CONCLUSION

In this work, we have proposed STEM, a novel two-phase
method that leverages the delay dependence of the device
while implementing the majority logic. In the first phase, the
output is initialized to a preset value, while in the second
stage the inputs evaluate to switch the output under a time
constraint. We demonstrate this idea on standard cells built
with ASL gates. We show that an n-input AND gate which
requires (2n − 1) inputs with conventional ASL can now be
implemented with just (n + 1) inputs. We show that STEM
significantly outperforms conventional ASL in terms of delay
as well as energy: STEM ASL gates are 1.6× − 3.4× faster
while being 1.9× − 6.9× more energy-efficient as compared
to conventional ASL gates, STEM ASL majority gates are
1.6× − 2.3× faster and 2.3× − 2.5× more energy-efficient
than conventional, and a STEM ASL five-magnet full adder
is 1.5× faster, 2.2× more energy-efficient, and 1.2× more
area-efficient than its conventional counterpart. Further circuit-
level and system-level optimizations are possible. Like CMOS
domino logic [21], the STEM logic family is very amenable
to pipelining and we believe that many of the methods used
to pipeline domino logic carry over to STEM.

REFERENCES

[1] D. E. Nikonov and I. A. Young, “Overview of beyond–CMOS devices
and a uniform methodology for their benchmarking,” Proceedings of the
IEEE, vol. 101, no. 12, pp. 2498–2533, Dec 2013.

[2] C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, “Quantum
cellular automata,” Nanotechnology, vol. 4, no. 1, pp. 49–57, 1993.

[3] P. D. Tougaw and C. S. Lent, “Logical devices implemented using
quantum cellular automata,” Journal of Applied Physics, vol. 75, no. 3,
pp. 1818–1825, 1994.

[4] A. Imre, G. Csaba, L. Ji, A. Orlov, G. H. Bernstein, and W. Porod,
“Majority logic gate for magnetic quantum-dot cellular automata,”
Science, vol. 311, no. 5758, pp. 205–208, Jan 2006.

[5] B. Behin-Aein, D. Datta, S. Salahuddin, and S. Datta, “Proposal for
an all-spin logic device with built-in memory,” Nature Nanotechnology,
vol. 5, no. 4, pp. 266–270, Feb 2010.

[6] S. Datta, S. Salahuddin, and B. Behin-Aein, “Non–volatile spin switch
for Boolean and non–Boolean logic,” Applied Physics Letters, vol. 101,
no. 25, pp. 252 411–1–252 411–5, Dec 2012.

[7] S. C. Chang, S. Manipatruni, D. E. Nikonov, and I. A. Young, “Clocked
domain wall logic using magnetoelectric effects,” IEEE Journal on
Exploratory Solid–State Computational Devices and Circuits, vol. 2, pp.
1–9, Dec 2016.

[8] M. G. Mankalale, Z. Liang, A. Klemm Smith, Mahendra D. C., M. Ja-
mali, J.-P. Wang, and S. S. Sapatnekar, “A fast magnetoelectric device
based on current-driven domain wall propagation,” in Proceedings of the
IEEE Device Research Conference, 2016.

[9] J. Kim, A. Paul, P. A. Crowell, S. J. Koester, S. S. Sapatnekar, J.-P. Wang,
and C. H. Kim, “Spin-based computing: Device concepts, current status,
and a case study on a high-performance microprocessor,” Proceedings
of the IEEE, vol. 103, no. 1, pp. 106–130, Jan 2015.



10

[10] C. S. Lent and B. Isaksen, “Clocked molecular quantum-dot cellular
automata,” IEEE Transactions on Electron Devices, vol. 50, no. 9, pp.
1890–1896, Aug 2003.

[11] C. S. Lent, M. Liu, and Y. Lu, “Bennett clocking of quantum-dot cellular
automata and the limits to binary logic scaling,” Nanotechnology,
vol. 17, no. 16, pp. 4240–4251, Aug 2006.

[12] M. C. Chen, Y. Kim, K. Yogendra, and K. Roy, “Domino-style spin
orbit torque-based spin logic,” IEEE Magnetics Letters, vol. 6, pp. 1–4,
2015.

[13] H. M. Martin, “Threshold logic for integrated full adder and the like,”
1971, US Patent 3,609,329.

[14] C. Augustine, G. Panagopoulos, B. Behin-Aein, S. Srinivasan, A. Sarkar,
and K. Roy, “Low-power functionality enhanced computation archi-
tecture using spin-based devices,” in Proceedings of the IEEE/ACM
International Symposium on Nanoscale Architectures, 2011, pp. 129–
136.

[15] S. Srinivasan, V. Diep, and B. Behin-Aien, “Modeling multi-magnet
networks interacting via spin currents,” 2013, available at http://arxiv.
org/abs/1304.0742.

[16] B. Behin-Aein, A. Sarkar, S. Srinivasan, and S. Datta, “Switching
energy-delay of all spin logic devices,” Applied Physics Letters, vol. 98,
no. 12, pp. 123 510–1–123 510–3, Mar 2011.

[17] M. G. Mankalale and S. S. Sapatnekar, “Optimized standard cells for
all–spin logic,” ACM Journal on Emerging Technologies in Computing,
vol. 13, no. 21, Nov 2016.

[18] M. Sharad, K. Yogendra, K. Kwon, and K. Roy, “Design of ultra high
density and low power computational blocks using nano-magnets,” in
Proceedings of the IEEE International Symposium on Quality Electronic
Design, 2013, pp. 223–230.

[19] K. Y. Camsari, “Stochastic Landau-Lifshitz-Gilbert Module,” https:
//nanohub.org/groups/spintronics/llg thermal noise, accessed: 2017-01-
08.

[20] W. H. Butler, T. Mewes, C. K. A. Mewes, P. Visscher, W. H. Rippard,
S. E. Russek, and R. Heindl, “Switching distributions for perpendicular
spin-torque devices within the macrospin approximation,” IEEE Trans-
actions on Magnetics, vol. 48, pp. 4684–4700, Dec 2012.

[21] D. Harris and M. A. Horowitz, “Skew-tolerant domino circuits,” IEEE
Journal of Solid-State Circuits, vol. 32, no. 11, pp. 1702–1711, Nov
1997.


