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Abstract—This work proposes a novel logic device (SkyLogic)
based on skyrmions, which are magnetic vortex-like structures
that have low depinning current density and are robust to
defects. A charge current sent through a polarizer ferromagnet
(P–FM) nucleates a skyrmion at the input end of an intra-
gate FM interconnect with perpendicular magnetic anisotropy
(PMA–FM). The output end of the PMA–FM forms the free
layer of an MTJ stack. A spin Hall metal (SHM) is placed
beneath the PMA–FM. The skyrmion is propagated to the output
end of the PMA–FM by passing a charge current through the
SHM. The resistance of the MTJ stack is low (high) when a
skyrmion is present (absent) in the free layer, thereby realizing an
inverter. A framework is developed to analyze the performance
of the SkyLogic device. A circuit-level technique is developed
that counters the transverse displacement of skyrmion in the
PMA–FM and allows use of high current densities for fast
propagation. The design space exploration of the PMA–FM
material parameters is performed to obtain an optimal design
point. At the optimal point, we obtain an inverter delay of 434ps
with a switching energy of 7.1fJ.

Index Terms—Design space exploration, skyrmions, spintron-
ics.

I. INTRODUCTION

Recently, research in spintronics has accelerated in an
effort to find an alternative to or complement the existing
CMOS-based electronics. Several physical phenomena have
been exploited to develop novel spin logic devices [7], [10].
Some of the more successful logic device concepts are based
on manipulation of the magnetic nanostructures like domain-
walls [8], [9], [13], but domain-walls are susceptible to pinning
due to material defects [18]. Recently, skyrmions, which are
vortex-like spin structures in magnetic thin films, have been
actively studied [4]. Skyrmions have proven to be more robust
to pinning compared to domain walls [4]. The recent room
temperature experimental observation of skyrmion creation,
current-driven displacement, and detection [3], make them
attractive structures to develop skyrmion-based logic devices.

Several skyrmion-based logic devices [17], [26], [27] have
been proposed. The skyrmion velocity in these devices is
limited by its transverse displacement due to Magnus force [4].
Prior works have considered this effect as a constraint, severely
limiting their performance. Magnetic bilayer systems, where
the skyrmions nucleated in each of these layers are anti-
ferromagnetically coupled to each other [22], [28] such that
the Magnus force cancels out, have been proposed. However,
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(a)

Fig. 1. (a) The structure of the SkyLogic device.

in such cases, careful engineering of the materials is required
to obtain perfect coupling of the skyrmions.

In this work, we propose a skyrmion-based logic device,
SkyLogic. A spin-polarized charge current is injected into a
PMA ferromagnet (PMA–FM) to nucleate a skyrmion at the
input end. A charge current sent through a high resistivity
material, called the spin Hall metal (SHM) placed directly
beneath the PMA–FM propagates the skyrmion from the input
end to the output end of the PMA–FM. We counter the
transverse displacement of the skyrmion from the Magnus
effect by sending a charge current through a repeater SHM
(R–SHM) placed at intervals above the PMA–FM, and perpen-
dicular to the direction of the SHM. The skyrmion is detected
at the output end as a resistance change in the magnetic
tunnel junction (MTJ) stack. A charge current sent through
the MTJ stack turns the input transistor switch of the next
stage SkyLogic on. Depending on the resistance of the MTJ
stack, the strength of the charge current nucleates a skyrmion
in the next stage, thereby implementing an inverter.

We derive an analytical model to analyze the skyrmion
motion through the PMA–FM under the application of the
two charge currents. We obtain the delay and energy model of
SkyLogic as a function of the PMA–FM material parameters.
Next, we perform a systematic design space exploration of
the material parameters to optimize the device performance.
We show that our novel approach to counter the Magnus
force allows the use of large current densities for skyrmion
propagation. In addition, our circuit-based solution can be
implemented with the existing materials that have been used
to demonstrate skyrmion propagation. With the novel design
and optimization, we show that it is possible to achieve an
inverter delay of 434ps, with 7.1fJ switching energy.
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II. OVERVIEW OF THE SKYLOGIC DEVICE

We first propose the SkyLogic device and explain it using
an inverter. We then show the design of a two-input NOR
(NOR2) gate implemented using SkyLogic.

A. Design of the SkyLogic Inverter

A schematic of our proposed skyrmion–based logic device
is shown in Fig. 1 (a), and consists of the following com-
ponents. At the input end, a polarizer ferromagnet (P–FM)
is placed on top of ferromagnetic intra–gate interconnect with
perpendicular magnetic anisotropy, PMA–FM, which connects
the input to the output of the device. A layer of SHM is placed
below the PMA–FM, along its entire length. Another layer of
SHM, called the repeater SHM (R–SHM), is placed on top of
the PMA–FM between the input and the output in a direction
transverse to the PMA–FM. At the output end, the presence of
a skyrmion is detected by an MTJ structure. This consists of
an oxide layer sandwiched between a ferromagnet with pinned
magnetization (Pin–FM) and the output end of the PMA–FM
channel. The output end of the PMA–FM acts as the MTJ
free layer. The functionality of the device can be understood
by examining its operation in stages:
Stage 1 – Skyrmion nucleation: At the input end, a voltage
Vin turns a transistor Tin on and sends a charge current with
current density Jnuc. This charge current is spin–polarized by
the P–FM [3]. If Jnuc is greater than a critical current density
Jc,nuc, the spin-polarized current nucleates a skyrmion in the
PMA–FM beneath the P–FM, in time tnuc.
Stage 2 – Skyrmion propagation: Once the skyrmion is
nucleated, a voltage Vprop,x turns on transistor Tprop,x and
sends a charge current with density Jx through the SHM. As
a result, the skyrmion propagates from the input end to the
output end of the PMA–FM due to the spin Hall effect (SHE)
in time tprop. As the skyrmion is propagated longitudinally
along the x–direction, it also experiences a transverse motion
in the y–direction due to the effect of Magnus force [11].

(a) (b)

Fig. 2. Skyrmion trajectory in the PMA–FM (a) without R-SHM inserted,
showing annihilation, and (b) with R-SHM inserted, avoiding annihilation.

When Jx is applied to the SHM, as shown in Fig. 2(a),
the transverse motion of the skyrmion causes it to travel
towards the edge of the PMA–FM where it is annihilated.
The placement of R–SHM above the PMA–FM addresses
this issue. As shown in Fig. 2(b), we assume equally-spaced
repeaters above the PMA–FM, and define segments of the
PMA–FM that do not lie under R–SHM as Region 1 (R1),

with length lR1. The segments of the PMA–FM below R–
SHM is denoted as Region 2 (R2), with length lR2. The width
of the PMA–FM is denoted as wPMA–FM.

The role of the repeater is to deflect the skyrmion back into
the body of the PMA–FM, and lR1 is chosen to ensure the
deviation due to the Magnus force does not allow the skyrmion
to reach the PMA–FM edge where it would be annihilated.
The transistor Tprop,y is turned on by applying a gate voltage
Vprop,y and a charge current with density Jy is applied through
the R–SHM layer in a direction transverse to that of Jx, as
shown in Fig. 2(b). Therefore in R1, the skyrmion motion
is defined by the forcing function from Jx and in R2, the
skyrmion motion is dictated by the forcing function from both
Jx and Jy . Due to Jy , the skyrmion experiences a longitudinal
motion in the y–direction and a Magnus force in the x–
direction. The magnitudes of Jx and Jy can be optimized such
that the skyrmion moves back towards the PMA–FM interior
from its edge to negate the y–direction shift due to the Magnus
force from Jx. At the same time, the Magnus force due to Jy
moves the skyrmion forward towards the output. A part of the
longitudinal current, Jx, and transverse current, Jy , will shunt
through the PMA-FM and exert spin-transfer torque (STT)
on the skyrmion. However, the SHE dominates over STT and
primarily drives the skyrmion towards the output end [5], [11].

Fig. 3. A pair of cascaded SkyLogic devices, indicating how the output of
one device is transferred to the input of the next stage.

Additional repeaters can be inserted along the PMA–FM
length to allow the skyrmion to traverse long interconnects.
Our approach with repeaters differs from conventional ap-
proaches [11], [15], [21], [23], [24] that only use Jx applied at
one end of the SHM to propagate the skyrmion in the PMA–
FM. In these approaches, a low current density is essential to
contain the skyrmion within the PMA–FM, directly translating
to high skyrmion propagation delays. In contrast, our novel
approach of inserting R–SHM and using both Jx and Jy
allows the use of high current densities for fast propagation
of skyrmions through the PMA–FM, while ensuring that the
skyrmion is not annihilated due to its transverse motion.
Stage 3 – Skyrmion detection: Once the skyrmion reaches
the output end, it creates a polarization in the free layer of the
MTJ stack at the output. The Pin–FM magnetization is anti-
parallel to that of the steady-state PMA–FM. The presence or
absence of a skyrmion is differentiated by different resistances
for the MTJ stack for these two cases [6], [16]: the resistance
is high if no skyrmion is present, and low otherwise. The time
required for the skyrmion detection is denoted by tdet.
Stage 4 – Cascading logic stages: The cascading of succes-
sive SkyLogic stages can be achieved as shown in Fig. 3. The
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voltage Vread is set to low to turn on the transistor Tread and
a voltage Vout is induced at the output node. This switches the
transistor Tin in the next logic stage on. The current density
through Tin is greater than the critical nucleation current
density, Jc,nuc, when the skyrmion is absent at the output end
in the PMA–FM layer of the MTJ. Therefore, a skyrmion is
nucleated; when the current density is lower than the critical
value, the skyrmion is present at the output, and no nucleation
occurs at the next stage. Thus, we realize an inverter.

(a)

Fig. 4. (a) The design of a SkyLogic NOR2 gate.

B. Design of the SkyLogic NOR gate
The presence of a skyrmion in at least one of the input

results in a skyrmion being absent (present) at the output to
realize a (N)OR gate. Skyrmion-based (N)OR gates has been
shown in [27]. We use this design and combine it with that
of the SkyLogic inverter presented in Section II-A to build a
NOR gate, as shown in Fig. 4. For clarity, we do not show
the CMOS transistors.

The SkyLogic NOR2 gate consists of two input branches
and an output branch. For each of the two inputs, when a
current with density Jnuc is applied, a skyrmion is nucleated
if Jnuc > Jc,nuc, thereby representing logic 1. The absence of
a skyrmion, when Jnuc < Jc,nuc, represents logic 0. A charge
current with density Jx sent through the SHM through each
of the input branches propagates the skyrmion from the input
branch towards the output branch of the PMA–FM. As in the
case of the SkyLogic inverter, R–SHMs are inserted in the
input branches atop the PMA–FM to correct the course of the
skyrmion. At the output end, if any one of the inputs is logic
1, i.e., if at least one skyrmion is nucleated at the input end,
then a skyrmion is present at the output end. The skyrmion is
then detected using the MTJ stack, as explained in Stage 3 of
Section II-A. The voltage at the output node, Vout, therefore
represents a logical NOR of the two inputs.

III. PERFORMANCE MODELING OF SKYLOGIC INVERTER

In this section, we analyze the performance of SkyLogic
inverter shown in Fig. 1 in the four stages of its operation.

A. Skyrmion nucleation
We model the skyrmion nucleation using the micromag-

netic simulator OOMMF [14] with the DMI extension [19].
The PMA–FM is initially uniformly magnetized in the +z
direction. A spin-polarized current is sent through the P–FM
in the −z direction. If the current density through the P–FM,
Jnuc, is greater than Jc,nuc, then a skyrmion is nucleated in
the PMA–FM layer beneath the P–FM.

B. Skyrmion propagation

Next, we separately analyze the propagation of the skyrmion
in regions R1 and R2 using Fig. 2(b).
Case 1: Skyrmion propagation in R1: The motion of the
skyrmion in R1 can be explained using the two-dimensional
Thiele equation [2], [11], [15], [23], [24] as follows:

~G× ~vR1 + α~D · ~vR1 = ~FSHE,x + ~Fc,y (1)

where ~G = {0, 0, G} =
{

0, 0, −4πQMstPMA–FM
γ0

}
is the gyrovec-

tor, Ms is the PMA–FM saturation magnetization, tPMA–FM
is the PMA–FM thickness, γ0 is the gyromagnetic ratio,
Q = +1/−1 is the skyrmion chirality, and k is the con-
finement constant. The skyrmion velocity in R1 is denoted
by its x– and y– components as ~vR1 = {vx,R1, vy,R1} ={
d
dt (xR1(t)), ddt (yR1(t))

}
. The time-dependent x– (y–) po-

sition of the skyrmion center in R1 of the PMA–FM is
given by xR1(t) (yR1(t)). The skyrmion driving force due
to the SHE as a result of Jx, is given by ~FSHE,x =

{FSHE,x, 0} =
{

~θSHEJxQπ
2Rsk

2e , 0
}

. The damping constant
is denoted by α while the dissipative force tensor is given

by ~D =

[
D 0
0 D

]
;D =

{
−MstPMA–FMπ

3Rsk

∆γ0

}
. The skyrmion

radius is given by Rsk, ∆ denotes its domain-wall width
and θSHE represents the spin Hall angle. The repelling force
experienced by the skyrmion from the PMA–FM edges along
its width is given by ~Fc,y = {0, Fc,y} = {0,−kyR1(t)}.

The first term in Equation (1), ~G × ~vR1, represents the
impact of the Magnus force on the skyrmion, and defines its
transverse motion. The second term in Equation (1), α~D ·~vR1,
is the opposing force experienced by the skyrmion due to
the intrinsic damping of the PMA–FM. At steady state, these
forces are countered by the driving force due to SHE, ~FSHE,x,
and the repelling force, ~Fc,y . We solve the 2D first-order
differential equation (1) to obtain xR1(t) and yR1(t) [23]:

xR1(t) = xR1(t0) +
t

τ

[
FSHE,x

k
− G

αD
yR1(t)

]
(2)

yR1(t) =
GFSHE,x
αDk

(
e−t/τ − 1

)
+ yR1(t0)e−t/τ (3)

where τ =
∣∣∣G2+(αD)2

αDk

∣∣∣ is the characteristic relaxation time
of the skyrmion. At time t0, (x,y) co-ordinates of the center
of the nucleated skyrmion is given by (xR1(t0),yR1(t0)).
The term G

αD represents the ratio of the Magnus force and
dissipative force. The relative magnitude of each of these
forces determines the net strength of the opposing force to
the skyrmion propagation. The ~Fc,y term does not have an
~Fc,x counterpart because there is no repelling force on the
skyrmion from the PMA–FM edges along its length.
Case 2: Skyrmion propagation in R2: We modify Equa-
tion (1) to model the skyrmion motion in R2, in which both
Jx and Jy are active, by adding ~FSHE,y to the right hand

side. Here, ~FSHE,y = {0, FSHE,y} =

{
0,

~θSHEJyQπ
2Rsk

2e

}
is the force experienced by the skyrmion as a result of the
SHE arising from Jy in Region 2. The instantaneous skyrmion
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velocity in R2 is given by ~vR2 = {vx,R2, vy,R2} with xR2(t)
(yR2(t)) denoting the time-dependent x–position (y–position)
of the center of the skyrmion in R2. We solve the 2D first-
order differential equation for R2 to obtain xR2(t) and yR2(t):

xR2(t) =xR2(t1) +
t

τ

[
FSHE,x

k
+
GFSHE,y
αDk

− G

αD
yR2(t)

]
(4)

yR2(t) =yR2(t1)e−t/τ +

[
GFSHE,x
αDk

− FSHE,y
k

](
e−t/τ − 1

)
(5)

At time t1, the skyrmion reaches the PMA–FM edge in R1
and a current Jy is applied along R-SHM length as shown in
Fig. 2(b). The (x,y) coordinates of the skyrmion center at time
t1 is given by (xR2(t1), yR2(t1)). Equation (4) shows that the
skyrmion is propelled forward towards the PMA–FM output
in R2 by the combined force of FSHE,x and the Magnus force
resulting from applying Jy in R-SHM. The value of Jy in R2
should be chosen such that the skyrmion continues to move
back towards the PMA–FM interior upon its application. This
can be achieved by enforcing the constraint xR2(t) > xR2(t1)
and yR2(t) < yR2(t1) in Equations (4) and (5).

For a fixed PMA–FM length, the number of required R-
SHMs, p, depend on the choice of Jx and Jy and can be
determined by solving the skyrmion displacement equations
for each of R1 and R2 regions independently. The average
net velocity (propagation time) of the skyrmion, vx (tprop),
as it propagates from the PMA–FM input to its output with
p repeaters, is therefore given by the sum of their velocities
(propagation times) in R1 and R2.

The defects and disorder in the PMA-FM impact the
skyrmion size and its position during the propagation
phase [12], [20]. However, in this work, we assume an ideal
PMA-FM material to demonstrate our device idea and obtain
the performance numbers. We leave the design and modeling
of the disorder-aware SkyLogic device to a future work.

C. Skyrmion detection and cascading SkyLogic devices

We explain the detection of the skyrmion using the MTJ
stack. The initial magnetization in the Pin–FM layer is uniform
in −z direction, whereas that of the PMA–FM layer is in the
+z direction. Let RMTJ,0 (RMTJ,1) denote the resistance of the
MTJ stack when the skyrmion is absent (present) in the PMA–
FM layer, which forms the free layer of the MTJ stack. We
can write RMTJ,0 and RMTJ,1 as

RMTJ,0 = RAP ;RMTJ,1 = ηRAP + (1− η)RP . (6)

Here, RP (RAP ) corresponds to the resistance of the MTJ
stack when its pinned layer and the free layer are parallel
(anti-parallel) to each other. In the absence of the skyrmion
(logic 0) in the PMA–FM layer, RMTJ,0 corresponds to RAP .
However, when the skyrmion is present in the PMA–FM
layer (logic 1), the PMA–FM layer magnetization is not
completely parallel to the pinned layer due to the averaging
nature of the magnetization profile of the skyrmion [25], [26],
[29]. We therefore model RMTJ,1 as a linear combination of

RP and RAP with η being the scalar coefficient defined as
η =

Askyrmion

Adet
. Here Askyrmion refers to the area of the

skyrmion while Adet refers to the area of the detector enclosed
by the length of the fixed layer of the MTJ, ldet, and its width,
wdet. Since Askyrmion < Adet, it follows that η < 1.

(a) (b)

Fig. 5. (a) Two cascading SkyLogic devices (b) The equivalent circuit.

We analyze the skyrmion detection and the cascading of
two SkyLogic devices, shown in Fig. 5(a), with the equivalent
circuit shown in Fig. 5(b). The voltage at the output node,
Vout is determined by the voltage divider circuit formed by the
resistances of transistor Tread (RTX ), MTJ (RMTJ), and SHM
(RSHM): it is high (low) when a skyrmion is absent (present)
in the PMA-FM layer of the current stage. Once the transistor
Tread is turned on, the current in the transistor Tin in the next
SkyLogic stage, Ion, is proportional to Vout and its strength
determines whether a skyrmion is nucleated at the next stage,
thereby realizing an inverter.

D. Modeling performance

Here, we outline the model used to measure the performance
of SkyLogic inverter. We model the delay, TSkyLogic, and
energy, ESkyLogic, of the SkyLogic inverter in Fig. 1 as follows.

TSkyLogic = tnuc + tprop + tdet

ESkyLogic = Enuc + Eprop + Edet + ETX .
(7)

The energy dissipated during the nucleation, propagation,
detection, and peripheral CMOS transistor switching is given
respectively by Enuc, Eprop, Edet, and ETX . The energy
terms Enuc and Edet represent the Joule heating during the
nucleation and detection process, while Eprop represents both
Joule heating due to Jx and Jy , and the energy required to
turn on the CMOS transistors that supply both Jx and Jy . The
energy required to turn on the rest of the CMOS transistors is
grouped in the term ETX .

IV. RESULTS AND DISCUSSION

In this section, we demonstrate the SkyLogic device design
and obtain its delay and energy with the help of the models
explained in Section III and the peripheral CMOS circu-
ity implemented in the 10nm Predictive Technology Model
(PTM) [1] with the parameters shown in Table I.

A. Insertion of R–SHM

Here, we examine the process of R–SHM insertion in a
SkyLogic device. We use the following PMA–FM material
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parameters in our simulations: MS,PMA–FM = 1 × 105 A/m,
KU,PMA–FM = 8 × 105 J/m3, α = 0.25. We show, at the end
of Section IV-B, that this design point gives the best energy-
delay product for skyrmion propagation phase. We assume
that the center of the nucleated skyrmion is the origin of
the coordinate system. For various values of Jx, we simulate
the skyrmion trajectory by solving the displacement equations
shown in Section III-B and plot the results in Fig. 6(a).

(a) (b)

Fig. 6. (a) Skyrmion trajectory in the PMA–FM for various values of
Jx. (b) Skyrmion propagation energy, Eprop, and propagation delay, tprop,
as a function of Jx. The material parameters used in this simulation are:
MS,PMA–FM = 1× 105 A/m, KU,PMA–FM = 8× 105 J/m3, and α = 0.25.

For Jx = 6.5×1010 A/m2, the skyrmion reaches the PMA–
FM output without reaching the edge due to low transverse and
longitudinal velocity. Next, when Jx is increased to 9× 1010

A/m2, vy,R1 is greater than vx,R1 and therefore reaches the
PMA–FM edge faster than the case where Jx = 6.5 × 1010

A/m2. In this case, an R–SHM needs to be inserted to avoid
the skyrmion being annihilated at the edge. When an R–SHM
is inserted and Jy = 5× 1011 A/m2 is applied through it, the
skyrmion is pushed back into the interior of the PMA–FM in
R2 underneath the R–SHM. When Jx is further increased to
1.2 × 1011 A/m2, vy,R1 further increases relative to increase
in vx,R1 and causes the skyrmion to reach the PMA–FM edge
faster than the earlier two cases. Two R–SHMs are required
in this case between the PMA–FM input and output.

Next, we calculate the cost of inserting an R–SHM on
tprop and Eprop and plot the results in Fig. 6(b). As Jx

TABLE I
SIMULATION PARAMETERS USED IN THIS WORK.

Parameter Value
lPMA–FM×wPMA–FM×hPMA–FM [nm3] 200×50×0.4
lSHM×wSHM×hSHM [nm3] 200×50×1
lR–SHM×wR–SHM×hR–SHM [nm3] 25×50×1
Exchange constant, A [pJ/m] 15
Radius of the skyrmion, Rsk [m] 8× 10−9

Confinement constant, k [N/m] −3.6× 10−5

ρSHM, ρR–SHM [Ω-m] 1.06× 10−7

ρPMA–FM [Ω-m] 1.7× 10−7

Spin Hall angle, θSHE 0.33
Spin polarization, PP–FM 1
TMR of the output MTJ stack [%] 300
RAP = RMTJ,0 [Ω] 4000
η 0.5
CMOS transistor gate capacitance, Cg [F] 0.1× 10−15

Vdd, Vread [V] 1
Vprop,x, Vprop,y [V] 0.25
DMI constant, |D| [mJ/m2] 3

increases, tprop decreases because of an increase in vx,R1

and also due to the effect of the Magnus force in R2 along
the x–direction due to Jy which propels the skyrmion faster
towards the output. The propagation energy, Eprop, however
increases. Though Eprop is directly proportional to tprop, the
R–SHM insertion requires an additional transistor to drive Jy
through it, thereby increasing Eprop. The net energy-delay
product, EDPprop, as Jx is increased from 6.5× 1010 A/m2

to 9× 1010 A/m2, decreases because of the decrease in tprop.
With a further increase in Jx to 1.2 × 1011 A/m2, tprop
decreases, but Eprop increases due to Joule heating from the
currents Jx and Jy in SHM and R–SHM, respectively, and
the energy required to turn two transistors on. The decrease
in tprop is outweighed by the increase in Eprop and therefore
EDPprop increases. Therefore, inserting one R–SHM provides
an optimal EDPprop for this design point for the chosen
values of Jx and Jy .

B. Skyrmion propagation
The initial steady-state magnetization of the PMA–FM is

set to +z direction. We evaluate tprop and Eprop at the design
points formed by the combination of the following material
parameters and their values: MS,PMA–FM ∈ {1 × 105 A/m,
3 × 105 A/m, 5 × 105 A/m, 8 × 105 A/m , 10 × 105 A/m},
Ku,PMA–FM ∈ {5× 105 J/m3, 8× 105 J/m3, 10× 105 J/m3},
α ∈ {0.05, 0.1, 0.15, 0.2, 0.25}. At these design points, we
assume that a skyrmion can be nucleated at the input end of
the PMA–FM by injecting a spin polarized current through P–
FM. We study the impact of these parameters on the skyrmion
velocity, device energy, and energy-delay product (EDP).
Skyrmion velocity, device energy, and EDP: We choose
Jx = 9 × 1010A/m2 such that we obtain tprop < 500 ps. We
fix the value of Jy = 5×1011A/m2. This choice of Jy ensures
that we obtain a valid skyrmion trajectory in R1 and R2 for
each design point. We set p ≤ 2, i.e., we restrict the number
of R–SHMs that can be inserted to two and disregard the
material parameters that violate this criteria. A large number
of R–SHMs is impractical because additional R–SHMs would
incur extra energy to route Jy through the addition of access
transistors leading to higher EDPprop as we observed in
Section IV-A. We also disregard material parameters where
it is impractical to insert a R–SHM in cases where it would
physically overlap with the MTJ structure. We show vx and
EDPprop as a function of the three material parameters in
Figs. 7(a) and 7(b), respectively. In these plots, we denote the
infeasible design points by black triangles.
Impact of α and KU,PMA–FM: For α ≤ 0.15, the skyrmion
reaches the PMA–FM edge along its width faster. This is
because for low values of α, we have vy,R1 > vx,R1 and
vy,R2 > vx,R2, the skyrmion experiences lower opposition
to motion and requires more than two R–SHMs, as indi-
cated by the black triangles in Fig. 7(a). For α = 0.2 and
KU,PMA–FM = 10 × 105 J/m3, the skyrmion trajectory is
such that it is infeasible to insert an R–SHM. Therefore, we
discard these design points. In general, for a chosen value of
MS,PMA–FM and KU,PMA–FM, increasing α decreases vx, and
therefore increases tprop as shown in Fig. 7(a). The energy-
delay product, EDPprop, shows a corresponding increase, as
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seen from Fig. 7(b), because Eprop is directly proportional
to tprop. Hereafter, we restrict our analysis to feasible design
points that are represented by circles in Figs. 7(a) and 7(b).

As KU,PMA–FM increases, the domain-wall width, ∆, de-
creases by

√
KU,PMA–FM. Since the dissipative tensor, D,

is inversely proportional to ∆, it follows that increasing
KU,PMA–FM will increase D. As the term αD determines
the strength of the opposition to the skyrmion propagation,
increasing KU,PMA–FM has the same effect as increasing α.

Impact of MS,PMA–FM: As MS,PMA–FM increases, for a given α
and KU,PMA–FM, vx decreases as seen in Fig. 7(a). The depen-
dence of the R1 and R2 skyrmion displacement equations (2)
and (4) on MS,PMA–FM can be seen in the term τ . Simplifying
τ , we determine that τ is directly proportional to MS,PMA–FM.
Therefore, for larger MS,PMA–FM, the skyrmion takes longer
to reach the PMA–FM output because of the larger relaxation
time, thereby reducing vx. The propagation energy, Eprop,
which is directly proportional to tprop also increases with
increase in MS,PMA–FM, for a given Jx. This in turn results
in an increase in EDPprop as seen from Fig. 7(b).

(a)

(b)

Fig. 7. For Jx = 9× 1010A/m2 and Jy = 5× 1011A/m2 (a) net velocity
of the skyrmion, vx, (b) energy-delay product during the propagation of the
skyrmion, EDPprop.

With this experiment, we obtain the design point that
provides the best EDPprop as: MS,PMA–FM = 1 × 105 A/m,
KU,PMA–FM = 8 × 105 J/m3, and α = 0.25. At this design
point, we have vx = 420 m/s, tprop = 480 ps, Eprop = 8.5
aJ, p = 1, and EDPprop = 4.1× 10−27 Js.

C. Skyrmion nucleation
The critical current density required for skyrmion nucleation

primarily depends on the choice of α [11]. A smaller (larger)
value of α results in lower (higher) critical current density.
However, as seen in Section IV-B, the choice of α ≤ 0.15
and α = 0.2, KU,PMA–FM = 10 × 105J/m3 are infeasible
for skyrmion propagation. Therefore, we restrict the design
space exploration of our nucleation process to feasible design
points for skyrmion propagation. We perform our nucleation
experiment in OOMMF and observe that once Jnuc ≥ Jc,nuc,
the skyrmion nucleates within tnuc = 20 ps.

In order to derive PMA–FM material parameters that pro-
vides the best performance, we choose the design point that
provides the minimum energy-delay product for both the
nucleation and the propagation. This design point is obtained
as: MS,PMA–FM = 1×105 A/m, KU,PMA–FM = 8×105 J/m3, and
α = 0.2. At this point, for propagation we obtain vx = 513
m/s, tprop = 389 ps, Eprop = 10.8 aJ, and EDPprop =
4.2 × 10−27 Js. For nucleation, the parameter values are as
follows: Inuc = 300µA (Jnuc = 9.5× 1011 A/m2), tnuc = 20
ps, Enuc = 3.1 fJ, and EDPnuc = 6.2× 10−26 Js.

(a) (b)

Fig. 8. At the optimal design point (a) skyrmion nucleation in the PMA–
FM simulated in OOMMF and (b) skyrmion trajectory in the PMA–FM. For
OOMMF simulation, a spin-polarized charge current is sent through a 20nm
diameter within a 50nm×50nm×0.4nm PMA–FM.

D. Skyrmion detection and logic cascading
We analyze the skyrmion detection and cascading of two

SkyLogic devices using the circuit shown in Fig. 5(b). We
perform the circuit simulation in SPICE with the parameters
shown in Table I. When Tread is turned on by applying
Vread = −1V, the voltage at the output node is given by
Vout = 0.55V (Vout = 0.44V) when RMTJ,0 = 4kΩ (RMTJ,1 =
2.5kΩ). Correspondingly, the next stage transistor on current
is given by Ion = 300µA (Ion = 184µA). We observe that
Ion = 300µA, corresponding to Jnuc = 9.5× 1011 A/m2, can
nucleate a skyrmion in the next stage. This can be seen from
the OOMMF simulation results shown in Section IV-C. In
the case of Ion = 184µA, the charge current is insufficient for
skyrmion nucleation. The circuit simulation is run for a period
of tdet = 25 ps, the time required to nucleate a skyrmion in
the next stage. From the simulation, we determine, Edet = 3.9
fJ and EDPdet = 9.7× 10−26 Js.

E. Total delay and energy of the SkyLogic device
With the parameters shown in Table I, we obtain ETX = 0.1

fJ. Using Equation (7), we obtain TSkyLogic = 434 ps and
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ESkyLogic = 7.1 fJ. The total energy-delay product of the Sky-
Logic device is given by EDPSkyLogic = ESkyLogicTSkyLogic =
3.1 × 10−24 Js. We note that for an optimized SkyLogic
inverter, as seen from Section IV-C, skyrmion nucleation is
an energy-expensive process. This is due to the high current
density required to nucleate the skyrmion. The detection
process, similarly also requires a high current through the MTJ
read stack, and therefore consumes a large amount of energy.

We show the result of the skyrmion nucleation for the
optimal design point in Fig. 8(a). The skyrmion trajectory
in the PMA–FM during the skyrmion propagation process
for this design point is shown in Fig. 8(b). We assume that
the skyrmion nucleation process nucleates the skyrmion in
the PMA–FM at (x,y) coordinate of the skyrmion center
corresponding to (0nm, 0nm). It is then propagated to the
output end of the PMA–FM such that its final (x,y) coordinate
corresponds to (200nm, 18nm). Along with the longitudinal
motion, the transverse motion of the skyrmion in R1 and its
subsequent motion into the interior of the PMA–FM in R2 can
be clearly deduced from Fig. 8(b). At the optimal design point,
we need two R–SHMs to be inserted to avoid the skyrmion
being destroyed at the edge of the PMA–FM.

V. CONCLUSION

In this paper, we present SkyLogic, a proposal for a
skyrmion-based logic device. We present a framework for
analyzing the device performance by analyzing the skyrmion
nucleation in a PMA–FM using micromagnetic simulation,
analyzing the skyrmion propagation in the PMA–FM using
an analytical model, and analyzing the skyrmion detection
at the output using an MTJ stack. The transverse motion
of skyrmion due to Magnus force during the current-driven
skyrmion propagation restricts the use of high current densities
and leads to high propagation latencies. We present a novel
circuit-based technique to counter the Magnus force and allows
the use of high current densities to drive the skyrmion from
the SkyLogic input to the output. We also perform a complete
design space exploration of the device for nucleation and
propagation over a range of PMA–FM material parameters and
obtain an optimal design point for the SkyLogic inverter. At
this design point, we evaluate the performance of the SkyLogic
inverter and obtain a delay of 434 ps and an energy of 7.1 fJ.
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APPENDIX A
PERFORMANCE MODELING OF SKYLOGIC

In this section, we outline the model used to measure
the performance of SkyLogic inverter. We model the delay,
TSkyLogic, and energy, ESkyLogic, of the SkyLogic inverter in
Fig. 1 as follows.

TSkyLogic = tnuc + tprop + tdet

ESkyLogic = Enuc + Eprop + Edet + ETX .
(8)

Here tnuc, tprop, and tdet denote the nucleation time, propaga-
tion time, detection time of the skyrmion and the time required
to turn on the next stage SkyLogic device, respectively. The
energy dissipated during skyrmion nucleation, Enuc, during
the skyrmion propagation, Eprop, and detection at the output
end, Edet, and the energy required to turn the CMOS transis-
tors on, ETX , are given by:

Enuc = I2nucRnuctnuc

Eprop = I2prop,xRprop,xtprop + pI2prop,yRprop,ytprop,y

+
1

2
Cg(V

2
prop,x + pV 2

prop,y)

Edet = Edet,0 + Edet,1 =
tdet
2

(I2det,0Rdet,0 + I2det,1Rdet,1)

ETX =
1

2
Cg(V

2
in + V 2

read)

(9)
where

Inuc = JnucAskyrmion;

Iprop,x = JxASHM;ASHM = wSHMhSHM

Iprop,y = JyAR-SHM;AR-SHM = wR-SHMhR-SHM

Rnuc =
ρP-FMhP-FM

πr2P-FM
;Rprop,x =

ρSHMlSHM

ASHM

Rprop,y =
ρR-SHMlR-SHM

AR-SHM
;RSHM =

ρSHMhSHM

ldetwdet
Rdet,i = RTX +RMTJ,i +RSHM; i ∈ 0, 1

(10)

We calculate the energy dissipated during the skyrmion detec-
tion, Edet, as an average of the Joule energy dissipated during
the logic 0 detection, Edet,0, and logic 1 detection, Edet,1,
respectively. The charge currents, Inuc, Iprop,x, Iprop,y, and
Idet,0, and Idet,1, refer to the current needed for the nucleation,
propagation along the PMA–FM length, propagation along
the R-SHM length, logic 0 detection, and logic 1 detection,
respectively. Here, ASHM and AR-SHM represent the cross-
section area of the SHM and R-SHM, respectively. The width,
thickness, and the resistivity of the SHM (R-SHM) are denoted
as wSHM (wR-SHM), hSHM (hR-SHM) and ρSHM (ρR-SHM), respec-
tively, while the thickness and the radius of the P-FM layer are
given by hP-FM and rP-FM. The resistance to the current path
is denoted by R with the subscript nuc, (prop, x), (prop, y),
and det referring to the nucleation, propagation along PMA–
FM length, R–SHM length, and the detection process of the
skyrmion, respectively. The gate capacitance of the CMOS
transistors is given by Cg .

This model can be extended to model the performance of
a SkyLogic NOR2 gate shown in Fig. 4(b). The nucleation
time in that case will be the time required to nucleate one

skyrmion, while the propagation time would be the time
required to propagate the skyrmion from at least one input
towards the output. The nucleation and the propagation energy
is the energy required to nucleate and propagate all skyrmions
corresponding to all the inputs of the NOR gate. The detection
time and energy calculation would be similar to that of the
SkyLogic inverter since a single MTJ stack would be used for
detecting the skyrmion at the output.

APPENDIX B
DERIVATION OF SKYRMION POSITION EQUATIONS

In this section, we first derive Equations (4) and (5) from
Equation (1). Next, we show that Equations (2) and (3) can be
similarly be derived. Equation (1) can be written in the matrix
notation as[
−Gvy,R2

Gvx,R2

]
+ α

[
D 0
0 D

] [
vx,R2

vy,R2

]
=

[
FSHE,x
FSHE,y

]
+

[
0
Fc,y

]
.

(11)
Equation (11) can be written as a system of linear equations
as follows:

−Gvy,R2 + αDvx,R2 = FSHE,x (12)
Gvx,R2 + αDvy,R2 = Fc,y + FSHE,y. (13)

Solving Equations (12) and (13) and substituting Fc,y =
−kyR2(t), we obtain vx,R2 and vy,R2 as

vx,R2 =
dxR2(t)

dt
= AFSHE,x +B(FSHE,y − kyR2(t))

(14)

vy,R2 =
dyR2(t)

dt
= −BFSHE,x +A(FSHE,y − kyR2(t))

(15)

where
A =

αD

G2 + (αD)2
;B =

G

G2 + (αD)2
. (16)

Integrating Equation (14) over time with the initial conditions,
xR2(t = 0) = xR2(t0) and yR2(t = 0) = yR2(t0), and
using the expression for τ , we obtain xR2(t) in the form
of Equation (4) as

xR2(t) = xR1(t0)+(
t

τ

)[
FSHE,x

k
+
GFSHE,y
αDk

− G

αD
yR2(t)

]
. (17)

Equation (15) is a first-order differential equation of the form

df(t)

dt
= P1 + P2f(t), (18)

whose solution is given by

f(t) =
−P1

P2
+

(
f(t0) +

P1

P2

)
eP2t (19)

Here f(t), f(t0), P1, and P2 are given by

f(t) = yR2(t); f(t0) = yR2(t0); (20)

P1 = −BFSHE,x +AFSHE,y; P2 = −Ak = −1

τ
.
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Substituting f(t), P1, and P2 from Equation (20) and f(t0) =
yR2(t1) in Equation (19) we obtain yR2(t) in the form of
Equation (5) as

yR2(t) = yR2(t1)e
−t/τ+[

GFSHE,x
αDk

− FSHE,y
k

](
e−t/τ − 1

)
Equations (2) and (3) can be similarly derived from Equa-

tions (12) and (13) by setting FSHE,y = 0 and replacing
vx,R2 and vy,R2 by vx,R1 and vy,R1, respectively.
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