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Abstract

This paper presents an event-driven algorithm and its symbolic implementation for the anal-

ysis of power and ground bus networks. The algorithm uses frequency domain techniques and

moment matching approaches based on Pad�e approximants to estimate the transfer function at

each node in the P/G network. Afterwards, the transient waveforms are extracted for each node.

The process requires repetitive simulation of a linear and time-variant (from one time event to

the next) circuit model for the P/G network which is the reason a symbolic implementation was

produced. The P/G network is modeled by a hierarchical combination of mesh and tree struc-

tures that are composed of a collection of RC-�-segments and pulldown (or pullup) switches.

The switches are symbolically represented by Boolean variables and a compiled symbolic code

is generated only once for each P/G network. The transient waveforms are then produced by

repetitive evaluation of the symbolic output. The results show that the symbolic implementa-

tion is an order of magnitude faster, with reasonably good accuracy, than using a traditional

analog circuit simulator like SPICE.
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1 Introduction

Switching activity in VLSI circuits introduces transient currents in the power and ground (P/G)

buses. These currents produce two major e�ects: voltage drops across the buses and high current

densities leading to electromigration of metal atoms. Excess voltage drops can manifest themselves

as glitches on the P/G buses and can cause unacceptable circuit performance either due to reduced

switching speed or by causing unwanted signal transitions. Electromigration places a limit on the

useful lifetime of a chip, and if not properly accounted for, can present serious reliability problems.

One mechanism that is frequently used by designers to overcome both of these problems is to

selectively widen the wires in the P/G network.

Even for a �xed set of P/G network parameters (such as wire widths), the problem of ac-

curately identifying the worst case scenario is a di�cult one and requires repeated simulations to

determine the worst-case set of events that cause the largest voltage drop and/or susceptibility to

electromigration. For the diagnosis of these problems, it is essential to �nd fast but accurate tech-

niques to simulate the network repeatedly. Moreover, the procedure of optimizing P/G buses to

control voltage drops and electromigration problems requires repeated simulations under di�erent

sets of parameters.

A procedure, like the one presented herein, that requires repeated simulations is a good

candidate for the application of symbolic analysis. This paper applies symbolic analysis using

moment-matching approaches based on Pad�e approximants to speed up the computation. Our

work produces a compiled code for a given circuit structure and enables a designer to run this

compiled code with various values of the circuit parameters (namely, any list of switching events

and any set of widths of the wire segments).

Traditionally, symbolic circuit analysis methods have focused on �nding transfer function

solutions for general circuits. Several symbolic simulators exist, such as SNAP [1], FLOWUP [2],

ISAAC [3], ASAP [4], BRAINS [5], SYNAP [6], SSPICE [7], MASSAP [8], SCAPP [9], EASY [10],

and SAPWIN [11], in addition to programs in [12,13]. These programs can be used to generate the

initial transfer functions for the P/G networks. However, the P/G network, as modeled herein, is a

circuit with a speci�c mesh/tree topology and a speci�c transfer function construct. An application

speci�c symbolic analyzer was developed in order to eliminate the overhead associated with the use
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any of the above mentioned general symbolic simulators and provide an e�cient solution mechanism

for this speci�c problem. Another major di�erence between the general purpose program and the

implementation here is in the goal and usage of the transfer function approximations. While some

of the general purpose programs use approximation algorithms to produce a \visually" interpretable

transfer function [14{17], these approximations are centered around speci�c component values and

are not necessary optimal for accurate numerical evaluations over a large range of component values.

The goal of the symbolic analysis in this paper is to produce an approximation that is valid over a

large range of component values and one that is optimal for the repetitive evaluation process needed

to produce the ultimate numeric solution. The \visual" nature of the �nal transfer function is of no

value here due to the large sizes of P/G networks. Hence, a sequence of expressions approach was

used to generate the symbolic code in order to maintain the accuracy of the functions with a linear

growth in the number of arithmetic evaluations in the generated code [9, 13]. A further di�erence

between general purpose symbolic analysis programs and the algorithm reported herein is in the

way that the time-variant P/G network is handled. General symbolic analysis programs operate on

�xed topology (time-invariant) circuits. Our work provides the ability to include Boolean switches

that reect changes in the P/G circuit topology between events.

The moment-matching techniques for circuit analysis based on Pad�e approximants, which are

used in this work, gained popularity after the publication of the Asymptotic Waveform Evaluation

(AWE) approach [18]. Unlike traditional approaches such as SPICE that perform a full numerical

simulation of the circuit, moment-matching approaches view the circuit as a high order control

system. Realizing that the control system is dominated by a small number of poles for many

applications, these methods approximate the exact transfer function of the circuit by a reduced order

transfer function that captures the e�ects of these dominant poles. While no theoretical guarantees

of accuracy or stability exist, it has been seen practically that moment-matching approaches have

been hugely successful in approximating large interconnect systems [19].

The problem of P/G bus simulation is well suited to the application of moment-matching

methods. Due to the presence of a large number of switches changing state at di�erent times, the

voltage waveforms at any given node can assume a very complex shape. Consequently the analysis

of these waveforms is often a computationally intensive process. Previous work in [20, 21] has

used AWE macromodels in optimizing supply networks using a coarse grid for distribution, with
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consideration of substrate e�ects. However, this approach was used only to design the uppermost

distribution network and not the entire network.

Various algorithms and simpli�ed device models for power/ground buses that o�er faster but

less accurate results have been explored in the past. Some of these techniques utilize the fact that

most P/G networks tend to be tree-like structures so as to allow the use of path tracing algorithms

for e�ciency [22,23]; these techniques assume resistance-only models for the network. The e�ciency

is also improved by using pre-characterized current models for gates [24{26]. In addition to these

methods, which relied on the user to specify the worst-case pattern, some pattern independent

approaches were proposed in [27{29]. The proposed approach presents a fast yet accurate simula-

tion technique that relies on designer input for the worst case switching pattern(s). This method

incorporates the e�ect of wire capacitances and decoupling capacitances in the network and the

fact that these could have nonzero initial conditions during simulation. For e�cient simulation of

such situations, we present an approach that augments the path-tracing techniques used in, for ex-

ample, [30,31] to incorporate the e�ects of nonzero initial conditions without explicitly considering

the circuit as a multiport network with a source corresponding to each initial condition.

2 Modeling P/G buses

The procedure for the design of power buses and ground buses that convey the Vdd and GND

signals, respectively, across the chip are essentially symmetric problems. In other words, it is

enough to develop a solution technique for one of these, and the analysis technique for the other

will be performed in a similar manner. This is under the assumption that the performance of the

P/G network is dominated by the charge/discharge current and the short-circuit currents have

negligible e�ects. We do not consider the e�ect of the substrate and the package in our model.

The proposed model can incorporate the e�ects of wire widths and decoupling capacitances for any

given topology that follows the general style of an overlying mesh with underlying trees.

Due to the symmetry described above, we generically refer to the problem as the P/G bus

problem. In our descriptions, we will chiey focus on the design of ground buses, realizing that

power buses may be designed in like fashion.

In large integrated circuits, the P/G buses may support a number of switching elements,
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Figure 1: Typical ground bus topology

each of which draws current from the power bus, or injects current into the ground buses during

transitions. Hence P/G buses are best modeled as a network of wire segments with one or more

switches connected to each contact point. While tree-based P/G topologies are easy to analyze,

their performance in terms of avoiding voltage drop and electromigration is not as good as mesh

topologies. On the other hand, dense mesh topologies occupy large routing areas. An approach

that is frequently used, which combines the advantages of both topologies, is to build an overlying

mesh over the area of chip to distribute the P/G signals, and to feed these signals locally using

underlying local tree structures, as shown in Figure 1.

cs1/2

r

cs1/2 cs2 cs2/2 /2

s2rs1

,ls1 s1w ls2 ws2,

a single segment

Figure 2: Wire segment model for P/G buses

Each wire on the mesh or tree structure in a P/G bus can be modeled as a set of connected

segments, with each segment modeled using lumped RC parameters as a L-element, �-element

or T -element [32]. In this work the individual segments are modeled as �-elements as shown in

Figure 2, where

rs = �ls=ws

cs = (�ws + �)ls
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where ls and ws are the length and the width of the segment, and the parameters �, � and � are

the sheet resistance per square, sheet capacitance per square and the fringe capacitance per unit

length of the metal layer that is being used for routing the P/G buses. The segments are connected

at contact points (nodes). The size of the individual segments is decided based on the accuracy

desired, and also the location of the contact points. Speci�cally, a contact point must always be

located at the end of one or more segments.
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Figure 3: Switch Model for Ground Net

To model the current drawn by gates, we �rst reduce each gate to an equivalent inverter

whose NMOS transistor represents the worst case pull-down, while the PMOS transistor represents

the worst case pull-up of the gate. For the case of the ground net (the power net can be handled

similarly), the pull-down is modeled as a switch as shown in Figure 3. When turned on, this switch

connects a charged capacitor to the ground net, thereby injecting a discharge current through it.

The switches are connected to the ground net at the prespeci�ed contact points, and are controlled

by a Boolean control variable that determines whether the switch is on or o�. The switch is modeled

as a zero resistance when turned on, and zero conductance when turned o�.
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Figure 4: Model for Ground Net
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Using the above models for switches and the segments, the ground bus can be represented by

a network of �-elements connected between a pair of contact points, and a set of switches connected

to the speci�ed contact points. This is shown in Figure 4. The switches are assumed to be turned

on or o� at various time points, as described by a user-speci�ed event list. The time points are

graphically shown in Figure 5, and information on which a speci�c switch is being turned on or o�

at each time instant (not shown in the �gure) is also speci�ed by the user.

t2t1 t3 t4
t5 t6 t7 t8 t9 t10

t

E
ve

nt
s

0

Figure 5: Switching activity in a circuit

3 Overview of AWE

The Asymptotic Waveform Evaluation method uses Pad�e approximants to approximate a high

order system by a low order transfer function that captures the dominant poles of the system and

their residues. The basic AWE algorithm [18] involves the computation of the �rst few terms of

the Maclaurin expansion of the transfer function of the system, and then matches these terms with

the coe�cients of a strictly proper reduced order n-pole rational function [19].

The remainder of this section will summarize the AWE procedure; for further details, the

reader is referred to [33]. We begin with a modi�ed nodal equation description for a circuit of the

type:

C _x(t) +Gx(t) = e(t) (1)

where C;G 2 Rn�n, x; e 2 Rn, where n is the number of modi�ed nodal variables in the circuit. To

begin with, we will assume that the circuit has zero initial conditions and a single excitation; our

work shows how this assumption can be relaxed to handle circuits with nonzero initial conditions.

Without loss of generality, we will also assume that the excitation is applied at node 1.
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3.1 Moment generation

The �rst step involves the generation of the moments, i.e., the terms in the Maclaurin series

expansion of the system transfer function. Setting e(t) = [�(t); 0; 0; � � � ; 0]T , and taking the Laplace

transform of Equation (1),

(G+ sC)X(s) = E(s) (2)

where E(s) = [1; 0; 0; � � � ; 0]T , and X(s) represents the transfer function from the single input to all

the nodes in the circuit. We expand X(s) in the form of a Maclaurin series as:

X(s) =m0 +m1s+m2s
2 + � � � =

1X

i = 0

mis
i (3)

Substituting Equation (3) in Equation (2), and matching the coe�cients of the powers of s, results

in a set of linear equations for each moment vector mi:

Gm0 = E

Gm1 = �Cm0

...

Gmi = �Cmi�1 (4)

It should be noted that G can be LU-decomposed once to solve form0 and the higher order moment

vectors can then be generated by forward and backward substitutions.

3.2 Generating system approximations

The form of a one-input-one-output transfer function having Q poles can be described as

H(s) =
a0 + a1s+ a2s

2 + � � � + aP s
P

1 + b1s+ b2s2 + b3s3 + � � �+ bQsQ
(5)

Note that for real circuits, P � Q. In large networks, Q can be of the order of hundreds or

thousands, and generating all the Q poles may become prohibitively expensive. It is, however,

observed that for most practical electrical networks it is su�cient to extract a very small number
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of dominant poles, while completely ignoring the remaining poles, in order to capture the transient

behavior of the network. Further, it can be shown that by using a small number of moments

generated, a low-orderM -zero, N -pole (M � N) approximation to Equation (5) can be constructed

in the form

~H(s) =
A0 +A1s+A2s

2 + � � �+AMsM

1 +B1s+B2s2 +B3s3 + � � �+BNsN
(6)

=
NX

j=1

k̂j
s� p̂j

(7)

where the poles p̂j approximate the set of dominant poles and k̂j their residues. This is referred

to as an [M=N ] Pad�e approximant. The coe�cients of this reduced order approximation can be

computed by matching them with the moments of the original transfer function. The procedure

for calculating the poles and residues for a general circuit is described in [18, 33].

4 Outline of the Solution

The input to the problem is a given P/G network topology and various technology parameters.

The P/G network is modeled by RC sections as described is Section 2, with switches connected

to the tree corresponding to gates that make transitions. The switches undergo state changes at

pre-de�ned time points and the objective is to compute the time domain voltage waveform at each

node for the speci�ed time period. The procedure can be divided into two steps that are executed

every time one or more switch turns on or o�:

(1) A set of equations of the form

(G+ sC)V(s) = J(s) (8)

is solved. An e�cient path tracing algorithm that exploits the structure of the P/G network is

used to obtain V(s), a Maclaurin series approximation in the frequency domain to the actual

voltage.

(2) Given V(s) at every node, the time domain response is then computed by approximating V(s)

with a rational Pad�e approximation.

We will also incorporate the presence of nonzero initial conditions in the P/G network.
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The objective here is to produce a compiled code containing the symbolic expressions that

describe the circuit topology. The symbolic expressions are generated in sequence of expressions

format in order to minimize the number of arithmetic operations needed for the code evaluation.

It has been shown that for linear circuits, which is the case here, the number of symbolic variables

grow linearly with the size of the circuit if a hierarchical sequence of expressions format is used

in contrast to an exponential growth if a single expression transfer function is generated [9], [13].

Once this code is generated, the user may specify a set of parameters (any event list and any set

of wire widths) and execute this code for those speci�ed parameters. Due to the fact that the

actual analysis is only performed once on the network and the repetitive numerical evaluations are

performed using the symbolic code, this method is faster than repetitive full SPICE simulations on

the same network. The results presented in Section 6 support this claim.

We will now describe the algorithm that is embedded within the compiled code. The algo-

rithm is event-driven, with events speci�ed at the time points at which one or more switch changes

state. The events are user-speci�ed, and the �rst task of the algorithm is to construct a list of

time intervals during which there is no switching activity. All switches that switch at the same

time point are grouped together and placed at the beginning of a new interval that is inserted in

the interval list. This new interval now spans the period between the speci�ed time point of the

current set of transitioning switches to the next switching activity in the circuit. For instance, for

the switching activity depicted in Figure 5, the interval list is f(0; t1); (t1; t2); (t2; t3) � � �g.

The current injected in the ground net of a CMOS circuit is essentially a transient current

that is the e�ect of the load capacitances discharging into the ground net through the pull-down

logic. The peak of this current is therefore directly related to the initial voltage across the load

capacitance when the pull-down comes on. With multiple switching activities occurring at di�erent

instants of time, it is essential to take into consideration the initial conditions on all the load

capacitances which inject current in the ground net. A similar argument holds for the power bus

except that the current injected is negative, and so is the initial condition with respect to the power

supply voltage. In addition, the capacitance of the P/G buses can retain a voltage above the actual

ground, which should be taken into consideration.

The simulation now proceeds one interval at a time, starting from the �rst interval until the

last, updating the corresponding switch states while moving from one interval to the next. The
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procedure is best explained through the example of Figure 5, where time points t1; � � � ; t10 are the

points at which one or more nodes in the P/G net change states. The procedure begins at time

0, with all the initial conditions set to 0, and each switch is evaluated to determine if its state has

changed. The interval (0; t1) is then processed to compute the transient voltages at all nodes during

that interval. At t1, the �nal conditions due to the transient response in the previous interval are

computed and are used as the initial conditions for the next interval. The new state of each switch

that changes states is set, and the simulation progresses with these updated switch states and

computed initial conditions for the interval (t1; t2). The procedure continues until all the intervals

are processed.

The outline of the algorithm is given in Figure 6. S is the set of switches connected to the

P/G bus topology T , and E = fe1; � � � ; emg is the set of all the segments in T , as shown in Figure 4.

I = fik j k = 1 � � � Imaxg is the interval list, consisting of a total of Imax intervals, where ik is the

kth interval. Associated with each interval ik of time span tk is a subset of switches sk � S that

change at the beginning of ik to the new state pk = fState(j) 8 j 2 skg.

BEGIN ALGORITHM Vdrop()
Read in I = IntervalList();
for each n 2 Nodes(T )

SetInitialCondition(n,0)
for each ik 2 I in chronological orderf

for each j 2 sk and state(j) 2 pkf
SetSwitch(T, j, state(j))
PropagateActivity(T, j, state(j));

g
for each n 2 Nodes(T ) f

fn(t) = TimeDomainResponse(n);
SetInitialCondition(n,fn(tk))

g
g

END ALGORITHM Vdrop()

Figure 6: Voltage Estimation Algorithm
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5 Simulation of one interval

In this work, we have assumed a P/G topology consisting of a mesh that globally covers the circuit

and drives a set of trees for local distribution. This idea was described earlier in Figure 1, and the

algorithm proceeds in three stages:

Reduction of the trees The trees are reduced to Pad�e-approximated Norton equivalents. This

is shown in Figure 7b, where each of the subtrees T1 through T6 from Figure 7a have been

reduced to their equivalent admittances and current sources.

Solving the mesh The modi�ed nodal formulation is then applied to solve for the Pad�e approx-

imation for the voltage at each node in the mesh.

Propagating waveforms down the trees The computed voltages at the mesh nodes are prop-

agated down the tree to compute all voltages within the tree.

55
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Figure 7: Mesh topology with local trees

5.1 Reduction of the trees

This section discusses in detail the computation of moments of the voltage at any given node by

recursively reducing the subtrees rooted at the given node n to an admittance YTi(n) and a current

source JTi(n), where YTi(n) is the equivalent admittance of the subtree Ti, as seen from node n,

to the ground, and JTi(n) is the combined e�ect of all the switch elements in the given subtree

Ti. The equivalent current sources and admittances are computed for every node in linear time

using a path tracing algorithm that will be described shortly. Note that the YTi 's and JTi 's are

symbolic expressions in terms of the Boolean variables that control each switch (whose values are

set at run-time by the user-speci�ed event list) and the wire widths.
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The algorithm proceeds from the leaf-nodes, which are the contact points at the terminating

segments of the ground net. A terminating segment et of a tree T is a segment that connects exactly

one contact point (leaf node) to the rest of the ground net. That is, a leaf node could have zero

or more switches but exactly one segment connected to it, as shown in Figure 8. The admittance

Y (n), which is the equivalent downstream admittance at node n as seen from edge et, is the sum

total admittance of all the switches connected to n, and the current source J(n) represents the

equivalent current source corresponding to the total e�ect of all the switches connected to node n.

et et

J(n) Y(n)

nn

1 2

3

(a) (b)

Figure 8: Computing equivalent devices at terminating segments

The equivalent devices J(n) and Y (n) can be computed using Norton's theorem, which states

that any two port network can be replaced by an equivalent current source which is the short circuit

current that ows through the two ports, and an equivalent admittance, which is the admittance

of the network as seen from the ports, with all the voltage sources shorted, initial conditions set

to zero, and current sources removed from the network. The equivalent current source of a single

switch i with resistance Rd, connecting a load capacitance CL to the network, is given by:

J i = b �
Vc
s

sCL
1 + sRdCL

(9)

where Vc is the initial voltage on the capacitor CL at the start of the given interval, and b is a

Boolean variable whose value is 1 if the switch is closed and 0 otherwise. The pole at the origin in

Equation (9) indicates that the capacitance CL with an initial voltage Vc is modeled as a voltage

source Vc � u(t) in series with a capacitance CL having zero initial conditions, where u(t) is a unit

step input, implying that the initial condition appears in the current expression only when the

switch closes. Generating moments for J(n) using the Maclaurin expansion of 1

1+sRdCL
, we get

J i(n) = b � Vc(CL �RdC
2
Ls+R2

dC
3
Ls

2 + � � �) (10)
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The admittance of a closed switch is equal to the combined admittance of the driving resis-

tance Rd and the load capacitance CL:

Y i = b �
CLs

1 +RdCLs
(11)

The moments of Y i can be computed using a Maclaurin expansion as

Y i = b � (CLs�RdC
2
Ls

2 +R2
dC

3
Ls

3 + � � �) (12)

The total downstream admittance at node n as seen from segment et is,

Y (n) =
X

Y i 8 i 2 Switches at n (13)

and the equivalent current source at n is,

J(n) =
X

J i 8 i 2 Switches at n (14)

In the next step, the e�ect of the equivalent current sources is propagated to every node in

the network. To illustrate the recursive step of moving up the tree, consider a terminating segment

et in the ground network, connecting a single contact point u to the rest of the network, rooted

at v. This is depicted in Figure 9. Given that the equivalent admittance and current source of all

the switches connected to the terminating side of et are given by Equation (13) and Equation (14),

as applied at node u, the admittance and the equivalent current source, as seen into the edge et

from node v is computed as follows. The equivalent admittance at v can be computed based on

the method used in REX [34], an algorithm for handling trees with zero initial conditions.

Y (v) =
1

R(e) + 1

(Y0(u)+(Y1(u)+C(e)=2)s+���+Y2n�1(u)s
2n�1)

+
C(e)
2

=
Y0(u) + (Y1(u) + C(e)=2)s + � � �+ Y2n�1s

2n�1

(1 +R(e)Y0(u)) + R(e)(Y1(u) +C(e)=2)s + � � �+R(e)Y2ns2n
+

C(e)

2

= Y0(v) + Y1(v)s+ Y2(v)s
2
+ � � �+ Yk(v)s

k
+ � � � (15)
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where Yk(v) is given by

Yk(v) =
Yk(u)�

Pk
i = 1R(e)Yk�i(v)Yi(u)

1 +R(e)Y0(u)
(16)

v

Y(v)

Direction  of
propagation

u

Y(u) J(u)/2 /2C(e) C(e)

R(e)

Figure 9: Reduction to equivalent current source and admittance

Unlike REX, we must deal with downstream current sources due to the presence of initial

conditions. To �nd J(v), we apply Norton's theorem by short-circuiting the node v to ground

and calculating the corresponding current. Proceeding in a manner similar to the admittance

computation, it can be shown that J(v), which is equal to the short circuit current, is given by

Jk(v) = J0(v) + J1(v)s+ J2(v)s
2 + � � �+ Jk(v)s

k + � � � (17)

where

Jk(v) =
Jk(u)�

Pk
i = 1R(e)Jk�i(v)Yi(u)

1 +R(e)Y0(u)
(18)

Thus, we say that the equivalent admittance and current source have been propagated from node

u to v. It should be noted that although we have so far only considered the case where switches

are connected to leaf-nodes, switches can, in general, be connected to any node. In cases where a

node u has more then one segment and/or multiple switches connected, the switches are processed

in a similar manner, except that the admittance and current source can be propagated when all

downstream edges have been processed.

5.2 Solving the mesh

In general a mesh M comprises p segments me1; � � � ;mep, and q mesh nodes mn1; � � � ;mnq, with a

local tree Tmni rooted at each nodemni, where the pre�xm on each of these indicates that the node

or edge lies on the mesh. The problem is to compute all the mesh node voltages Vmni ; i = 1; � � � ; q,

and then use the solution to compute the voltages at all the internal nodes within the subtrees.

Using the technique presented above, the trees Tmni can be reduced to an equivalent admittance
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Y (mni) and currents source J(mni).

Starting from Equation (1), the expression is modi�ed to include higher order moments of

Y (mni) and J(mni):

(G+ Y )V = J (19)

where G is the conductance matrix of the mesh edges (leaving out the load admittance equivalents

of the ith local subtree, Y (mni)), Y is a diagonal matrix with its ith diagonal elements set to

Y (mni), and J is the vector of current sources which represent the equivalent current sources of the

local subtrees at each mesh node. Expanding both sides of Equation (19) as a series in s, equating

the coe�cients of powers of s, and rearranging yields the following set of equations:

G
0

V0 = J0

G
0

V1 = J1 � Y1V0

...

G
0

Vk = Jk �
kX

j=1

YjVk�j (20)

where

G
0

= G+ Y0 (21)

is the combined conductance matrix of the mesh segments and the resistive components of subtree

admittances. The above sets of linear equations are used to compute the voltages at the mesh

nodes.

The matrix G
0
can be LU-factorized while solving for V0 and the subsequent moments can be

computed by computing the RHS and performing one forward and backward substitution. Since,

as mentioned before, the order of G
0
is typically much smaller than the total number of nodes in the

circuit, the solution for the mesh voltages can be found cheaply for the proposed supply network

structure.

5.3 Propagating waveforms down the trees

The solution obtained from Equation (20) is used to set the node voltages to the computed value.

These values are used to recursively compute the voltage at each of the internal node in the local
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trees. The procedure is explained below.

Consider a subtree Tmnk rooted at the mesh node mnk. Let the calculated voltage at mnk

be V (mnk). Then the current in Y (mnk) is given by,

I(mnk) = V (mnk)� Y (mnk) (22)

I(mnk) is the total current owing into the subtree Tmnk . Tmnk is progressively decomposed into

multiple subtrees, and the current owing into each of the subtrees is calculated as a fraction of

I(mnk). For example, if the node mnk was connected to r edges in the tree Tmnk as shown in

Figure 10, then the tree Tmnk can be decomposed into r subtrees fT1; � � � ; Trg rooted at mnk. The

current owing in the subtree Ti will be given by

ITi(mnk) = V (mnk) � YTi(mnk) (23)

where YTi(mnk) is the admittance of the subtree Ti, as seen from node mnk.

mn k

T2

Tr

T3Tmnk

T1

Figure 10: Computing individual branch currents

The individual subtree currents are used to determine the voltage at the nodes connected

to mnk by computing the voltage drop across the branches and subtracting from V (mnk). That

is, given a segment ej connecting the nodes mnk and nj, and given that the current through the

subtree rooted at node mnk and includes ej is computed as ITj (mnk) from Equation (23), the

voltage at nj is given by

V (nj) = V (mnk)� ITjR(ej) (24)

where R(ej) is the resistance of the edge ej .

This process is continued until the voltages at all the nodes in the tree Tmnk have been

computed. In this situation where the node of interest has a nonzero initial condition, a simple

application of the Final Value Theorem [35] shows that an [N=N ] approximant is essential to capture
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Circuit # Nodes TCOMPILE TSIM THSPICE

Circuit 1 20 4.5s 0.33s 14.24s
Circuit 2 52 9.0s 0.81s 22.15s
Circuit 3 104 17.5s 1.58s 35.75s
Circuit 4 204 40.4s 3.29s 63.39s
Circuit 5 404 142.2s 7.78s 124.48s

Table 1: Execution time comparisons with HSPICE

the initial condition. The moments are used to generate these [N=N ] Pad�e approximations at each

node (using the methods described in Section 3 B), which is then used to generate the time domain

approximations for the given interval.

6 Experimental results

The symbolic algorithm was implemented in C++, and the results on several interconnect meshes

were tested. We used the commercial simulator, HSPICE [36], to analyze the speed and accuracy

of our approach.
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Figure 11: Execution time comparisons with HSPICE

In the experiments shown here, the compiled code �rst attempts a fourth order Pad�e approx-

imant at each node. It has been observed in the literature that for interconnect circuits, reducing

the order of Pad�e approximants usually improves the stability of the solution (Chapter 5 of [33]).

If the fourth order approximation is unstable, then successive lower order approximations (third

order, second order, etc.) are attempted until a stable approximant is found; the stability is tested
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by applying the Routh-Hurwitz criterion [35]. Our experimental results showed that the program

was never required to go below a second order approximant. The advantage of using approximants

of at most order 4 is that closed-form formul� can be used to calculate the roots of the transfer

function denominator. We tested the use of higher order approximants, but observed that these

did not improve the accuracy signi�cantly and increased the execution time substantially. This

increase is attributable to the slower iterative techniques that must be used to �nd the roots of

equations of order > 4.
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Figure 12: Waveform at node 3, Circuit 1
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Figure 13: Waveform at node 9, Circuit 1

The CPU time of applying this method to �ve circuits, Circuit 1 through Circuit 5, of

various sizes, are shown in Table 1. The quantity TCOMPILE refers to the CPU compile time for
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the generated code, TSIM shows the time required for one simulation of our compiled code, and

TSPICE represents the simulation time required by HSPICE. A plot of the simulation time for each

run (after the code has been compiled) against the circuit size is shown in Figure 11. For a fair

comparison, the same switch models were used in HSPICE as for our program, i.e., each switch

was represented as a resistor and a capacitor, rather than by a transistor.

To illustrate the accuracy of this method, Figures 12 through 15 show the waveform at two

nodes for circuits Circuit 1 and Circuit 5, respectively using the switch model for both our method

and for HSPICE.

A more realistic measure of the accuracy can be obtained by comparing the transistor model

used for HSPICE with the switch model for our method, using an equivalent linear resistor that

is equivalent to the transistor. Due to the nonlinearities associated with the transistor, it was

infeasible to simulate large networks using HSPICE in a reasonable time. We show a comparison

of the waveforms from our approach with the HSPICE waveforms at di�erent nodes in Circuit 1, a

20-node network, in Figures 16 through 19. From the waveforms, it is clear that the match between

the results of our approach and HSPICE is very good.
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Figure 14: Waveform at node 15, Circuit 5

7 Conclusion

A new algorithm for the analysis of power/ground network topologies using Pad�e approximations,

handling nonzero initial conditions, has been presented. The application was found to be very
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Figure 16: Waveform at node 3 of Circuit 1

amenable to symbolic analysis since the P/G network of each chip must be repeatedly analyzed by

designers under di�erent parameters and event sets before an optimal design is achieved. Experi-

mental results show that it achieves improvements of more than an order of magnitude over SPICE

in terms of execution time. The results generated by the algorithm are observed to be as accurate

as SPICE at many nodes within the network. At other nodes where it is not as accurate, such as

the waveform shown in Figure 15, it tracks the peaks correctly and captures the behavior of the

highest peaks with a good degree of accuracy. This symbolic algorithm is very well suited for use

in an optimization environment, where a good tradeo� must be made between speed and accuracy.
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