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Abstract

Retiming is a powerful technique for optimizing sequential circuits. The transparent nature of level

sensitive latches enables level-clocked circuits to operate faster and require fewer memory elements

than edge-triggered circuits. However, this transparency makes the operation of level-clocked circuits

very complex, and optimization of level-clocked circuits is a di�cult task. This work presents e�cient

algorithms for retiming large level-clocked circuits. To provide us with a simpler view of the operation

of level-clocked circuits we present the relationship between retiming and clock skew optimization. We

then utilize this relationship to develop e�cient retiming algorithms for period and area optimization.

For period optimization we present an algorithm which produces near-optimal results, but is

signi�cantly faster than the traditional algorithms. In this approach we �rst calculate the best

possible clock period and the amount of motion required for each latch. The latches are then relocated

in an attempt to achieve this period. Area, as measured by the number of latches in the circuit can

be optimized, by solving a linear program. We apply e�cient pruning techniques to reduce the size of

this linear program, while preserving optimality. Since generating the linear program is a major part

of the computational requirements of minarea retiming, we present techniques for e�cient generation

of the reduced linear program. This enables us to perform area optimization of large circuits clocked

by symmetric multi-phase clocks in very reasonable time, without sacri�cing optimality. We present

results on circuits with up to 56,000 gates, performing period optimization in under 20 seconds and

area optimization in under 1.5 hours.

1 Introduction

Circuit optimization plays a vital role in the design of VLSI systems. Since most systems are sequen-

tial in nature, combinational optimization techniques are not able to explore the complete design

space. Retiming [1, 2] is a powerful and true sequential circuit optimization technique. Retiming

takes an unoptimized circuit and relocates the memory elements to optimize some objective, e.g.,

clock period [3, 4], area [5, 6], power [7, 8] or testability [9, 10]. The problem of minimizing the clock
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period without regard to the number of latches is called minperiod retiming, and the problem of

minimizing the number of latches under the constraints of a target clock period is called minarea

retiming. These two problems are the subject of this work.

Leiserson and Saxe presented polynomial time algorithms for both minperiod and minarea retim-

ing of edge-triggered circuits in [2]. These algorithms were extended to handle level-clocked circuits

in [11{14]. Although these algorithms are of polynomial complexity, they are unable to handle large

circuits. Recent research [5, 6, 15, 16] has led to the development of fast algorithms for retiming

edge-triggered circuits with tens of thousands of gates. In this work we present fast algorithms for

retiming level-clocked circuits of similar size in comparable time. Although these methods are very

e�cient in practice, they do not improve the asymptotic complexity. As in the references on retiming

listed above, this paper assumes the circuit to be composed of gates with �xed delays.

The memory elements in a circuit can be either edge-triggered, called ip-ops (FF's) or level-

sensitive, called latches. Unlike an FF, a latch is transparent during the active period of the clock.

For edge-triggered circuits (circuits with edge-triggered FF's) the delays through all combinational

logic paths must be less than the clock period, hence we must enforce timing constraints only between

FF's connected by a purely combinational path. For level-clocked circuits (circuits with level-sensitive

latches) the delay through a combinational logic path can be longer than one clock cycle, as long as

it is compensated by shorter paths delays in the subsequent cycles. To ensure that the extra delay

is compensated we must enforce timing constraints between a latch and every other latch reachable

from it (possibly through multiple latches). Consider a linear N stage pipeline with N + 1 memory

elements (m0;m1 : : : mN ). If these memory elements are edge-triggered FF's then we need only N

timing constraints ( mi ; mi+1; 0 � i � N). However, if these memory elements are level sensitive

latches, then we would need N � (N + 1)=2 timing constraints (mi ; mj 8j > i and 0 � i � N). In

presence of feedback paths, timing analysis of level-clocked circuits becomes even more complex.

Even though the transparent nature of latches makes design and analysis of level-clocked circuits

very complex, they are widely used for high performance designs because they o�er more exibility

both in terms of the minimum clock period achievable and the minimum number of memory elements

required. Optimizing level-clocked circuits is therefore a complex but important task, and there is

an acute need of good automation tools. Several e�orts have been made to retime circuits with level-

sensitive latches based on the Leiserson-Saxe approach, e.g., [13, 14]. Although these algorithms

have polynomial time complexity, their high space and time requirement makes them incapable of

handling circuits with even a few thousand gates, and the only published results are on circuits with

less than 400 gates. Our goal in this work is to able to retime circuits with tens of thousands of gates

in reasonable time, and we present results on circuits with up to 56,000 gates.

These traditional methods [13,14] solve the minperiod retiming problem by performing a binary

search over all possible clock periods. At each step of this binary search, the feasibility of achieving

the clock period by retiming is checked by solving a single source shortest path problem using

the Bellman-Ford algorithm on a constraint graph. This constraint graph consists of jGj vertices

and edges between every pair of vertices (where jGj is the number of gates in the circuit), and is
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obtained by solving an all-pairs shortest path problem on the original circuit graph. This graph has

to be reconstructed for every binary search point, because as shown in [14, Section VI-A], unlike

edge-triggered circuits, critical paths in level-clocked circuits can be di�erent for di�erent clock

periods. Therefore [13] and [14] have O(jGj2) space requirement and high (although polynomial)

time complexity. This complexity of retiming level-clocked circuits arises due to the transparent

nature of latches, which forces us to consider constraints on paths going through multiple latches.

In this work our goal is not to reduce the asymptotic complexity of retiming level-clocked cir-

cuits, but to reduce the run time in practice. We present a bounded-approximation algorithm for

minperiod retiming of very large multi-phase circuits with general clock schedules. This is achieved

by introducing the concept of Global Departure Time (GDT) to map the minperiod retiming prob-

lem to a skew optimization problem and thus solving it much like the simpler problem of retiming

edge-triggered circuits using the approach of [15]. In each step of the binary search we solve the

single source shortest path problem on a much smaller constraint graph with only j	j vertices, where

j	j is the number of latches in the circuit. This constraint graph contains edges only between latches

that have a purely combinational path between them, and therefore in practice is much smaller and

sparse as compared to the constraint graph in traditional methods. Unlike the traditional methods

that reconstruct the constraint graph for every binary search point, we perform a simple reweighting

of the edges. Once the minimum period is obtained, the latches are relocated to obtain this minimum

period.

We also present a practically e�cient yet optimal algorithm for minarea retiming of level-clocked

circuits. The minarea retiming problem can be formulated as a linear program (LP) [2]. The work

in [2] is restricted to edge-triggered circuits, and the work in [13, 14, 25] extends this approach

to handle the problem of retiming level-clocked circuits with symmetric clocking schemes. This

LP is generated by solving an all-pair shortest path problem, and has jGj variables and almost jGj2
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constraints. This LP can be solved e�ciently by solving its min-cost ow dual [2]. For edge-triggered

circuits, the work in [5] presented an technique for pruning the number of constraints, which utilized

the observation that in edge-triggered circuits, if a subpath satis�es the timing constraints, then any

path containing this subpath will also satisfy the timing constraints (unfortunately this is not true

for level-clocked circuits due to the transparent nature of latches). The work in [6] built on the idea

and added e�cient techniques to obtain bounds on the variables of the LP for edge-triggered circuits.

These bounds were used to further reduce the size of the LP and the time required to generate it.

The concept of GDT presented in this work makes it possible for us to apply similar techniques to

generate bounds on the variables in the minarea LP for level-clocked circuits, and to use it to reduce

the size of this LP. However, due to the transparent nature of latches, unlike edge-triggered circuits,

the techniques of [5] and [6] cannot be used to reduce the time required to generate the minarea

LP in level-clocked circuits. This presents a major hurdle in retiming large level-clocked circuits

for minimum area, because in the absence of any e�ciency-improving techniques, the minarea LP

can not be generated in any reasonable time. In this work we present new techniques for pruning

the minarea LP for level-clocked circuits, and reducing the time required to generate it. These
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new techniques reduce the number of constraints by a factor of 20 to 40, and also reduce the time

required to generate these constraints by a factor of 10 to 20. These reductions are in addition to

those obtained by a simple extension of the techniques in [6]. Using the techniques presented in this

paper the entire ISCAS-89 benchmark suite could be retimed for minimum period in seconds, and

for minimum area in minutes.

The remainder of the paper is organized as follows. In Section 2, we present some background

material, after which in Section 3, we discuss a relation between retiming and clock skew optimization

for level-clocked circuits. This relation is then utilized for e�cient minimum period and minimum

area retiming in Section 4 and Section 5 respectively. Experimental results are presented in Section 6,

followed by concluding remarks in Section 7.

2 Background
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Figure 1: An example circuit.
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Figure 2: Retiming for clock period optimization.

Consider the simple circuit in Figure 1 with unit delay gates and a single-phase clocking scheme with

50% duty cycle. In this work we will assume that the data signals are available at the primary inputs

at the falling edge of the clock, and must arrive at the primary outputs before the falling edge. For

any latch that is not a primary input or primary output, the data may depart at any time during

the active period of the clock. Under this assumption a data signal in this circuit gets exactly two

clock periods to reach the primary output from the primary input.

A clock period of 2.0 units is not feasible for the circuit in Figure 1. This is because as shown in

the �gure the actual arrival time (3.0 units) is one time unit later than the required arrival time (2.0
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Figure 3: Alternate retiming for clock period optimization.

units). Hence the minimum clock period at which this circuit can operate without any modi�cations

is 3.0 units. However, a clock period of 2.0 units can be achieved by moving the latch L1 across the

gate G3. Notice that this is not the only possible location of memory element L1 that can achieve

the clock period of 2.0 units; placing latch L1 at the output of gate G1 also achieves the same clock

period as shown in Figure 3. This is possible because of the transparent nature of the latches which

allows the data signal to depart from the latch at any time during the active period of the clock.
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Figure 4: An example of minimum area retiming.

Relocating latches can also reduce the number of latches in a circuit. Consider the circuit in

Figure 4(a), with unit delay gates, three latches, and a clock period of 2.0 units. By moving the

latches at the outputs of gate G6 and G7 to the output of gate G5, as shown in Figure 4(b), we can

reduce the number of latches from three to two, without changing the clock period of the circuit.

Notice that this reduction in the number of latches would not have been possible with edge-triggered

FF's without increasing the clock period to 3.0 units.

Thus latches can be moved (retimed) across gates to either reduce the clock period or the number

of latches in a circuit. We use the term right to denote the direction of the signal ow and left to

indicate the direction against the signal ow. Thus retiming a latch by moving it to the right across

a gate implies removing a latch from each of the fanins of that gate and adding one to all of the

fanouts of that gate. Similarly retiming a latch left across a gate implies removing a latch from each
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of its fanouts and adding one to each of the fanins.

2.1 Circuit Model

As in [2], we represent the circuit by a directed graph, G(V;E), where each vertex v 2 V corresponds

to a gate in the circuit, and a directed edge euv represents a connection from the output of gate u to

the input of gate v, through zero or more latches. Each vertex v has a �xed delay d(v), and the fanin

and fanout set of vertex v is denoted by FI(v) and FO(v) respectively. A special vertex called the

host vertex (H) with zero delay is introduced in the graph, with edges from the host vertex to all

primary inputs of the circuit, and edges from all primary outputs to the host vertex. Each edge has

associated with it a weight w(euv), and a width �(euv). The weight w(euv) is the number of latches

between the output of gate u and the input of gate v, while the width �(euv) of an edge is the area

cost of placing one latch on it. The set of latches in the given circuit is denoted by 	.

Retiming is a labeling of the vertices r : V ! Z, where Z is the set of integers. The retiming

label r(v) for a vertex v, also referred to as a lag, represents the number of latches moved from its

output towards its inputs. The weight of an edge euv after retiming, denoted by wr(euv) is given by

wr(euv) = r(v) + w(euv)� r(u). One may de�ne the weight w(p) of any path p : u; v, originating

at vertex u and terminating at vertex v as the sum of the weights on the edges on p, and its delay

d(p) as the sum of the delays of the vertices on p. Similarly wr(p) is the sum of the weights on the

edges on p after retiming, and is given by

wr(p) = w(p) + r(v)� r(u) (1)

2.2 Clock Model

In this work, we have adopted the clock model of Sakallah, Mudge and Olukotun [17], and we describe

it here for completeness. A k-phase clock is a set of k periodic signals, � = f�1 : : : �kg where �i is

referred to as phase i of the clock �. All of the �i's have the same clock period T�, and each phase i

has an active interval of duration T�i and a passive interval of duration (T��T�i). Each latch i 2 	

is clocked by exactly one phase of the clock �, which is denoted by p(i). The latches controlled by a

clock phase are enabled during the active interval and disabled during the passive interval. When the

clock period, T�, is changed, the active intervals of each phase are scaled proportionately. The term

\clocking scheme" is used to indicate the relative ratios and duty cycles of the individual phases.

Thus a clocking scheme together with a clock period T�, de�nes a \clock schedule" �.

Associated with each phase i is a local time zone, shown in Figure 5, such that the passive interval

starts at time 0, the enabling edge occurs at time (T� � T�i), and the latching edge occurs at time

T�. There is also a global time reference and ei denotes the time when the phase �i ends, relative

to this global time reference. Phases are ordered so that e1 � e2 : : : � ek�1 � ek = T�, and are

numbered modulo-k, i.e., �k+1 = �1 and �1�1 = �k.
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Figure 5: Phase i of a k-phase clock (all times in local time zone).

A phase shift operator Ei;j, shown in Figure 6, is de�ned as follows:

Ei;j =

(
(ej � ei) for i < j

(T� + ej � ei) for i � j
(2)

Note that Ei;j takes on positive values, and when subtracted from a time point in the current time

zone of �i, it changes the frame of reference to the next local time zone of �j.

i
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φjphase
e

T
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i,j

φ

φ

e

j

i

i

j

E

Figure 6: The phase shift operator.

2.3 Timing Constraints for Level-Clocked Circuits

We now enumerate the set of timing constraints, that dictate the correct operation of a level-clocked

circuit. We neglect to consider latch setup and hold times here, since they can be incorporated easily

by including the setup times in the path delays and the hold time in the clock periods.

Each latch i also has an associated latest arrival time Ai, and a latest departure time Di, in its

local time zone. Due to the transparent nature of the latches, a signal can depart from a latch i any

time during the active interval of the phase p(i), i.e.,

T� � T�p(i) � Di � T�:

However, a signal cannot depart from a latch before it has arrived at that latch, i.e.,

Ai � Di:

The arrival time at a latch j of a signal departing from another latch i connected by a purely

combinational path (denoted as i ,! j) of delay dij must satisfy the following relation

Di + dij �Ep(i);p(j)) � Aj :

Combining the above relations we can obtain the timing constraints for proper clocking of level
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clocked circuits, considering only long path constraints1 as

Di + dij �Ep(i);p(j) � Dj 8 i ,! j j i; j 2 	

T� � T�p(i) � Di � T� 8 i 2 	 (3)

3 Relation Between Retiming and Skew

Clock skew at any latch is de�ned as the time by which the clock is delayed in arriving at the latch,

with respect to a �xed reference (the arrival time of the clock at the primary inputs). Clock skews

have traditionally been considered to be a liability and various techniques to get a skew-free clocking

network have been proposed [19{21]. An alternative approach views clock skews as a manageable

resource rather than a liability, and intentionally introduces skews to improve the performance of

the circuit [22]. Consider the circuit in Figure 1 where the clock period of 2.0 units is not feasible

since the actual arrival time (3.0 units) is one time unit after the required arrival time (2.0 units).

However, as shown in Figure 7 if a skew of +1.0 unit is applied to the clock at latch L1, the required

arrival time at latch L1 becomes 3.0 time units, and the data is properly clocked at latch L1. The

circuit can now run with a clock period of 2.0 units. Thus clock skews can be used to improve the

performance of a circuit.

G1 G2

IN

G4

OUT

G3

L1
IN

OUT

L1

DelayClk

CLOCK

0 3 41 2

Figure 7: Using clock skew to reduce clock period.

To derive timing constraints in presence of skews we now augment the Sakallah-Mudge-Olukotun

model with our own notation. We associate a skew Si with every latch i 2 	. Note that the skew

values here are not physical skews to be applied to the �nal circuit, but conceptual ideas that will

eventually help us to achieve a retiming solution. Therefore no restrictions are placed on the value

of Si, i.e. �1 � Si � 1.

We de�ne a latch shift operator Li;j, shown in Figure 8, much like the phase shift operator. This

operator converts time from the local time zone of latch i to the local time zone of latch j, taking

into account their skews. It is de�ned as

Li;j =

(
(Sj + ep(j))� (Si + ep(i)) for i < j

T� + (Sj + ep(j))� (Si + ep(i)) for i � j

1We do not consider short path constraints here, and rely on techniques such as min-padding [18] to correct any
short path violations.
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Figure 8: The latch shift operator.

which can be rewritten in terms of the phase shift operator as

Li;j = (Sj � Si) +Ep(i);p(j) (4)

In presence of skews at latches, the timing constraints in inequality (3) must be modi�ed by using

the latch shift operator instead of the phase shift operator. Thus the timing constraints for a level

clocked circuit to be properly clocked by a clock schedule �, in presence of skews are

Di + dij � Li;j � Dj 8 i ,! j j i; j 2 	

T� � T�p(i) � Di � T� 8 i 2 	

These timing constraints can be rewritten as

(Si +Di) + dij �Ep(i);p(j) � (Sj +Dj) 8 i ,! j j i; j 2 	

T� � T�p(i) � Di � T� 8 i 2 	

�1 � Si � 1 8 i 2 	

To make the discussion simpler we subtract T� from both sides of the �rst relation, and substitute

Xi = (Si +Di � T�) (5)

We refer to Xi as the Global Departure Time (GDT). This gives us

Xi + dij �Ep(i);P (j) � Xj 8 i ,! j j i; j 2 	

�1 � Xi � 1 8 i 2 	

These can be written as the following set of di�erence constraints.

Xi �Xj � Ep(i);p(j) � dij 8 i ,! j j i; j 2 	 (6)

�1 � Xi � 1 8 i 2 	

As shown earlier, both skew and retiming can modify the circuit in Figure 1 to operate at a faster

clock period of 2.0 units. In fact both achieve this objective by the same basic principle of borrowing

time from one cycle and lending it to another. Therefore retiming and skew optimization can be
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considered to be related to each other. A formal presentation of this relationship is given in [15], for

edge triggered FF's. An FF can be conceptualized as a level sensitive latch with a very small active

interval.

The physical meaning of GDT is as follows. If we can apply arbitrary skews at latches, we can

adjust the skew, Si, of a latch so as to force Di = T�, which is same as a negative edge triggered

FF. Since Xi = Si +Di � T�, setting Di = T� gives Si = Xi. Hence, we can look at Xi for latches

in the same way as we look at skews for FF's.

The di�erence constraint between GDT values of two latches given in inequality (6) is similar to

the di�erence constraints between skews at FF's in [15]. Therefore, we suggest a relation between

retiming and GDT values of level-sensitive latches, similar to the one given in [15] between retiming

and skews for edge triggered FF's. This relation will allow us to develop e�cient techniques for

retiming level-clocked circuits. We now state a theorem similar to Theorem 1 in [15]; the proof of

this theorem is similar to the one given in [15].

Theorem 1 In a level-clocked circuit, retiming a latch across a gate with delay d1 by applying to it

a positive [negative] lag is equivalent to increasing [decreasing] its GDT by d1.

Tφi

Tφi

Tφi

TΦ TφiDi = -’

TΦDi
 =

Si
’ = 0

Tφi

Tφi

Tφi

(a)

(b)
’ = -X

Xi
 =

Si =-

-

Figure 9: The ability of a latch to absorb some skew.

Note that in reality, we are not compelled to set Di = T�, and that we can reduce Di by as

much as T�i and increase Si by the same amount, while keeping Xi constant. Since only GDT's

(Xi's) appear in the timing constraint of relation (6), keeping them constant keeps the clock period

constant. Consider Figure 9 (a) where Si = �T�i and Di = T�, thus Xi = �T�i . We can increase

the skew to zero (S0
i = 0), without changing the GDT as shown in Figure 9 (b), by reducing the

departure time by the same amount D0
i = T�� T�i , leaving the GDT unchanged (X 0

i = Xi = �T�i).

Therefore, we can absorb a skew of up to �T�i in the Di without violating the long path constraint.

Thus a GDT value between �T�i and 0 is allowed and this range will be referred to as the allowable

range. If di�erent phases have di�erent active interval then this allowable GDT range of a latch will

depend on its phase. Therefore in our model, level-sensitive latches can be conceptualized as FF's

that have the capacity to absorb some skew.

At this time, we also note the relation between the GDT, Xi, of a latch i and the corresponding
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minimum magnitude skew, Si:

Si =

8>><
>>:

Xi if Xi � 0

0 if �T�i � Xi � 0

Xi + T�i if �T�i > Xi

(7)

4 Minimum Period Retiming

Given a circuit and a clocking scheme, minimum period (minperiod) retiming �nds the minimum

possible clock period T�, for which there exists a retimed circuit that will be properly clocked by

� (the clock schedule for the given clocking scheme and clock period T�), and the retiming that

makes this clock schedule possible. As mentioned in Section 1, the traditional techniques of [13, 14]

are unable to handle large level-clocked circuits in a reasonable time. We utilize the relationship

between GDT and retiming presented in Section 3 to map the problem of retiming level-clocked

circuits for minimum period to the simpler problem of retiming edge-triggered circuits for minimum

period as solved in [15]. This mapping motivates the following two-phase method of retiming for

minimum clock period under a given clocking scheme.

Phase A : Find the minimum clock period and a set of GDT values that will achieve this period.

Phase B : Relocate latches across gates in an attempt to get all the GDT values to be within

allowable range.

As mentioned later in Section 4.1, in Phase A of this method we construct a potentially small

and sparse graph only once, unlike the traditional methods [13, 14] which construct multiple large

and dense graphs. In Phase B we perform fast local transforms to obtain the retiming solution.

Therefore using this two phase method we can retime large level-clocked circuits very e�ciently.

As in [15] it must be noted that since gate delays take on discrete values, it cannot be guaranteed

that the GDT at every latch can be reduced to be within the allowable range through retiming

operations. Thus it is possible that like ASTRA [15] our method may not be achieve the optimal

retiming clock period. After the GDT values have been reduced as much as possible, the retimed

circuit may be implemented either by applying the requisite (remaining) skews at a latch (to get

the optimal clock period achievable by skew optimization), or by setting all skews to zero to get a

clock period that is, as will be shown in Section 4.4, no more than a �xed bound above the optimal

period with skews. Note, however, that this is not necessarily suboptimal since the minimum clock

period using skews may not be achievable using retiming alone, since retiming allows cycle-borrowing

only in discrete amounts (corresponding to gate delays), while skew is a continuous cycle-borrowing

optimization [22]. As will be shown in Section 4.4, if the maximum gate delay is less than the least

T�i , we can always achieve the optimal skew optimization period by retiming alone.

We �rst describe the two phases of minperiod retiming, followed by the special case of retiming

a circuit for a given clock period. We then present the bound on the di�erence between the optimal

skew optimization period and the clock period obtained by our method.
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4.1 Phase A: Clock Period Optimization

The problem of minimizing the clock period, T�, for a given clocking scheme can be represented as

the following linear program:

minimize T�

subject to Xi �Xj � Ep(i);p(j) � dij i ,! j j i; j 2 	 (8)

Solving the above linear program we obtain the minimum clock period and the GDT's corre-

sponding to it. Our strategy is to transform the GDT solution to a retiming solution to achieve the

minimum clock period.

For a given circuit, dij is constant and for a given clock schedule that has a �xed T�, Ep(i);p(j) is

constant. Therefore, the constraint matrix reduces to a system of di�erence constraints. A feasible

solution to the constraint matrix exists if the corresponding constraint graph contains no positive

cycles [23]. Thus we can solve the, linear program by performing a binary search on the clock period

T�. The minimum clock period corresponds to the smallest value of T� at which no positive cycle

exists.

The constraint graph has a vertex for each latch in the circuit and one for the host node repre-

senting the primary inputs and outputs. There is an edge (i; j) from vertex i to vertex j if there is

a purely combinational path from latch i to latch j. The weight on this edge is a function of the

clock period T� and is given by dij �Ep(i);p(j). The Bellman Ford algorithm [23] is applied as in [15]

using the same speedup techniques which provide a fast implementation. The GDT's at all primary

inputs and primary outputs are assumed to be zero. The values of dij 's are obtained e�ciently by

using the method in [24].

Notice that number of variables in this constraint graph is equal to the number of latches j	j in

the circuit, and the constraints are only between latches with a purely combinational path between

them. Therefore this constraint graph in practice, is much smaller and sparse as compared to the

traditional constraint graphs of [13, 14], which have one variable for every gate and constraints to

all reachable gates. Further unlike the traditional methods of [13, 14], which need to construct the

larger and denser constraint graph for every binary search point (by solving an all-pair shortest path

problem), our constraint graph needs to be constructed only once. At each point in the binary search

the constraint graph can be obtained by a simple reweighting of the graph edges. Therefore the run

time of this binary search is much less than that of the traditional methods.

This optimal clock period with skews is called Ps, and it is same as the maximum delay-to-register

ratio of [25]. Both are lower bounds on clock period obtainable via retiming. However, instead of

using it just as a lower bound (as in [25]), we use it to obtain the amount by which each latch is

required to move in order to satisfy the clock period. This amount is then used to obtain a retiming

solution as described next.
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4.2 Phase B: GDT Minimization

In Phase B, we reduce the GDT values obtained in Phase A by applying retiming transformations

using Theorem 1. This procedure relocates the latches with nonzero GDT's across logic gates, while

maintaining the optimal clock period previously found. Because of the freedom provided to Di by

the active interval of clock phase p(i) (which allows Di to be set to any value between T� � T�p(i)
and T�), Si = 0 can be achieved if �T�p(i) � Xi � 0. If Si cannot be set to zero, we try to bring Xi

as close to 0 or �T�p(i) as possible so as to minimize the magnitude of the �nal skew Si.

Although the method for FF relocation presented in [15] can be modi�ed to work for latches, we

present an equivalent yet conceptually simpler method of GDT minimization by latch relocation. A

gate can be retimed in forward [backward] direction if it has latches on all of its inputs [outputs],

this retiming will result in removing one latch from all its inputs [outputs] and adding one latch to

all its outputs [inputs].

We maintain two sets one for the gates that are to be forward retimed and one for the gates that

are to be backward retimed. The forward retiming set F is initialized to contain all gates that have

at least one latch on all their inputs. Similarly the backward retiming set B is initialized with gates

that have at least one latch on all their outputs. We then process these sets by taking a gate from the

set and retiming it, if the skew on the latches can be reduced by this retiming. After every retiming

the sets are updated. The pseudo code for this is listed as the function retime() in Figure 10.

retime()

f
F = fvjv 2 V and w(euv) � 1 8u 2 FI(v)g /* initialize F */

B = fvjv 2 V and w(evu) � 1 8u 2 FO(v)g /* initialize B */

while(9 u 2 F) do forward retime(u; F);
while(9 u 2 B) do backward retime(u;B);

g

Figure 10: Function retime().

The functions forward retime(gate,set) and backward retime(gate,set) retime the gate if

needed, and update the respective sets. The corresponding pseudocodes are listed in Figure 11.

The function GDT to skew(GDT) converts a GDT value to the corresponding minimummagnitude

skew using relation (7). For forward retiming of a gate v the e�ective GDT before retiming, Xi is

given by the maximum GDT at its inputs, while the e�ective GDT after retiming X 0
i is given by

X 0
i = Xi + d(v). For backward retiming the e�ective GDT before retiming Xi is given by the

minimum GDT at its outputs, and the GDT after retiming X 0
i is given by X 0

i = Xi� d(u). In either

case the gate is retimed only if the magnitude of the e�ective skew after retiming S0
i is less than

the magnitude of the e�ective skew before retiming Si. As mentioned earlier a gate v is forward

[backward] retimed by removing a latch from each of its inputs [outputs] and adding a latch with
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forward retime(v; F)
f
F  F � v; /* remove gate v from F */

Xi = maximum GDT at the inputs of gate v;
X 0
i = Xi + d(v);

Si = GDT to skew(Xi);

S0
i = GDT to skew(X 0

i);

if (jS0
ij < jSij) do

f /* retime gate v */

for 8u 2 FI(v) do fw(euv) w(euv)� 1g; /* delete a latch from each input */

for 8u 2 FO(v) do fw(evu) w(evu) + 1g; /* add a latch with GDT = X 0
i on all outputs */

for 8u 2 FO(v) do

if (w(ewu) � 1 8w 2 FI(u)) do F  F [ u; /* update F */

g
g

backward retime(v;B)

f
B  B � v; /* remove gate v from B */

Xi = minimum GDT at the outputs of gate v;
X 0
i = Xi � d(v);

Si = GDT to skew(Xi);

S0
i = GDT to skew(X 0

i);

if (jS0
ij < jSij) do

f /* retime gate v */

for 8u 2 FO(v) do fw(evu) w(evu)� 1g; /* delete a latch from each output */

for 8u 2 FI(v) do fw(euv) w(euv) + 1g; /* add a latch with GDT = X 0
i on all inputs */

for 8u 2 FI(v) do

if (w(euw) � 1 8w 2 FO(u)) do B  B [ u; /* update B */

g
g

Figure 11: Functions forward retime() and backward retime().
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GDT X 0
i to all its outputs [inputs]. If after forward [backward] retiming a gate v, any of its fanout

[fanin] gate w now has at least one latch on all its fanins [fanouts], then we add gate w to the forward

[backward] set F [B].

Retiming a latch forward across a gate u a�ects the edge weights on only its own fanouts and not

the edge weights on fanouts of any other gate. Therefore forward retiming a gate u cannot enable the

backward retiming of any other gate that could not be previously retimed in the backward direction.

Since we forward retime a gate u only if the e�ective skew magnitude reduces by this retiming,

and not if it remains the same, a gate u cannot be backward retimed after it has been forward

retimed once (even though it may have latches on all its fanouts), because this backward retiming

will increase the skew magnitude. Therefore a gate can never be retimed in both the forward and

backward direction. Thus forward retimings have no e�ect on backward retimings and both types

of retimings can be carried out independently. Due to this reason we do have to process the forward

set again after it has been processed once.

4.3 Retiming for a Target Period

Retiming a circuit for a given target clock period is a special case of the minperiod retiming problem.

In this problem we are given a circuit and a clock schedule � that has a �xed T�. If the given clock

schedule is feasible, the method should return a retimed circuit that is properly clocked. If the clock

schedule is not feasible the method should indicate so. For this problem we do not need to perform

the binary search in Phase A. The constraint graph is constructed as earlier and the Bellman-Ford

algorithm is applied on it to obtain the set of required GDT's. If the Bellman-Ford algorithm

detects a positive cycle the clock scheme is not feasible, and is reported as such, otherwise Phase B

is performed.

Due to the exibility in the non-critical part of the circuit, and the transparent nature of the

latches, retiming for a given clock period is not unique, and di�erent retimed circuits can be obtained

all of which satisfy the target clock period. As an example for the circuit in Figure 1 two di�erent

retimings are shown in Figure 2 and Figure 3 for the same target clock period of 2.0 units. Our

objective in minperiod retiming is to �nd one of these possible solutions e�ciently, with as few

retiming moves as possible. As in [15] we initialize the GDT's to 0 in the Bellman-Ford algorithm,

and take advantage of the slacks to minimize the number of moves. For minperiod retiming of the

circuit in Figure 1 our method will generate the circuit in Figure 2, since it requires fewer latch

motions than the circuit in Figure 3.

4.3.1 The ALAP and ASAP Retimings

Out of the set of all possible retimings for the given clock scheme, two are of particular interest. We

can obtain a retiming such that all latches move as far as possible to the left. This is called \as soon

as possible (ASAP)" retiming. Similarly the retiming that moves all the latches as far as possible

to the right is referred to as the \as late as possible (ALAP)" retiming. Both ASAP and ALAP

retiming assume no latch is moved across the host node (H). These ASAP and the ALAP locations
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can be seen as the extreme locations of latches in the circuit for the given clock scheme, and will be

utilized, as in [6], in Section 5 for e�cient minarea retiming. For the circuit in Figure 1 the ALAP

and ASAP retimings are shown in Figure 2 and Figure 3 respectively. As in [6] these ASAP and

ALAP retimings can be obtained by modifying the minperiod retiming algorithm.

Unlike retiming for a given period, in ALAP retiming our objective is to move the latches to the

right, as much as possible. For this we initialize all GDT's to �1, before applying the longest path

Bellman-Ford algorithm to the constraint graph. In Phase B we use the allowable range of GDT's

to move a latch to the right as much as possible, i.e., if the new GDT after moving a latch to the

right is still within the allowable range, we move the latch to the right. Notice that this is done even

if the original GDT was within the allowable range.

In ASAP retiming we obtain the GDT's by running the Bellman-Ford algorithm on the transpose

[23] of the original constraint graph (i.e., a graph with the same vertex set as the original graph, but

with the edge directions reversed) with all latches initialized to �1. Since all the edge directions

where reversed the longest path values for all latches must undergo a sign reversal to obtain the

correct GDT values.

4.4 A Bound on the Clock Period of the Retimed Circuit

Theorem 2 At the end of the retiming procedure in Phase B, the magnitude of skew at each latch

i, is no more than

p(i) = max

 
0;
M � T�p(i)

2

!
(9)

where M is the maximum delay of any gate in the circuit.

Proof: We have two cases

Case A : M � T�p(i) If the maximum gate delay is less than the active duration of the clock,

we need to prove that at the end of Phase B, all latches will have zero skew. We will prove

this by contradiction, assume that a latch i has nonzero skew Si at the end of Phase B.

We have two subcases.

Case 1: Si > 0 In this case the GDT of latch i is Xi = Si. The new GDT of the latch

after it is moved left across a gate of delay d1 is given by X 0
i = Xi � d1. Since

d1 � M � T�p(i) we have X
0
i � �T�p(i) , thus the e�ective skew S0

i after this possible

move is either zero (if T�p(i) � X 0
i � 0), or jS0

ij < jSij. In either case the latch i

can be moved left across the gate and have its skew reduced. This contradicts the

assumption that Phase B is complete.

Case 2: Si < 0 If Si < 0 then the GDT of latch i is negative, i.e., Xi = Si � T�p(i) , and

the proof is similar to case 1.

Case B: M > T�p(i) If the maximum gate delay is more than the active duration of the clock,

we need to prove that for any latch i, at the end of Phase B the skew magnitude is less
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Figure 12: Worst-case situation for remaining skew.

than p(i). Phase B is complete only when for every latch i we have jS0
ij � jSij, where Si is

the current skew and S0
i is the skew after a possible move across a gate with delay d1. As

shown in Figure 12 the largest possible �nal skew magnitude corresponds to the situation

when jSij = jS
0
ij. In this case we have d1 = 2 � jSij+T�p(i) and hence jSij �

d1�T�p(i)
2 . Since

M is the maximum gate delay this implies that jSij �
M�T�p(i)

2 .

Theorem 3 If, in a k phase circuit at the end of the retiming procedure all skews are set to zero,

then the �nal clock period (Pr) satis�es the following condition

Pr � Ps +
kX
i=1

max(0;M � T�i)

where Ps is the optimal clock period with skews found in Phase A, and M is the maximum delay of

any gate in the circuit.

Proof : Each di�erence constraint for the optimal clock period (with skews) is of the form

Xi �Xj � Ep(i);p(j) � dij:

Theorem 2 guarantees us that at the end of Phase B jXij and jXj j are within p(i) and p(j)

of their optimal values respectively. Therefore the actual value of Xi �Xj after Phase B must

lie within (p(i) + p(j)) of the required value of Xi � Xj in Phase A. This implies that the

inequality that de�nes the di�erence constraint can be maintain by increasing Ep(i);p(j) by no

more than (p(i) + p(j)). Since each Ei;j increases by no more than (p(i) + p(i)), the clock

period T� =
Pk

i=1Ep(i);p(j) will increase by no more than
Pk

i=1(2 �i) or
Pk

i=1max(0;M �T�i).

For level-clocked circuits if M , the maximum delay of any gate in the circuit, is less than the

active interval of the clock T�i for all i, then our method will always achieve the optimal solution.

Even if this condition is not true, the bound in Theorem 3 is not expected to be large in practice

since it is the di�erence between gate delay and active interval of clock. Further since it is a worst

case bound from a possibly unachievable clock period Ps, we expect the �nal result to be close to

the optimal clock period obtainable by retiming.
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The method presented here is also applicable to circuits that are not well-formed, as de�ned

in [14], or contain multi-cycle paths. For such circuits, the only requirement is to compute the time

available for data to travel between two latches connected by a purely combinational path. This can

be done either using the phase shift operator, or the timing assertions placed by the designer. In

phase B, latches are moved across a gate only if they all have the same phase. Such circuits may

have short path violations, which may be resolved by using min-padding [18].

5 Minimum Area Retiming

Although the minperiod retiming algorithms can achieve signi�cant improvement in the clock period,

they pay no regard to the number of latches in the circuit. As a result minperiod retiming can

signi�cantly increase the number of latches in the circuit, and hence the circuit area and power. To

contain this increase we perform constrained minarea retiming. Performing a constrained minarea

retiming with the target period set to the period obtained by minperiod retiming, will give us the

fastest circuit with least area overhead.

The minarea retiming problem can be modeled as a LP [2]. Unfortunately under general clock

schedules with unequal phases the minarea retiming problem must be modeled as a general integer

linear program of the type given in [26], while restricting the clock scheme to a symmetric multi-

phase clock enables us to model the minarea retiming problem as an e�ciently solvable LP (dual of

min-cost ow problem) [13]. Therefore in this work we will consider only symmetric clock schemes.

As the LP presented in [13] has almost jGj2

2 constraints for a circuit with jGj gates, minarea retiming

of large circuits is not feasible. In this section we present an e�cient method for minarea retiming of

large level-clocked circuits, without sacri�cing optimality. Our approach is to improve the e�ciency

of minarea retiming by

(a) reducing the size of the LP,

(b) generating this LP faster, and

(c) solving the LP e�ciently.

Reducing the size of the LP reduces the space requirement of minarea retiming making it feasible

for large circuits. E�cient techniques for generating the LP are essential to retime large circuits in

reasonable times. Lastly since the size of even the reduced LP will be signi�cant, e�cient algorithms

for solving it are imperative. We use the e�cient network simplex method from [16] for this purpose.

Using this technique we could solve a problem with 70,000 variables and 8.2 million constraints in

about 9 minutes [6].

In this section we �rst present the LP formulation of minarea retiming. We then reduce the size

of this LP, both in terms of number of variables and constraints, without sacri�cing any optimality.

Finally we present e�cient techniques for generating this LP.
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Figure 13: Maximal Latch Sharing

5.1 The Minarea Linear Program

The minarea retiming LP for level-clocked circuits is similar to the LP for edge-triggered circuits

given in [2]. The decision variables of this LP are the r variables of the gates, and the objective

function represents the number of latches added to the retimed circuit in relation to the original

circuit. Since the latches at the output of a gate can be combined or shared, we take into account

maximal latch sharing to accurately model the number of latches. To achieve this, we associate a

mirror vertex mu of zero delay with every multiple-fanout gate u, as shown in Figure 13 [2]. All

edges from the gate u to its fanouts, and the edges from these fanouts to the mirror vertex mu have

a width of 1=k, where k is the number of fanouts. The edge weights are as shown in the �gure, where

w(maxu) = max8v2FO(u)w(euv) is the maximum weight over all edges from the gate u. Further

details of this maximal latch sharing model can be found in [27]. Note that due to the introduction

of these mirror vertices we now have two nodes for every multiple-fanout gate, thus jGj � jV j � 2�jGj.

The LP contains two set of constraints. The �rst set of constraints ensures that the weight euv

of each edge (i.e., the number of latches between the output of gate u and the input of gate v) after

retiming is nonnegative. We will refer to this set as the circuit constraint set Cc. The second set of

constraints will ensures that after retiming, the circuit is properly clocked by the target clock T�,

and is referred to as the period constraint set Cp. We will now derive these period constraints.

For a k-phase symmetric clock we have T�i = T� 8i = 1 � � � k and � = T�
k
. For a level-clocked

circuit to be properly clocked the total delay on any path should be less than the time available.

The time available for a path p with wr(p) latches is (wr(p) + 1) � �, in addition cycle stealing can

provide up to T� additional time. Thus as in [25] we get the following condition for proper clocking:

d(p) � (wr(p) + 1) � � + T� 8 p : u; v (10)
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This constraint can be rewritten after substitution of Equation 1 as

r(u)� r(v) � w(p)� d(p)
�

+ 1 +
T�
�
8 p : u; v (11)

Clearly if there are multiple paths from u to v only the tightest constraint (one with minimum right

hand side) is irredundant. We denote the minimum value of
h
w(p)� d(p)

�

i
over all paths from u to

v by �(u; v), i.e.,

�(u; v) = min
8p:u;v

�
w(p)�

d(p)

�

�
(12)

Let us de�ne �(u; v) as

�(u; v) =

�
�(u; v) +

T�
�

+ 1

�
(13)

Since the retiming variables r(u) and r(v) are integers, we can rewrite relation (11) as the period

constraints

r(u)� r(v) � �(u; v) 8 p : u; v (14)

We now have the constrained minarea retiming LP as:

minimize
P

v2V

h�P
8j2FI(v) �(ejv)�

P
8j2FO(v) �(evj)

�
� r(v)

i
(15)

subject to r(u)� r(v) � w(euv) 8euv 2 E

r(u)� r(v) � �(u; v) 8u; v 9 p : u; v

Notice that all the constraints in this LP are di�erence constraints of the form r(i)� r(j) � cij

where cij = w(euv) 8euv 2 E and cij = �(u; v) 8u; v 9 p : u; v.

5.2 Reducing the Linear Program

To reduce the space requirements of minarea LP it is imperative that we have some techniques to

prune the constraints as they are generated, rather than after all the constraints have been generated.

Since the required e�ort in solving a LP is strongly dependent on the number of variables, and the

number of variables in Equation (15) can be up to 2 � jGj, it would help to reduce the number of

variables as well. In this section we will take advantage of the relationship between retiming and

GDT presented in Section 3 to reduce the size of the LP by using bounds on the r variables [6].

As in [6], the ALAP and ASAP retimings described in Section 4.3.1 give us bounds on the r

variables, of the form

Lu � r(u) � Uu (16)

We refer to Lu as the lower bound and Uu as the upper bound on gate u. Like the ASAP and ALAP

retimings, these bounds are with reference to a �xed host vertex, i.e., LH = UH = 0. If Uu = Lu = ku

we say that gate u is �xed or immobile. On the other hand if Uu 6= Lu we say that gate u is exible
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or mobile. These bounds give us a reduced variable set V 0 � V as

V 0 = fv 2 V jUv 6= Lvg (17)

Example: For the circuit in Figure 1, the ASAP location for the latch L1 is at the output of gate

G1 as shown in Figure 3. The number of latches moved across each gate in arriving at this ASAP

location, and hence the upper bounds are: UG1 = 0, UG2 = 1, UG3 = 1, and UG4 = 0. The ALAP

location of latch L1 as shown in Figure 2, is at the output of gate G2. The number of latches

moved across each gate in arriving at this ALAP location, and hence the lower bounds are: LG1 = 0,

LG2 = 0, LG3 = 1, and LG4 = 0, i.e.

V = fG1; G2; G3; G4g

V 0 = fG2g

The presence of the bounds obtained in inequality (16) makes a large number of constraints

redundant, i.e., these constraints are implied by the bounds. We now present a rule to identify these

redundant constraints.

Rule 4 Any constraint (i; j) of the form r(i)�r(j) � cij is redundant in the presence of the bounds

of inequality (16) and can be dropped if Ui � Lj � cij.

Proof : It can be seen from the bounds on r(i) and r(j) in inequality (16) that

r(i)� r(j) � Ui � Lj

Therefore, if Ui � Lj � cij then r(i)� r(j) � cij must also be true. Thus any constraint (i; j)

is redundant and can be dropped if Ui � Lj � cij.

To obtain the reduced circuit constraint set C 0
c � Cc we accept only those constraints from Cc

that are not dropped by the application of Rule 4. Thus

C 0
c = f(i; j) 2 CcjUi � Lj > w(eij)g (18)

The reduced period constraint set C 0
p � Cp is similarly obtained by applying Rule 4, and some

other techniques for pruning redundant constraints presented later in Section 5.3.3. Using these

techniques we can reduce the LP in inequality (15) to a much smaller LP given below

minimize
P

v2V 0

h�P
8j2FI(v) �(ejv)�

P
8j2FO(v) �(evj)

�
� r(v)

i
+K (19)

subject to r(u)� r(v) � w(euv) 8(u; v) 2 C 0
c

r(u)� r(v) � �(u; v) 8(u; v) 2 C 0
p

Lu � r(u) � Uu 8u 2 V 0
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where K is a constant accounting for the increase in the number of latches due to �xed gates, and

is added to ensure that this LP has the same optimal function value as the LP in Equation (15). Its

value is given by

K =
X

v2(V �V 0)

2
4
0
@ X

8j2FI(v)

�(ejv)�
X

8j2FO(v)

�(evj)

1
A � Uv

3
5

Bounds on the mirror vertices introduced to model the maximal latch sharing can be obtained

directly from the bounds on fanout gates as in [16] and are given by Theorem 5. The constraints as-

sociated with these mirror vertices can also be obtained by direct inspection of the circuit. Therefore

we do not need to explicitly add these mirror vertices to the circuit graph. Since every multi-fanout

gate has a mirror vertex, this gives us important savings in terms of the space and time requirements.

Theorem 5 The bounds on the r value of a mirror vertex mi of gate i in Figure 13 can easily be

derived from the bounds on the fanout gates and are given by

Umi
= max

8j2FO(i)
(Uj + w(eij))� w(maxi)

Lmi
= max

8j2FO(i)
(Lj + w(eij))� w(maxi) (20)

5.3 Generating the Reduced Linear Program

A major portion of the e�ort in retiming a level-clocked circuit for minimum area is spent in gener-

ating the period constraints set Cp. We now describe e�cient techniques for generating this set C 0
p.

The generation of period constraints requires computation of � values for all-pairs of gates in the

circuit. However if the ALAP retiming satis�es the target clock period2, then we need to compute �

values only from exible gates, as stated in the following theorem.

Theorem 6 If the ALAP retiming satis�es the target clock period, any period constraint from a �xed

node a (i.e. Ua = La) is redundant in the presence of the bounds of Equation (16) and need not be

generated.

Proof : Since ALAP positions are feasible solutions the following holds for all constraints in Cp.

Li � Lj � �(i; j) 8 (i; j) 2 Cp (21)

2Notice that if the maximum gate delay in the circuit is more than the active period T�, it is possible for ALAP
retiming to violate the target clock period even if the target clock period is feasible by retiming alone. This is because
the method of �nding ALAP retiming converts a (continuous) skew optimization solution to a (discrete) retiming
solution. This, however, does not imply that these ALAP bounds are wrong, but merely that they are not tight
enough. In level clocked circuits, due to the exibility o�ered by the transparent nature of latches it is very unlikely
that the ALAP retiming will violate the target clock period. In our experiments, we used randomly-assigned delays
between 1 and 20 units (M = 20) and a 50% duty cycle, and found that no ALAP retiming violated the target clock
period. We did not see any signi�cant e�ect of M on the run time of our method.
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Consider any period constraint (a; b) 2 Cp from a �xed gate a, to any other gate b of the form

r(a)� r(b) � �(a; b). By relation (21) La � Lb � �(a; b), and by Equation (16) r(a)� r(b) �

Ua �Lb. Because gate a is �xed Ua = La, therefore r(a)� r(b) � La �Lb � �(a; b). Thus the

constraint (a; b) is redundant and can be dropped. Since this is true for any period constraint

from gate a, we do not need to generate any period constraint from a �xed gate, as they will

all be redundant.

5.3.1 Computing the � Values

The � values can be obtained by re-weighting each edge eij with w0(eij) =
h
w(eij)�

d(i)
�

i
and

computing all-pair shortest paths. Direct computation of all pair shortest paths, e.g., using Floyd-

Warshall algorithm [23] requires O(jV j2) memory and is not practical for large circuits with tens of

thousand gates. Therefore we solve multiple single-source shortest path problems, once for every gate

as a source, and use Johnson's algorithm [23] for this purpose. Johnson's algorithm �rst re-weights

all edges to ensure nonnegative edge weights. The shortest paths are then computed by running

Dijkstra's algorithm for each gate as source.

Let us consider a particular run of Dijkstra's algorithm with gate a as the source, and let b be

a gate to which the shortest path �(a; b) has been obtained. Let c be any other gate in the circuit,

reachable from gate a.

By de�nition, r(a)� r(b) � Ua � Lb

If Ua � Lb � �(a; b);

then r(a)� r(b) � �(a; b): (22)

From relation (11) and (12)

r(b)� r(c) � �(b; c) +
T�
�

+ 1;

which when combined with relation (22) gives

r(a)� r(c) � �(a; b) + �(b; c) +
T�
�

+ 1 (23)

If the shortest path from gate a to gate c does not go through gate b then �(a; b) + �(b; c) � �(a; c)

and we do not need to process the fanouts of gate b to obtain �(a; c). On the other hand, if the

shortest path from gate a to gate c is indeed through gate b then �(a; b)+�(b; c) = �(a; c) and relation

(23) is same as the period constraint r(a) � r(c) � �(a; c). If Ua � Lb � �(a; b) then this period

constraint is redundant. In either case we need not process the fanouts of gate b. Since this is true

for any c, reachable from gate a, and we are interested only in gates reachable from gate a, we get

the following rule.

Rule 7 If during the shortest path calculations from source a using the Dijkstra's algorithm, for

any gate b we have Ua � Lb � �(a; b), we do not need to process the fanouts of gate b.
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The idea of limiting the search depth by the clock period during constraint generation in minarea

retiming of edge-triggered circuits was used in [5] and [28]. This idea is not directly applicable to

level-clocked circuits, since constraint generation cannot be limited by the clock period due to cycle

stealing. Notice that the condition r(a) � r(b) � �(a; b) is too restrictive and enforcing it will in

general lead to suboptimal solutions. However, for the special case where this conditions is implied

by the bounds, the relation is true. This can be used to limit the search during constraint generation

as shown in Relations (22) and (23). The bounds on the r variables enable the identi�cation of this

condition and hence are vital for application of this rule.

We take advantage of the bounds on r variables to speed up the computations, by applying The-

orem 6 to compute � values only from the exible gates, and using Rule 7 to reduce the computation

for the � values actually computed. We found that this signi�cantly improves the time taken to

generate the period constraints.

5.3.2 Reusing � Computations

We now describe how to reuse some of the computations performed in obtaining the � values to

further speed up the generation of period constraints. The idea is motivated by the fact that in most

practical circuits a high percentage of gates are single-fanout gates. Consider one such single-fanout

gate a with fanout b. For the gate a, the shortest paths to all other gates must be via gate b, which

implies that �(a; c) = w0(eab) + �(b; c). Therefore we can obtain the shortest paths from gate a by

simply adding w0(ea;b) to the shortest paths from gate b. Thus if we somehow ensure that shortest

paths from gate b are obtained just before those from gate a, we will save one complete execution

of Dijkstra's algorithm for gate a as source. We call this approach \chaining" and the set of gates

for which only one set of � computations is performed as \chains". We now de�ne a simple chaining

technique that stores � values from only one source, hence we call it \1-chaining".

For 1-chaining a graph G(V;E) we preprocess it to get a set of chains 
 = f!1; !2 : : : !j
jg such

that every vertex in the graph is included in exactly one chain, i.e.

!i \ !j = ; 8i 6= j and !1 [ !2 [ : : : !j
j = V

Each chain !i itself is an ordered list (of size j!ij) of vertices in the graph, i.e., !i =< !i1; !
i
2 : : : !

i
j!ij >.

Thus !ij is the j
th gate in the ith chain. The �rst gate !i1 in a chain !i is called its head, and all

gates in a chain except the head must have only one fanout, i.e., jFO(!ij)j = 1 8i and 8 j > 1. The

gates in a chain are ordered such that a gate is the fanout of any gate appearing after it in the chain,

i.e.,

e!i
j+1!

i
j
2 E 8i and 1 � j < j!ij

We only need to obtain the � values from the gates that are at the head of a chain, i.e., we only

need to compute the values �(!i1; u) 8u 2 V and 1 � i � j
j. For all other gates the � values can be
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obtained by adding the re-weighted edge weight to the � values from its fanouts, i.e.,

�(!ij+1; u) = �(!ij ; u) +w0(e!ij+1!
i
j
) 8u 2 V and 1 � j < j!ij and 1 � i � j
j

Notice that for a gate that is not at the head of any chain we obtain the � values by a simple

addition, instead of a full run of Dijkstra's algorithm. Since we need to run Dijkstra's algorithm only

for gates at the head of a chain we need to perform only j
j single-source shortest path computations

(j
j � jV j). Thus our goal in obtaining these chain is to reduce there number, i.e., minimize j
j. In

the worst case where every gate in the circuit has more than one fanout, each chain contains only

one gate, and j
j = jV j, then we need to perform the complete Johnson's algorithm. The idea of

chaining can be further generalized. Conceptually there are two extremes of chaining:

� No information about the � values is stored, e.g., repeated single-source shortest paths algo-

rithms like Johnson's algorithm with O(jV j) memory requirements

� All information about the � values is stored, e.g., direct all-pairs shortest path algorithms like

Floyd Warshall algorithm [23] with O(jV j2) memory requirement.

The 1-chaining described above is an intermediate method in which we save � values from only one

source. Conceptually we can de�ne k-chaining as a method that stores � values from k appropriately

chosen sources. This k-chaining in general will require O(k � jV j) memory and careful selection of the

k sources, and is not considered in this work.

We now describe a simple preprocessing technique to obtain 1-chaining. This preprocessing step

�rst assigns a label to each gate which indicates the number of gates that can reuse its � computation.

All the gates have their labels initialized to 0. These labels are updated by a relaxation step, in which

every single-fanout gate relaxes the label of its fanout gate by increasing it (to its own label plus

one). Since multiple-fanout gates can not reuse � computations of their fanout gates in 1-chaining

they do not relax the labels of their fanout gates. This relaxation process is �nite because we cannot

have cycles containing only single-fanout gates. The chains are then formed by initializing a queue

with all multiple-fanout gates. Every gate in this queue starts a new chain. For the gate at the

end of the chain, we process the fanin gates, adding the single-fanout gate with the highest label

(amongst the fanins) to the chain; all other gates in the fanin are added to the queue. The fanins

of the gate now at the end of the chain are processed similarly, until no more gates can be added to

this chain. This procedure is repeated until the queue is empty.

We found that, on an average we could reduce the time spent in generating the period constraints

by about 50% using the simple 1-chaining technique described above. The time spent in preprocessing

to obtain 1-chaining is very small, making it a useful procedure even if only a small number of gates

have single fanout. As a side note, Rule 7 must be modi�ed for use with chaining to ensure it holds

for all gates that reuse the � computation.
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5.3.3 Additional Constraint Pruning Techniques

We now present some more techniques to remove redundant period constraints. Consider three gates

a, b and c, such that gate b lies on the path from gate a to gate c.

If gate b is a fanin of gate c then we have

C1 : r(a)� r(b) � �(a; b)

C2 : r(b)� r(c) � w(ebc)

C3 : r(a)� r(c) � �(a; c)

If �(a; b) + w(ebc) � �(a; c) then constraint C3 is redundant and can be dropped. This leads us to

the following rule

Rule 8 If b and c are two gates reachable from gate a, such that gate b is a fanin of gate c and

�(a; b)+w(ebc) � �(a; c) then the period constraint from gate a to c is redundant and can be dropped.

Since we generate the period constraints from one gate (say gate a) at a time, both �(a; b) and

�(a; c) are available in the same iteration. Further because gate b is a fanin of gate c the value

w(ebc) is available directly from the circuit graph. Therefore Rule 8 can be e�ciently applied to drop

redundant period constraints as they are generated. This reduces the space (memory) requirement

of the period constraints.

If gate b is a fanout of gate a then we have

C4 : r(a)� r(b) � w(eab)

C5 : r(b)� r(c) � �(b; c)

C6 : r(a)� r(c) � �(a; c)

If w(eab) + �(b; c) � �(a; c) then constraint C6 is redundant and can be dropped. This leads us to

the following rule.

Rule 9 If gate b is a fanout of gate a and gate c is some gate reachable from gate b, then if

w(eab) + �(b; c) � �(a; c) then the period constraint from gate a to c is redundant and can be

dropped.

To apply Rule 9 we require the value of �(b; c) and �(a; c). Since we generate period constraints

from one gate at a time, the period constraints to a gate (c) from two di�erent sources (gate a and

b) cannot be e�ciently accessed. Thus it would appear that Rule 9 cannot be e�ciently applied.

However because of the reuse of � computation described in Section 5.3.2, Rule 9 can be e�ciently

applied if gate a has only one fanout (gate b). This is possible because �(a; c) is derived from �(b; c),

and hence both are available when the period constraint from a to c is being generated. Thus we

can drop redundant period constraints from gate a as they are generated.

Rule 4 is valid only in presence of the bounds and it prunes the constraint sets because the

information in these bounds make some constraints redundant. Rule 8 and Rule 9 on the other hand
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do not depend on bounds and, they prune the period constraint set because of the discrete nature

of the � values. Rule 8 and Rule 9, can be generalized to include implication by more than two

constraints; these generalized rules will, however, be computationally expensive to apply.

6 Experimental Results

Table 1: Quality of Retiming for Single Phase Circuits

Circuit jGj Period # Latches CPU time
Pi Ps Pr j	ij j	pj j	aj Tperiod Tarea

s3384 1,685 84.0 38.5 38.5 183 326 164 0.23s 2.34s

s4863 2,342 116.0 59.0 59.0 104 254 114 0.22s 4.94s

s5378 2,779 48.0 48.0 48.0 179 263 143 0.21s 2.99s

s6669 3,080 118.7 49.0 49.0 239 472 278 0.56s 4.09s

s13207.1 7,791 127.0 120.0 120.0 627 890 446 1.09s 13.94s

s15850.1 9,617 187.0 147.0 147.0 527 869 533 1.84s 38.26s

s35932 16,065 77.0 71.0 71.0 1728 2076 1795 2.81s 63.21s

s38584.1 19,253 125.0 118.0 118.0 1426 3298 1427 4.10s 1m:49.76s

s38417 21,370 68.7 56.0 56.0 1564 2436 1360 4.20s 5m:28.60s

myex1 28,946 256.0 216.0 216.0 1953 4332 1958 8.75s 5m:32.08s

myex2 40,661 104.0 97.0 97.0 2990 6197 2763 9.28s 23m:14.83s

myex3 56,751 137.0 119.0 119.0 4718 8918 4533 14.24s 1h:02m:22.48s

Table 2: Quality of Retiming for Two Phase Circuits

Circuit jGj Period # Latches CPU time
Pi Ps Pr j	ij j	pj j	aj Tperiod Tarea

s3384 1,685 126.0 38.5 38.5 366 638 337 0.40s 2.56s

s4863 2,342 117.0 59.0 59.0 208 473 234 0.29s 5.36s

s5378 2,779 48.0 48.0 48.0 358 480 286 0.29s 3.22s

s6669 3,080 178.0 49.0 49.0 478 960 542 0.76s 6.17s

s13207.1 7,791 127.0 120.0 120.0 1,254 1,795 890 1.48s 18.61s

s15850.1 9,617 187.0 147.0 147.0 1,054 1,777 1,041 2.53s 45.82s

s35932 16,065 77.0 71.0 71.0 3,456 4,144 3,523 3.98s 67.26s

s38584.1 19,253 125.0 118.0 118.0 2,852 7,558 2,852 5.02s 1m:57.52s

s38417 21,370 103.0 56.0 56.0 3,128 4,938 2,766 30.45s 6m:26.99s

myex1 28,946 256.0 216.0 216.0 3,906 9,065 3,891 10.08s 6m:37.48s

myex2 40,661 128.0 97.0 97.0 5,980 13,820 5,551 11.25s 31m:16.52s

myex3 56,751 137.0 119.0 119.0 9,436 17,019 9,041 17.46s 1h:19m:43.07s

We performed retiming on the complete ISCAS-89 benchmark suite, but present results only on

the larger circuits. Due to unavailability of large circuits we combine circuits from the ISCAS-89
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benchmark suite to obtain circuits (myex1 through myex3) with up to 56,000 gates. We present re-

sults for both minarea and minperiod retiming on single phase and two phase circuits. The presented

results are for a duty cycle and phase ratio of 50%. In absence of delay information in the ISCAS-89

circuits we assign random delay values (between 1.0 and 20.0 units) to each gate. As in [13] we

convert the edge-triggered circuits in ISCAS-89 benchmark to a k phase level-clocked circuits by

replacing each FF by k latches.

Table 3: Reduction in the Size of LP for Single Phase Circuits
Circuit Gfx Favg # Variables # Constraints

Minaret-L Original Rvariables Minaret-L Original Rconstraints

s3384 9.18% 2.59 1,988 2,166 8.22% 33,103 761,365 95.65%

s4863 17.28% 1.21 2,497 2,995 16.63% 32,880 5,481,911 99.40%

s5378 25.50% 1.09 2,728 3,664 25.55% 17,121 4,595,645 99.63%

s6669 26.38% 0.98 3,089 4,100 24.66% 14,267 1,923,524 99.25%

s13207.1 19.97% 3.00 7,449 9,180 18.86% 45,563 22,908,799 99.80%

s15850.1 23.46% 1.88 8,813 11,332 22.23% 64,283 39,493,334 99.84%

s35932 8.43% 2.66 20,071 21716 7.58% 145,978 130,080,328 99.89%

s38584.1 14.21% 2.20 20,501 23,390 12.35% 118,771 293,482,797 99.96%

s38417 1.51% 4.66 25567 25,923 1.37% 1,289,378 149,492,588 99.14%

myex1 13.27% 2.32 30,287 34,417 12.00% 142,525 504,055,977 99.97%

myex2 4.25% 4.34 47,409 49,214 3.67% 1,608,132 819,701,299 99.80%

myex3 1.36% 5.19 69,546 70,414 1.23% 3,608,210 1,624,913,333 99.78%

Table 4: Reduction in the Size of LP for Two Phase Circuits
Circuit Gfx Favg # Variables # Constraints

Minaret Original Rvariables Minaret Original Rconstraints

s3384 8.15% 5.22 2,006 2,166 7.39% 55,980 761,365 92.65%

s4863 10.51% 2.30 2,706 2,995 9.65% 72,451 5,481,911 98.68%

s5378 19.32% 2.23 2,970 3,664 18.94% 31,765 4,595,645 99.31%

s6669 10.04% 1.92 3,735 4,100 8.90% 20,841 1,923,524 98.92%

s13207.1 17.57% 6.25 7,656 9,180 16.60% 55,395 22,908,799 99.76%

s15850.1 21.60% 3.81 9,013 11,332 20.46% 69,142 39,493,334 99.83%

s35932 7.27% 5.07 20,264 21,716 6.69% 189,068 130,080,328 99.85%

s38584.1 13.78% 4.39 20,590 23,390 11.97% 127,488 293,482,797 99.96%

s38417 0.87% 9.43 25,735 25,923 0.73% 2,446,798 149,492,588 98.36%

myex1 12.63% 4.70 30,489 34,417 11.41% 154,603 504,055,977 99.97%

myex2 1.52% 8.72 48,560 49,214 1.33% 3,638,182 819,701,299 99.56%

myex3 0.67% 10.41 70,000 70,414 0.59% 8,207,036 1,624,913,333 99.50%

Table 1 and Table 2 present the quality of retiming for single phase and two phase circuits

respectively. For each circuit the number of gates jGj, the initial clock period Pi, the optimal clock

period with skews at end of Phase A, Ps, and the �nal clock period after retiming, Pr, is presented.

In all of our experiments retiming is able to achieve the same clock period as skew optimization. This

is possible due to the transparent nature of the latches and underscores the usefulness of retiming
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level-clocked circuits.

We also show the area cost in terms of number of latches in the initial circuit j	ij, the circuit

after minperiod retiming j	pj, and the circuit after constrained minarea retiming with Pr as the

target period j	aj. For almost all circuits minarea retiming reduces the number of latches j	aj in

the circuit by a factor of two to three as compared to minperiod retiming j	pj, even though both

retime the circuit for the same clock period Pr. This shows the importance of minarea retiming.

The execution time in seconds on a DEC AXP system 3000/900 workstation, with 256M RAM

are shown for both minarea retiming Tarea and minperiod retiming Tperiod. These CPU times include

the time spent in all tasks required for retiming except parsing the input circuit �le, and highlight the

e�ciency of our techniques. The CPU times for minperiod retiming Tperiod shown here are less than

those reported in [15] for edge-triggered circuits due to the use of the simpler procedure presented

in Section 4.2 for latch relocation in Phase B. The CPU time for minarea timing Tarea was heavily

dominated (> 90% for large circuits) by the time required to generate the LP, this emphasizes the

importance of using e�ciency-enhancing techniques for generating the LP, e.g., chaining, Rule 7,

and Theorem 6.

Table 3 provides a closer look at the reduction in the size of LP for minarea retiming for single

phase circuits, while Table 4 has results for two phase circuits. The size of the LP is shown in terms

of the number of variables and the number of constraints. Original represents the traditional LP of

Equation (15) used in [13] while Minaret-L represents the reduced LP of Equation (19). Rvariables

and Rconstraints give the percentage reduction in the number of variables and constraints respectively,

due to the pruning techniques presented in this work. Also presented are two metrics on the circuits:

Gfx the number of gates found to be �xed and Favg the average exibility, i.e., the average values

of (Uy � Ly) over all gates in the circuits. The number of variables include both gate and mirror

variables and hence the reduction in variables can be di�erent from Gfx which does not include

mirror vertices. High Gfx and low Favg indicates less mobility or exibility in the circuit, yielding

higher percentage reduction in the number of constraints, and faster minarea retiming. It can be

seen that up to three orders of magnitude reduction is obtained in the number of constraints by

using Minaret-L, e.g., for one phase circuit myex3 the number of constraints reduce from about 1.6

billion to only 3.6 million. The number of unpruned constraints grow at the rate of O(jGj2) and our

pruning techniques reduce this rate of growth signi�cantly.

Although the bounds on the r variables help signi�cantly in reducing the CPU time for minarea

retiming, the time spent in obtaining these bounds is an insigni�cant fraction (less than half a

percent) of the total CPU time for minarea retiming. Amongst single phase and two phase circuits

the single phase circuits have less exibility, and a much smaller LP than two phase circuits.

7 Conclusion

E�cient algorithms for both minperiod and minarea retiming of large level-clocked circuits have

been presented. The entire ISCAS-89 benchmark suite could be retimed in minutes. The chief
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reason for the e�ciency of this minperiod algorithm is that it uses the retiming skew relation to map

the problem of retiming level-clocked circuits to the much simpler problem of retiming edge-triggered

circuit. This enabled us to greatly speedup the process of performing binary search for the optimal

clock period. This is possible because we create a potentially small and sparse constraint graph,

only once rather than in each step of the binary search as done by traditional methods [13,14]. The

second phase of minperiod retiming is fast because latches do not have to be moved across a large

numbers of gates during retiming.

The minarea retiming algorithm is made practical for large circuits by utilizing the retiming-

skew relation, and several other pruning techniques (Rule 4, Rule 8 and Rule 9) to reduce the LP in

Equation (15) to a much smaller LP in Equation (19), without sacri�cing any optimality. A reduction

of two to three orders of magnitudes in the number of constraints is obtained for most circuits. The

use of Theorem 6, Rule 7, and chaining, greatly speed up the period constraint generation making

the overall algorithm very e�cient.

In summary, the contributions of this work, which applies retiming-skew relation for fast minarea

and minperiod retiming for level-clocked circuits are the following:

� It shows that in practice, large level-clocked circuits can be retimed in reasonable runtime.

� It handles level sensitive latches like edge triggered FF's, thus avoiding a complicated formu-

lation that is forced to handle critical path propagation over several latches. This also avoids

the need of generating the constraint graph for every point in the binary search, which is

necessitated by the fact that critical paths change with the clock period [14].

� It provides a conceptually simpler technique than [15] for reducing the GDT's in Phase B of

minperiod retiming which can also be applied to edge-triggered circuits.

� It provides e�cient techniques for generating and pruning the minarea LP.

Some design methodologies may allow a small amount of skew at the FF's. The algorithms

presented in this work can also be used to solve the interesting problem of optimizing edge-triggered

circuits which allow some skew (less than a given maximum skew magnitude) at the FF's, thus taking

advantage of this allowable skew to yield better optimization.

We note that the concept of retiming-skew relation has been used earlier for e�cient retiming of

edge-triggered circuits in [15] and [16]. However, the complexity added by the transparent nature

of latches makes the extension to level-clocked circuits nontrivial. The contributions of this work

is therefore in developing and utilizing the retiming-skew relation for level-clocked circuits, and

development of e�cient generation and pruning techniques for minarea constraints. Without these

new techniques it was not possible to perform minarea retiming on the larger circuits.

We would like to point out that although this work makes it possible to retime large level-clocked

circuits, much work needs to be done to enable retiming techniques to handle practical circuit issues

like, gated clocks and precharged logic. The work in [29] described methods for applying retiming to

circuits with gated clocks and precharged logic. We believe that our method can be modi�ed along

the same lines to handle gated clocks and precharged logic, and this is a topic for further research.
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