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Abstract—The design of active array structures in analog circuits
requires careful matching to minimize the impact of variations.
This work presents a constructive approach for building these
arrays to directly incorporate shifts due to process variations,
considering systematic first-order and second order gradients;
to account for systematic layout effects, including parasitic
mismatch and layout-dependent effects due to stress; and to
ensure that the resulting layout delivers high performance. The
proposed algorithms are targeted to FinFET technologies and
are validated for multiple analog blocks in a commercial 12nm
FinFET process. The layouts generated by the proposed method
are demonstrated to provide better matching and performance
than prior methods.
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I. INTRODUCTION

Analog circuits such as amplifiers and digital-to-analog con-
verters, which are widely used in systems-on-chip (SoCs), are
very sensitive to device mismatch caused by on-chip varia-
tions. The mitigation of these effects has grown harder with
technology scaling, where complex variation patterns cause
greater unpredictability in circuit performance parameters. The
use of optimized layout structures is critical to ensure the level
of device matching that is essential for the correct functioning
of high-performance analog circuits.

A taxonomy of variations shows several sources of varia-
tions: (1) During manufacturing, process variations cause the
parameter values of active and passive devices on a chip
to be perturbed fromvtheir nominal values. Some of these
variations can be modeled deterministically as they are caused
by effects that create non-random perturbations across a die,
e.g., those due to optical proximity, lens aberration, well
proximity, strained silicon, or chemical-mechanical polishing
effects [1]. Systematic variations are dominated by linear (first-
order) and quadratic (second-order) components [2], [3], and
to reduce their impact, special layout techniques are used in
transistor and capacitor array structures. The traditional way
of canceling first-order systematic variations is through the
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use of common-centroid (CC) layout [4]: large structures are
decomposed into arrays of smaller unit cells that are arrayed
in a (typically) near-square shape. The unit cells of transistors
or capacitors that are to be matched are placed so that
their centroids coincide; under small perturbations and linear
process variations, this can be shown to cancel out the impact
of process variations [5]. Similarly, more advanced/complex
layout patterns are used to cancel the impact of nonlinear
variations, although this area is less widely studied. Although
these layout placement schemes can, in principle, minimize
the impact of systematic variations, it is difficult and time-
consuming to manually generate an optimal CC placement.
Moreover, the optimal CC placements must also be easily
routable with low wirelength, few vias, and with low mismatch
between the routing parasitics.

Other variations that affect analog circuits are not determin-
istic and are best described as random distributions (e.g., oxide
thickness variations, fluctuations in the number and locations
of dopant atoms in a transistor, or line edge roughness). Many
of these effects have been modeled, and their effects accounted
for, in the context of digital systems [6], [7], but there is
relatively less work in the area of analog circuits. Random
variations are well studied in the context of analog circuits,
with a landmark paper by Pelgrom [8] showing how their
variance is inversely proportional to device area: intuitively,
larger transistors have fewer uncorrelated variations due to
averaging over the device area.

As process technologies shrink to smaller nodes, the per-
formance of digital designs has been greatly enhanced, but
analog circuits typically perform worse at smaller nodes.
Nevertheless, due to the importance of integrating digital and
analog circuitry on a single chip, it is imperative to build
analog circuits in advanced FinFET nodes. Several variation
effects gain prominence at these nodes: in particular,
• layout-dependent effects (LDEs) that change the stress

environment of a transistor, and hence its I–V charac-
teristic, resulting in differential mismatch unless LDE-
conscious considerations are incorporated into layout;

• increased interconnect parasitics associated with the
smaller cross-sections seen in scaled technologies, and
increased via resistances that penalize wires from shifting
layers;

• lithography considerations that require wires to be routed
in the same direction within a layer (as opposed to free-
form wire direction changes from horizontal to vertical



and vice versa in older technologies), particularly in lower
metal layers; and

• electromigration (EM) effects caused by high current
densities (i.e., high currents that pass through narrow
wires): this can be mitigated by using wider wires.

Thus, designs in advanced FinFET-based technologies have
many characteristics that are different from design in more
classical bulk-based CMOS designs or BJT-based designs,
and therefore require specific consideration in developing
algorithms that are tailored to these technologies.

In the context of common-centroid transistor placement
in FinFET-based circuits, the topic of this paper, another
important consideration is the maximization of diffusion-
sharing between adjacent transistors. If the source/drain nodes
of adjacent transistors are adjacent, their diffusion regions can
be connected directly, removing the need for metal connections
that require vias (and the corresponding resistance penalty)
and consume area due to design rule spacing requirements
between vias and unconnected diffusion strips. The presence
or absence of diffusion-sharing not only reduces area, but
also determines LDEs and parasitics: therefore, maximizing
diffusion sharing, and maintaining the same diffusion-sharing
in matched transistors (i.e., matched device are constructed
so that it has the same number of diffusion breaks), ensures
close matching in performance metrics. Moreover, common-
centroid design in FinFET technologies must also account for
the rigid design rule requirements in these technologies that are
enforced due to subwavelength lithography, such as quantized
device widths and unidirectional routing in lower-level metal
layers.

In industry practice, CC patterns are typically specified
by the designer; even early versions of ALIGN [9], [10]
used the same strategy. Automated minimization of systematic
variations has attracted a great deal of research attention [5],
[11]–[22] through the use of CC techniques, many of these
approaches [11]–[14] address capacitor arrays and cannot be
directly extended to transistor arrays as they are not required to
consider transistor-specific effects such as LDEs and diffusion-
sharing. CC transistor layout is addressed in [16], [17], but
these methods consider a basic version of the problem that
does not incorporate LDE, parasitic mismatch, or diffusion-
sharing considerations. Diffusion-sharing is taken into account
(but not LDEs or parasitic mismatch) in [18], where a graph
representation of the arrayed structure, with edges joining
source nodes and drain nodes of transistors, undergoes an
Euler path discovery process for diffusion sharing, a classical
technique from digital standard-cell layout. The method enu-
merates all Euler paths to determine the best layout, which
can have considerable computation cost.

To consider higher-order variations and correlations, the
idea of dispersion was used in [15]. Intuitively, if the unit cells
of each element of an array structure are uniformly distributed
throughout the layout, the cells are “well dispersed” and face
similar noncancellable variations (e.g., quadratic variations)
when averaged over the array. A metric based on dispersion
is used to create array layouts that are common-centroid, and
yet maximize dispersion; however, the work only considered
arrays with two types of devices. Most prior works have

focused on bulk transistor technologies, without incorporat-
ing FinFET-technology-specific effects. An exception is [19],
which focused on a limited FinFET issue, gate misalignment,
creating layouts that share diffusion and attempt to maximize
dispersion; however, (a) LDEs, routing parasitic mismatches,
and EM are not taken into consideration, and (b) the methods
are specific to current mirror structures rather than general
arrays.

Further, the algorithms presented in [16]–[19] only cancel
linear systematic variations and do not optimize the placement
for second-order gradients. However, second-order systematic
variations are also important and should be minimized. For
example, a linear gradient in the threshold voltage of a long-
channel transistor across a die will result in a nonlinear
change in its drain current [15]. In [23], the authors presented
measurement results for distance-dependent variations for a
FinFET technology. The authors shown that the variations
have nonlinear component also and must be considered to
optimize performance of larger circuits. In [15], [21], the
authors presented algorithms to cancel nonlinear gradients.
However, the algorithms are only applicable for two equally
sized devices. Moreover, routing parasitic mismatch is not
considered in the proposed algorithms.

Contributions of this work. This paper creates a fast, con-
structive approach for the placement of transistor arrays in
FinFET circuits that minimizes both linear and nonlinear gra-
dients, while maximizing diffusion sharing between devices,
incorporating considerations of routing parasitic mismatch,
building layouts that minimize LDE-mismatch. The work
is an enhanced version of our earlier work in [22]. The
consideration of nonlinear gradients on top of CC layout is
a new contribution over the preliminary version, which only
considers the impact of linear gradients; this paper presents
algorithms to also minimize the impact of nonlinear gradients.
We employ a routing algorithm that optimizes for EM: this is
identical to that in [22], and therefore we do not reproduce
its description in this work. We demonstrate experimentally
that in comparison with existing approaches, the transistor
arrays placed and routed using our approach perform better in
the presence of systematic variations, LDEs, layout parasitics,
and EM-induced degradation. We show improvement in the
performance of transistor arrays compared to prior methods,
including our earlier work in [22].

The remainder of the paper describes the details of our
approach and the experimental results. Section II overviews
the sources of variation in deeply-scaled FinFET technology
nodes, and is followed by a description of our constructive
placement algorithm. The base CC approach that minimizes
linear gradients is described in Section III and is followed
by an enhancement in Section IV that also reduces (typically
smaller) second-order gradients by refining the placement,
while maintaining its CC nature. Experimental results on a
set of FinFET-based array structures, which constitute larger
analog circuits, are presented in Section V, and we close the
paper in Section VI.



II. BACKGROUND

A. On-chip Variations

As stated in Section I, process variations may be either
systematic or random in nature: systematic variations may
be modeled by linear or nonlinear deterministic gradients,
and random variations are represented by distributions whose
statistics are described by [8]. In this section, we summarize
these variations.

1) Spatial Variations: Analog circuit performance is typ-
ically predicated on reducing the differential variability be-
tween devices, often referred to as mismatch. One of the
most widely-used transistor variation model in analog design
was proposed by Pelgrom [8] in the 1980s, which quantifies
the mismatch in a parameter P of two devices as the sum
of two random variables corresponding to the uncorrelated
component, u, and a spatially correlated component, s. The
variance of the mismatch is given by:

σ2(∆P ) = σ2
u + σ2

s (1)

where σ2
u =

A2
P

WL
; σ2

s = S2
P r

2

where AP and SP are technology-dependent proportionality
constants, W and L are the device width and length, respec-
tively, r is the distance between the devices, and σ2 represents
the variance of the corresponding random variable. Note that
the first component depends on the area of the transistor
and can be diluted by using large-sized transistors, while the
second depends on the distance between components, and
can be mitigated by layouts that reduce the distance between
devices.

2) Gradient-based Variations: An N th order gradient in
a parameter P as a function of location (x, y) on chip can
be represented using the Taylor expansion to an N th order
polynomial:

P (x, y) = P0 + C0 +

N∑
i=1

i∑
j=0

Ci,jx
jyi−j (2)

where P0 is the parameter P value at the reference location
(x0, y0), C0 is the constant, and the C are gradient coefficients.

In prior work, most approaches have considered systematic
variations to be dominated by a first-order linear gradient,
and layout patterns should be optimized to cancel these (i.e.,
using a CC layout pattern). This is because process-induced
systematic mismatch between devices is mainly caused by
lithographic and technological effects during fabrication [24].
Under conventional models, the corresponding gradients are
dominated by strong linear components. Further, even when
across-die gradients are nonlinear, since the unit cell array is
much smaller than the die size, nonlinear systematic variations
have been approximated by linear gradients [25]. However, as
we translate linear process gradients in transistor parameters
to electrical performance metrics, we find that performance
metrics vary nonlinearly with transistor parameters, resulting
in nonlinear gradient in device performance parameters. For
example, a linear gradient in the threshold voltage of a tran-
sistor across a die will result in nonlinear change in its drain
current [15], particularly in analog circuits where long-channel

devices are used to mitigate random variations. Therefore, it is
not adequate to match only linear gradients using CC layout:
nonlinear gradients should also be considered to optimize
circuit performance.

As discussed earlier, mismatch-sensitive devices in analog
circuits are divided into small unit cells. For each device pa-
rameter, P can be averaged over all the number of unit cells of
the respective device. As each unit cells is small, the gradient
in P within the unit cells can be ignored; consequently, the
parameter can be represented by the parameter value at the
center of the unit cells. For example, the average value of
parameter P for device A having sA unit cells is:

PA
avg =

1

sA

sA∑
i=1

P (xi, yi) (3)

where (xi, yi) represent the center of the unit cells.
For a set of k devices, with each device i consisting of si

segments; we denote the location of segment i of device j
as (xi,j , yi,j). For these device the criteria to cancel out the
first-order gradient can be expressed using (2) and (3):

1

s1

s1∑
i=1

xi,1 =
1

s2

s2∑
i=1

xi,2 = · · · = 1

sk

sk∑
i=1

xi,k (4)

1

s1

s1∑
i=1

yi,1 =
1

s2

s2∑
i=1

yi,2 = · · · = 1

sk

sk∑
i=1

yi,k (5)

Equation (4) and (5) shows that the centroids of the devices
should coincide to cancel out the first order gradients (i.e., a
CC pattern must be used). For example, Fig. 1(b) shows a
CC layout pattern of a differential pair. The devices A and B
are each divided into sixteen unit cells and placed such that
the centroid coincides at C; i.e., the layout pattern will cancel
first-order mismatch between device A and B.

Similarly the criteria to cancel out second-order gradients
can be expressed using (2) and (3):

1

s1

s1∑
i=1

x2
i,1 =

1

s2

s2∑
i=1

x2
i,2 = · · · = 1

sk

sk∑
i=1

x2
i,k (6)

1

s1

s1∑
i=1

y2i,1 =
1

s2

s2∑
i=1

y2i,2 = · · · = 1

sk

sk∑
i=1

y2i,k (7)

1

s1

s1∑
i=1

xi,1yi,1 =
1

s2

s2∑
i=1

xi,2yi,2 = · · · = 1

sk

sk∑
i=1

xi,kyi,k

(8)

Note that the layout pattern in Fig. 1(b) satisfies the linear
gradient cancellation requirements in Eqs. (4) and (5), but not
(6)–(8). An alternative layout pattern for the differential pair,
shown in Fig. 1(c), satisfies (4)–(8); i.e., the layout pattern will
cancel both first-order and second-order mismatch between
devices A and B.

In the example above, the special layout patterns minimizes
the impact of systematic variations for this structure, but
for a general structure, it is difficult and time-consuming to
generate an optimal layout placement manually. Moreover,
the placements must also be routing-friendly: for example,
resistive parasitics at the terminals of device A and B in a



Figure 1: (a) A schematic of a differential pair. (b) A CC pattern
to cancel first-order gradients. (c) A CC pattern to cancel first- and

second-order gradients.

differential pair (Fig. 1(a)) impact the transistor transconduc-
tance, and should be small and matched. This can be achieved
by considering routing parasitics while generating the optimal
placements for systematic variations cancellation.

B. Layout-Dependent Effects

At advanced technology nodes, LDEs [26]–[28] induce shifts
in transistor performance parameters stemming from relative
position in the layout. The most common LDEs (Fig. 2) are
discussed next.

Figure 2: Layout-dependent effects.

Well proximity effect (WPE) At nanoscale CMOS nodes, to
minimize the latchup effect high-energy ions are used to create
a deep retrograde well profile [28]. However, the high-energy
ions scatter at the edge of photo resist and change the doping
profile that modifies Vth of a device based on its distance from
the well edge. This effect is commonly knows as WPE [28].
The well spacing is shown for device B in Fig. 2 (b). The
WPE induced mismatch can be minimized by keeping well
edges far from devices or by maintaining equal well spacing
for the devices to be matched.

Process-induced stress has been intentionally used at
nanoscale nodes to improve a transistor performance. How-
ever, the improvement depends on a device layout and its
proximity, therefore, result in LDEs. The main LDEs due to
the stress are as follows:
Length of diffusion (LOD) One of the most significant
LDEs is caused by LOD effect [29], whereby the stress on
a transistor, and hence its Vth, varies with the length of the
diffusion region. The impact of LOD [29] is described by two
parameters, SA and SB, the distances from poly-gate to the
diffusion/active edge on either side of the device. For a device
of gate length Lg , and n unit cells [30]:

∆Vth ∝ 1

LOD
=

n∑
i=1

(
1

SAi + 0.5Lg
+

1

SBi + 0.5Lg

)
(9)

Fig 2(a) shows SA and SB parameters for a unit cell of
device A and B. Matched devices must have same values of
SA and SB to match their threshold voltage shift, ∆Vth.
Oxide definition (OD) spacing and width Spacing between
the OD regions (active areas), shown in Fig. 2(b), changes
stress induced in a transistor; therefore, Vth varies as a function
of OD spacing [26]. The effect is also known as oxide spacing
effect (OSE). Moreover, stress induced in a transistor varies
with the OD width (active area width). These effects can
be avoided by maintaining same OD width and spacing for
devices to be matched. For analog cells a unit cell based
approach is used in which devices to be matched are divided
into unit cells, therefore, same OD width is maintained for
different devices. Further, the same OD spacing is used across
unit cells. Moreover, the unit cells are placed such that devices
to be matched have same number of diffusion breaks (i.e., OD
breaks).
Gate pitch Stress induced in a transistor is also a function of
gate pitch or poly pitch [26]. Gate pitch is shown in Fig. 2(b)
for device A. As gate pitch increases the volume of the stressor
material around the poly increases, this results in increased
induced stress in the transistor channel, consequently, Vth

varies. In analog cells, the effect is minimized by using a
same poly pitch for devices to be matched.

In this work, we use a unit cell approach that is designed to
cancel out all LDEs except LOD and WPE. Specifically, the
gate/poly pitches are uniform for the analog blocks we place in
CC; by construction, the unit cell approach ensures that the OD
width is uniform; the y-direction OD spacing (OSE) is uniform
for each transistor due to the use of a row-based unit cell
placement approach, and the x-direction spacing is uniform
due to diffusion-sharing. Therefore, we focus on optimizing
LOD and WPE mismatch through the use of dummies and
using placement techniques.

C. Parasitics

Parasitics are critical in analog layouts and can degrade the
circuit performance considerably and also cause circuit failure.
Nodes can be sensitive to resistive or capacitive parasitics
or both. Typically, in nanometer-scale technology nodes, the
resistivity of the lower metal layers is very high [31], [32].
Moreover, uni-directional routing for lower metal layers results
in increased parasitics due to an increased number of vias.
Hence, resistance parasitics tend to dominate at the analog
cell level. In current mirrors, these routing parasitics can
cause mismatch in the source voltage of matched devices
and may result in a current ratio shift. In differential pair
circuits, these parasitics affect the transconductance of the
circuit (Gm) which can further degrade the performance of
the analog circuit such as the gain and bandwidth of an
operational transconductance amplifier (OTA) [33]. Therefore,
it is important to place transistors in such a way that routing
length is reduced. Moreover, as mentioned earlier, diffusion
breaks can also result in increased wire and via parasitics, and
our approach explicitly attempts to minimize the number of
diffusion breaks.



Figure 3: (a) A PMOS cascoded load and (b) its corresponding
graph.

III. PLACEMENT AND ROUTING OF ARRAY STRUCTURES
CONSIDERING LINEAR GRADIENTS

In this section, we develop a constructive CC placement
algorithm for the transistor-based building-block cells that
are commonly used in analog circuits (e.g., current mirrors,
differential pairs, cascoded differential pair, cascoded load,
etc.), which we will refer to as “analog cells”. We begin with
an explanation of the graph representation of analog cells in
Section III-A, followed by a detailed explanation of the CC
placement algorithm in Section III-B.

A. Graph Representation of Analog Cells

We represent the transistor netlist of an analog cell as a
graph, G(V,E). The set of vertices V represents nodes in
the schematic/netlist, and the set of edges E corresponds to
source-drain connections of the transistors, where the number
of edges for a device is equal to the number of unit cells for
the device. Fig. 3(a) shows the schematic of a PMOS cascoded
load and its corresponding graph. The cascoded load has four
devices, where devices A and D have two unit cells each, while
B and C have one unit cell each. The corresponding graph is
shown in Fig. 3(b).

B. Common-centroid Placement

In Algorithm 1, we present a procedure for placing the devices
in an analog cell in CC pattern. In addition to canceling out
systematic process variations in the devices, which is ensured
by CC placement, the algorithm optimizes the area and
source/drain parasitics of the layout by maximizing diffusion-
sharing and incorporating LDEs. The inputs to the algorithm
are the analog cell netlist, listing the number of unit cells for
each device, and the unit cell aspect ratio (K).

The algorithm consists of four steps: (1) a preprocessing
step that handles devices with an odd number of unit cells
to reduce the problem to one with even unit cells for each
device: this allows us to place half of the layout (which now
has an integer number of cells) in CC fashion and reflect it to
create a full CC layout; (2) an aspect ratio calculation step
that determines the number of rows and columns of the array
to keep the layout as close to a square as possible; (3) and
(4) two placement steps for the unit cells for, respectively,
the odd-numbered cells extracted in step (1), and for the half-
layout for the remainder of the cells, which is then reflected
about the CC point to build the full layout.

Next, we explain these four steps in detail for the current
mirror bank in Fig. 4. Fig. 4(a) shows a schematic of the

Figure 4: The application of the proposed common-centroid
algorithm on a current mirror bank. (b) is the graph for the

schematic with Mhalf .

example circuit consists of five devices, A, B, C, D, and E,
whose multiplicity matrix M = [2, 2, 4, 8, 8] represents, in the
same order, the number of unit cells of these five devices. The
algorithm proceeds through the following steps:
Step 1: Preprocessing First, the list of devices with an odd
number of unit cells in M is stored in a list U (line 4).
These odd unit cells will be divided into half-cells (i.e., cells
with the same height as unit cells, but with half the active
width compared to the unit cells). This transformation ensures
that the number of unit cells is even for all devices, thus
enabling CC layout. However, since these half-cells cannot
share diffusion with other “full-cells” and must be placed at
the edges of the layout matrix, X , we add them to a list, U ,
of cells that must be at the edge of X .

Next, the remaining unit cells are divided in two halves and
stored in the list Mhalf (line 5). In the succeeding steps, we
will first place the unit cells in Mhalf in the matrix X in the
lower half of the array; when the matrix has an odd number of
rows, the left half of the middle row is also populated. Later,
in Step 5, we will reflect this placement to the other half of
the matrix through the CC point.



Algorithm 1 Common-centroid placement of analog cells

1: Input: Analog cell netlist; Unit cell height to width ratio, K; Device size vector
M = [M1,M2, · · · ,MN ], where, Mi is the number of unit cells for device i

2: Output: Common-centroid placement X in an array of size r × q.
3: // Step 1: Preprocessing
4: U ← list of Mi with odd unit cells
5: Mhalf ← [⌊M1/2⌋, ⌊M2/2⌋, · · · , ⌊MN/2⌋]
6: // Create layout for half the matrix; Reflect other half around CC
7: Create netlist graph G(V,E), use Mhalf for edge multiplicities
8: for i = 1 to N do // Over all devices
9: if Mhalf [i] is odd ∧ [(deg(Mi,source)==Mhalf [i]) ∨

10: (deg(Mi,drain)==Mhalf [i])] then
11: U.add(Mi) // Add odd unit cell of Mi in U
12: Mhalf [i] = Mhalf [i]− 1
13: end if
14: end for
15: // Step 2: Aspect ratio r × q calculation
16: r = Round

(√∑
M/K

)
// Row calculation

17: if len(U) is odd and r is even then
18: r = r + 1
19: end if
20: q = ⌈

∑
M/r⌉ // Column calculation

21: q = 2⌊ q+1
2 ⌋ // Make column even

22: Calculate common-centroid point (CX , CY ) = ( r2 , q
2 )

23: // Step 3: Placement of devices in List U
24: if len(U) is odd then
25: X[CX ][CY ] = U [len(U)] // Place the last element of U
26: U.delete(len(U))
27: end if
28: t = len(U) // length of list U
29: n← 1 // Counter
30: for i = 0 to ( t

2 − 1) do // Place cells in U at boundary
31: X[n ∗ r

2 − i][n] = U [1] and X[n ∗ r
2 − i][q + 1− n] = U [2]

32: U.delete(1, 2)
33: if (n ∗ r

2 − i− 1) == 0 then
34: n = n + 1
35: end if
36: end for
37: // Step 4: Placement of devices in List Mhalf

38: Sort Mhalf in ascending order; set Mtemp = Mhalf

39: for i = ⌈ r2 ⌉ to 1 do // Over half rows
40: Z = 1 // If Z = 1, a cell is placed at the left of CC
41: Zl = CY and Zr = CY + 1 // Left and right counters
42: while Row i is not filled do
43: Ratio = [k/l for (k, l) in (Mtemp,Mhalf )]
44: if Z == 1 then // Place cell at the left of the CC
45: Select MX which can share the diffusion region
46: with device at X[i][Zl + 1] and have maximum Ratio
47: if MX == X[j for j in ( r

2 ,
r
2 − 1, · · · , i− 1)][Zl] or

48: MX == X[j for j in ( r
2 ,

r
2 − 1, · · · , i− 1)][Zr] then

49: // MX already placed in the column
50: Go to line 46 and select another MX

51: // To minimize LOD mismatch
52: end if
53: X[i][Zl] = MX

54: Zl = Zl − 1 and MX = MX − 1
55: else // Z=0, place cell at the right of the CC
56: Select MX which can share the diffusion region
57: with device at X[i][Zr − 1] and have maximum Ratio
58: if MX == X[j for j in ( r

2 ,
r
2 − 1, · · · , i− 1)][Zr] or

59: MX == X[j for j in ( r
2 ,

r
2 − 1, · · · , i− 1)][Zl] then

60: // MX already placed in the column
61: Go to line 57 and select another MX

62: // To minimize LOD mismatch
63: end if
64: X[i][Zr] = MX

65: Zr = Zr + 1 and MX = MX − 1
66: end if
67: if (r is even ∨ i ! = r

2 ) then
68: Z = Z
69: end if
70: end while
71: end for
72: // Step 5: Postprocessing
73: Reflect the remaining half devices around CC in X
74: Calculate ∆V max

th,LOD using (9) between two devices
75: Calculate # of dummies using (9) to ensure ∆V max

th,LOD < ε · Vth

To place this half, a graph G(V,E) is created for the unit
cells in Mhalf (line 7): note that the number of edges here is
same as the number of unit cells in Mhalf . A graph for the
current mirror bank testcase is shown in Fig. 4(b). Next, the
unit cells with odd multiplicity in Mhalf are detected: these
cells must lie at the end point of an Eulerian path and can
only be placed without a diffusion break at the boundary of
the CC placement matrix, X . All such cells are added to the
list U (lines 8–14). This arises when an element of Mhalf is
odd (i.e., it must be at an end point of an Eulerian path) and
its source or drain has no other connections other than to the
devices in Mhalf . For the current mirror bank testcase device
A and B have odd number of unit cells in Mhalf , therefore,
these unit cells are added to the list U as shown in Fig. 4(c).

Step 2: Aspect ratio calculation (lines 16–22) Traditionally,
the aspect ratio of a CC layout has been chosen to be close
to a square [4], for which the maximum distance from the
origin is smaller than any other rectangle. This helps ensure
the validity of the assumption that process shifts are small and
can be approximated by a linear Taylor series approximation.
Therefore, in this step, the number of rows and columns (r×q)
of the matrix X are calculated so that a near-square aspect ratio
is obtained. The number of rows is calculated using line 16
and adjusted according to the unit cells in list U (lines 17–
19): we will elaborate on this in Step 3. Finally, the number of
columns and CC point (CX , CY ) are calculated (lines 20–22).
For the current mirror bank testcase, the array size is 4 × 6,

and CC point is at (3, 2).
Step 3: Placement of unit cells in U (lines 24–36) In this
step, the unit cells in U are placed at the boundary in X . If
the total number of unit cells is odd in U (i.e., length of U
is odd), then one of the unit cells is placed at the center of
the odd row without a diffusion break (lines 24–27); in Step
2, we had ensured that when the length of U is odd, the total
number of rows is odd (lines 17–19).

The remaining unit cells in U are placed at the boundary
of X (lines 28–36). For this, first, we initialize a counter
n (line 29), which selects a column from the leftmost and
rightmost ends of X for unit cell placement. Once the leftmost
and rightmost columns are filled, the counter is increased and
the next columns are selected (lines 33–35). For example, in
the current mirror testcase there are two unit cells in U one
each from device A and B. These are placed at the left and
right boundary location as shown in Fig. 4(c). In this case,
one column at each edge suffices; the role of the counter is to
populate a second or third column, if necessary.
Step 4: Placement of unit cells in Mhalf The unit cells
in Mhalf are sorted in ascending order and stored in Mtemp

(line 38), which represents the set of cells that are yet to be
placed. Thereafter, the unit cells are placed over half of the
rows, starting at line 39. These unit cells in each row are
placed alternately at the left/right of the CC point. The starting
location for the cells to be placed in a row is set by two
variables Zl and Zr (line 41). Initially, Zl and Zr are set to
CY and CY + 1, respectively (line 41). After placement of a



unit cell at the left (right) of the CC point, Zl (Zr) is decreased
(increased) by one and the location is updated. In other words,
Zl and Zr move to the left/right of the CC location after a cell
placement at the left/right of the CC. The cells from Mtemp are
then successively placed in a row until it gets filled (line 42).

The order in which the unit cells are populated into rows
is based on the parameter, Ratio, that is computed for each
device (line 43): this is the ratio of unplaced unit cells for
that device in Mtemp to the total number of unit cells Mhalf .
The principle is that we choose a device for placement if,
relatively speaking, a smaller fraction of its unit cells have
been placed so far. This helps ensure better dispersion of
the devices. Using this principle, the algorithm now selects
a device from Mtemp (if possible, that can share the diffusion
region) and has maximum Ratio (lines 46 and 57).

In each row, the method alternately places cells to the left
and to the right of the CC point. The Boolean counter Z is
used to enforce this by verifying whether it is 0 or 1. The
exception to this alternation is when the total number of rows
is odd and the CC placement occurs in the middle row: in this
row, the cells are placed at the left of the CC only. As we
will explain later, this left half-row will be reflected to right
half-row in Step 5 about the CC point. Thus, the Boolean
counter Z is inverted each time a unit cell is placed in a row,
except when the total number of rows is odd and cells are
placed in the middle row (lines 67–69). Uniform distribution of
devices unit cells over columns will reduce mismatch between
SA and SB parameters (shown in Fig. 2) of different devices,
and consequently will minimize LOD mismatch. Therefore,
to minimize LOD mismatch if the device has already been
placed in the column (in a different row), other devices are
prioritized over this one (lines 47–52 and 58–63).

For example, in the current mirror bank testcase, first, device
C is selected: at this point, no device can share the diffusion
region, and C is the device with the highest Ratio value. Its
placement in X is shown in Fig. 4(d). Thereafter, Ratio is
updated, and device D, which now has the largest value in
Ratio and can share the diffusion region with the device C, is
placed as shown in Fig. 4(e). Further, for the next two available
locations (as circled in Fig. 4(f)–(g)), only devices C and D can
share the diffusion, therefore, placed as shown in Fig. 4(f)–(g).
At this point, the row is filled and we move to the next row.
The procedure is repeated until all cells are placed, as shown
in Fig. 4(h)–(i).
Step 5: Postprocessing The algorithm, as explained so far,
places half of the devices (in Mhalf ) in the lower part array.
The remaining half of the devices are reflected around the CC
point in X . The reflection is carried out about a horizontal
line through the CC point. If the number of rows is odd, an
additional step is required for the row in the middle: its left
half is mirrored on to the right half to create CC symmetry.
This is illustrated in Fig. 4(j) (line 73).

Finally, the maximum threshold voltage mismatch between
two devices, ∆V max

th,LOD, due to the LOD effect is calculated
using (9). The SA/SB values for each unit cell are first
calculated from the placement, and thereafter (9) is used to
calculate ∆V max

th,LOD. The mismatch can be minimized using
dummies on the left/right of X (this will increase SA and SB

as shown in Fig. 2, and consequently will reduce ∆V max
th,LOD).

To minimize ∆V max
th,LOD within ε · Vth (ε is a user-defined

tolerance) the values of SA/SB are calculated using (9), and
the required number of dummy unit cells on the left/right of
X are calculated to meet the SA/SB criteria. WPEs are also
best addressed through the use of dummy cells that ensure a
minimum distance to the well edge.

IV. CC PLACEMENT TO MINIMIZE NONLINEAR
GRADIENTS

In this section we present a constructive approach to refine
the CC placement of our proposed algorithm to minimize the
impact of second-order gradients. In principle, the approach
is extensible to higher than second-order gradients, but in
practice it is unlikely that such an analysis is necessary in real-
world scenarios. Our approach refines the output of our CC
placement algorithm to minimize the impact of second-order
gradients while maintaining the CC nature of the placement,
and maintaining the advantages of the original CC placement
(e.g., diffusion-sharing and CC placement). The proposed
algorithm tries to meet the criteria (6)–(8) by swapping unit
cell locations within the array.

Figure 5: The application of the proposed algorithm on a current
mirror bank: (a) Input placement from the CC algorithm. (b) Initial
lists based on the x2

avg , y2
avg , and (xy)avg , and σ2 values for the

input placement. (c) Sorted list (xy)avg , and an illustration of the
layout, showing the devices that can be swapped. (d) The CC
layout, showing unit cells that can be swapped. (e) Updated

placement and the updated list (xy)avg after swapping. (f) Updated
lists x2

avg , y2
avg , and (xy)avg and their σ2 values after the

swapping. (g) Sorted list x2
avg and input placement to minimize the

component. (h) Sorted list y2
avg and input placement to minimize

the component. (i) Final output of the algorithm after reflection
around the CC point.



Algorithm 2 Placement optimization considering nonlinear gradi-
ents
1: Input: Placement Xhalf of transistors from Algorithm 1; analog cell netlist; Device

size vector M = [M1,M2, · · · ,MN ], where, Mi is the number of unit cells for
device i

2: Output: Refined placement to minimize the impact of second-order gradients
3:
4: Function DefineLists (Xhalf )
5: x2

avg ← [], y2
avg ← [], (xy)avg ← []

6: for i = 1 to N do
7: EX = 2

Mi

∑
Mi

x2
j // Average of x2 from over all unit cells of device i

8: EY = 2
Mi

∑
Mi

y2
j // Average of y2 from over all unit cells of device i

9: EXY = 2
Mi

∑
Mi

xjyj // Average of xy over all unit cells of device i

10: x2
avg .add(EX ), y2

avg .add(EY ), (xy)avg .add(EXY )
11: end for
12: σ2

T = σ2(x2
avg) + σ2(y2

avg) + σ2((xy)avg) // Optimization function
13: return σ2

T
14: EndFunction
15:
16: Function Swap (MaxList, Xhalf , U , Mhalf )
17: DevList ← [] This list will store deviation from the mean for devices
18: for k = 1 to len(MaxList) do
19: DevList.add(|MaxList[k]−µ(MaxList)|)
20: end for
21: Sort DevList in descending order
22: for i = 1 to len(DevList) do // Select device in order of max. deviation from mean
23: for j = len(DevList) to i + 1 do
24: if (DevList[i] and DevList[j] ∈ U ) OR (DevList[i] and DevList[j] ∈Mhalf )

then // belong to the same swap list
25: repeat
26: Xc = Xhalf // Make a local copy of Xhalf

27: σ2
old = DefineLists(Xc)

28: Swap the unit cells of device DevList[i] and DevList[j] in Xhalf

29: σ2
new = DefineLists(Xhalf )

30: if σ2
new ≥ σ2

old then
31: Xhalf = Xc // Restore Xhalf

32: end if
33: until no swap possible between unit cells of device DevList[i] and DevList[j]
34: end if
35: end for
36: end for
37: EndFunction
38:
39: main()
40: // Step 1: Define swap lists
41: Use Step 1 (lines 4-14) of Algorithm 1 to define swap lists U and Mhalf

42: // Step 2: Initialize (xy)avg , x2
avg , y2

avg lists; compute σ2
T

43: σ2
T = DefineLists(Xhalf )

44: Calculate σ2(x2
avg), σ2(y2

avg), and σ2((xy)avg)
45: // Step 3: Swap unit cells, update (10) for Stage 1 of Step 3
46: repeat
47: MaxList = List (out of xy, x2, y2) with the maximum value of σ2

48: Swap(MaxList, Xhalf , U , Mhalf )
49: σ2

T = DefineLists(Xhalf ) // Update lists and σ2
T

50: Calculate σ2(x2
avg), σ2(y2

avg), and σ2((xy)avg) // Stage 2 of Step 3
51: MaxList = List with the maximum value of σ2 and not used in Stage 1
52: Swap(MaxList, Xhalf , U , Mhalf ) // Stage 3 of Step 3
53: σ2

T = DefineLists(Xhalf ) // Update lists and σ2
T

54: Calculate σ2(x2
avg), σ2(y2

avg), and σ2((xy)avg)
55: MaxList = List not used in Stages 1 and 2
56: Swap(MaxList, Xhalf , U , Mhalf )
57: until no swap possible in the current iteration
58: // Step 4: Postprocessing
59: Use Step 5 (lines 73–75) of Algorithm 1

For a given cell netlist with the number of unit cells listed
for each device, the input to the algorithm is the symmetric
half placement pattern from our CC algorithm, generated after
Step 4 of Algorithm 1. We will explain the algorithm using
half of the pattern, Xhalf . This approach refines the CC
layout of Xhalf in four steps: (1) while maintaining the CC
property of the layout, we generate swap lists of candidate
unit cells that may be swapped to reduce the impact of
nonlinear gradients; (2) we determine an objective function
that quantifies the impact of nonlinear gradients; (3) we choose
cells from the swap list that should be exchanged to reduce

the magnitude of the objective function; and (4) we perform
a final postprocessing step that reflects Xhalf about the CC
point to obtain the full CC layout.

We continue with the example from Fig. 4(a)), and begin
with Xhalf as shown in Fig. 5. The four steps of the algorithm
are described below for this example:
Step 1: Creating swap lists. (lines 40–41) Since the main
idea of our approach is to swap the unit cells of devices to
meet the criteria in (6)–(8) in order to minimize the impact
of second-order gradients, we create a list of devices that are
good candidates for swapping. These candidates are chosen so
as to preserve the good properties of the CC placement (e.g.,
diffusion-sharing).

For example, in Fig. 5(a), the unit cells of A and B can
be swapped without creating a new diffusion break, and the
same is true of the unit cells of and C, D, and E. These
swap lists are the same as those created after the preprocessing
step in Algorithm 1 (i.e., lists U and Mhalf in Step 1). For
our testcase, the swap lists (i.e., devices in U and Mhalf )
are shown in Fig. 5(a). The unit cells of the devices can be
swapped only if they are in the same list as highlighted in the
same color in Fig. 5.
Step 2: Computing the objective function. Equations (6)–
(8) show that the impact of second-order gradients can be
canceled if each device has same average value of x2, y2, and
xy. Therefore, the objective function attempts to minimize the
difference between the average values of x2, y2, and xy for
all devices. We capture this objective using the variance, σ2,
in the distributions of x2, y2, and xy, over all devices, to
minimize the impact of second-order gradients based on the
following optimization objective function (line 12):

σ2
T = σ2(x2

avg) + σ2(y2avg) + σ2((xy)avg) (10)

where x2
avg, y2avg , and (xy)avg are the average values of x2,

y2, and xy, respectively, for all devices, where the average is
computed over all unit cells in each device. These lists are
created as follows (lines 6–11): for list x2

avg , for each device,
we calculate the average value of x2 from the CC point and
store the value in a list; similarly lists y2avg and (xy)avg are
created based on average value of y2 and xy, respectively.1

The above optimization criterion equally weights components
associated with x, y, and xy because for a given layout on
a specific die on a wafer, we have no further information
on which of these is most important. If such information is
available, the function can be appropriately weighted.

For example, Fig. 5(b) shows the lists x2
avg , y2avg , and

(xy)avg for our testcase. The figure also shows the variance
for each list: σ2(x2

avg) = 2.95, σ2(x2
avg) = 1.80, and

σ2((xy)avg) = 4.14.
Step 3: Swapping unit cells to optimize the objective
function. Next, we reduce the objective function (10) by
swapping the unit cells of devices. We examine the three
components of the objective function, and in each of three
stages, we choose the swap criterion to be based on the largest

1Note that these lists correspond to the variances in the coordinates over all
unit cells of each device in the circuit, and should not be confused with the
swap lists in Step 1.



of these components. For example, if σ2((xy)2avg) is the
largest component, as in our example, we first use (xy)avg as
the swap criterion; after these swaps are complete, we update
the two remaining components (here, σ2(x2

avg) and σ2(y2avg))
and choose the larger of the two as the swap criterion, and
then finally, we swap to optimize the remaining component.
These three stages are repeated iteratively until no further
improvements are possible (lines 46–57).

In each stage, we process the devices in the order of their
distance from the mean (lines 17–21). In our example, when
the swap criterion is (xy)avg , we process the device whose
unit cells are farthest from the mean of the (xy)avg list to
reduce σ2((xy)avg). For each such device, we consider swaps
with every other device on the list that has not already been
processed; obviously, the candidate device must be on the
same swap list (line 22). In our example, the devices that
is first chosen is A (ties are broken arbitrarily), and the only
other device on its swap list is B. Having selected the devices,
next we select the unit cells of the two devices that will be
swapped. Having selected the devices, next we select the unit
cells of the two devices that will be swapped (lines 25–33).
We select one or two unit cells to be swapped, minimizing the
number of additional diffusion breaks.

For our example, the unit cells of devices A and B are
highlighted in Fig. 5(c). In this case, it is clear that since they
are symmetrically placed, swapping these devices will not alter
the (xy)avg value of either device.

We then go to the next highest distance from the mean
on the (xy)avg list, which corresponds to device E on the
example and consider swaps with the unit cells of C and D,
which lie on its swap list. As an example, let us consider swaps
between the unit cells of E and D. In this case, selecting one
unit cell will create a diffusion break, and we select pairs of
unit cells for swapping. Let us consider the unit cells of E at
(2,−2), (3,−2) as candidates for swapping with unit cells of
D at (1,−1), (2,−1), as circled in Fig. 5(d). Swapping of these
unit cells reduces the value of σ2

T from 8.89 to 8.48 as shown
in Fig. 5(e). The remaining candidate swaps between the unit
cells of E and D are considered using the updated placement:
we find that no further swaps will improve σ2

T . The values of
the components of (10) are then updated (Fig. 5(f)), and the
stage using (xy)avg as the swap criterion is complete.

We then move to the next higher component of (10),
which is x2

avg , and repeat the swap procedure using this swap
criterion. As shown in Fig. 5(g), no further improvements are
achievable for this example. Finally, we move to the remaining
component, y2avg , and it is found that no swaps can improve
(10) here either.
Step 4: Postprocessing. Finally, a postprocessing step, similar
to Algorithm 1 employed. The final placement is reflected
around the CC point, and the final result shown in Fig. 5(i).
We can see from Fig. 5(i) that our algorithm reduces σ2

T from
8.89 to 8.48 (∼ 5% reduction) for this example.

V. RESULTS AND DISCUSSION

Components of analog circuits such as OTAs, comparators,
and DACs commonly contain transistor groups such as current

mirrors and differential pairs, which use CC layout techniques.
In this section, we apply our placement algorithms on a set
of analog cells: current mirror banks and cascoded differential
pairs. These algorithms are also valid for other analog cells
that are mismatch sensitive and require special layouts – cross-
coupled-pairs, differential and cascoded loads, etc. We present
a qualitative comparison of our approach with prior methods
for several circuit examples, highlighting the advantages of our
approach, and also show the post-layout simulation results for
a subset of these circuits. Our layout performs both placement,
using the methods described in this paper, and routing, using
the methods described in the precursor paper, [22].

A. Qualitative Comparison
We begin by validating our placement algorithms using test-
cases shown in Fig. 6–7. We compare our algorithms with
the algorithms presented in [19], [22]; recall that [22] is a
preliminary version of this work. The results are compared
based on four figures-of-merit (FOMs) that were discussed in
Section I and II:
(1) Tolerance of linear systematic variations: this checks

whether the placement is CC.
(2) Tolerance of systematic nonlinear variations: this checks

whether the placement can minimize nonlinear gradients
by comparing the maximum value of threshold voltage
mismatch between the devices, △V max

th , due to sys-
tematic variations only. A placement with the smaller
value of △V max

th will be better in minimizing nonlinear
gradients. We use first- and second-order gradient values
characterized from a test chip [23] to calculate △V max

th .
(3) Diffusion-sharing: this checks whether diffusion-sharing

is maximized.
(4) LDE: this considers whether the placement considers the

impact of LDE.
We consider several testcases:
Four- and five-device CMBs. In Fig. 6, three testcases with
current mirror banks (CMBs) are shown: two with four devices
and one with five devices. A critical performance metric for
a CMB is the current ratio, and it is degraded significantly
by △V max

th between the devices. LDEs and linear/nonlinear
gradient based variations are the main cause of Vth mismatch.
In our approach we incorporate these during placement by
positioning the devices appropriately and adding dummies
where necessary. Finally, diffusion-sharing is also important
for CMBs as it reduces area and output capacitance, which
will be critical for high-speed designs.

Fig. 6(a)–(c) show the layouts for the three testcases. The
placements employing our proposed approach and algorithms
in [19], [22] are also shown in the figure. We compare the
four FOMs for these approaches.
• All approaches use CC placement and routing, and hence
the results are tolerant to first-order systematic variations.
However, the algorithms in [19], [22] do not consider nonlinear
gradients.
• In all three testcases, the placement using [19] has diffusion
breaks between devices (shown by shaded cells in Figs. 6(a)–
(c)), which results in an increase in area and higher parasitic
at the corresponding nodes.



Figure 6: Testcases with (a), (b) four-device and (c) five-device
current mirror banks. The proposed algorithm is compared with the

results of [19], [22]. The shaded cells show locations where
diffusion breaks must be inserted.

• Fig. 6(a) shows a four-device CMB where M = [2, 2, 4, 8],
K = 1.3. The placement using [19] has higher parasitic due
to diffusion breaks and LDE mismatch, and will consequently
see a current ratio mismatch.
• Fig. 6(c) shows a five-device CMB, with M =
[4, 4, 4, 10, 10],K = 2, and its placements generated using
the proposed technique and the algorithms in [19], [22]. The
placement using [19] has LDE and higher parasitic. In our
approach, LDE mismatch is minimized further by adding one
column of unit cells corresponding to dummy transistors on
the left and right sides, and parasitic are less due to diffusion
sharing.
• For all three testcases, the placement from this work reduces
△V max

th due to nonlinear gradients by ∼ 2− 3× as compared
to [19], [22].
A cascoded differential pair. Finally, Fig. 7 shows placements
of a cascoded differential pair, obtained by employing our
proposed approach and that used in [18], [22]. Note that since
the algorithm presented in [19] is specific to current mirrors,
and is not applicable for this testcase; therefore, we use another
prior work presented in [18] instead. For this circuit, the
absolute and mismatch parasitic resistances are critical as they
impact the effective transconductance (Gm) and input offset.
We consider this by limiting the value of resistive parasitics.

Figure 7: Comparing the proposed algorithm with the results
of [18], [22] on a cascoded differential pair testcase.

As before, diffusion-sharing is critical as it reduces output
capacitance. We can also see that our placement from this
work reduces △V max

th due to nonlinear gradients by ∼ 2× as
compared to [18], [22].

B. Impact of second-order gradients

We now consider larger testcases to show the impact of
second-order gradients. We select six-, eight-, and ten-device
CMBs which are used in binary-weighted DACs. We compare
the value of △V max

th and the maximum percentage deviation
in current ratio compared to the ideal value for the placements
generated using each approach. As mentioned before, we
use first- and second-order gradient trends similar to those
characterized from a test chip [23] to calculate △V max

th . For
layouts optimized for LDE effects, the impact of nonlinear
gradients is the most significant contributor for large layouts.
Therefore, in this analysis, we focus purely on the impact
of nonlinear gradients on threshold voltage shift. We use the
following I–V characteristic for long-channel devices used in
CMBs to calculate the current:

ID = (β/2)(VGS − Vth)
2(1 + λVDS) (11)

where VGS is the gate-source voltage, VDS is the drain-source
voltage, β is the current factor, and λ is the channel length
modulation factor.

Table I shows a comparison of △V max
th and the maximum

percentage deviation in current ratio for six-, eight- and ten-
device CMBs for the placements generated using the proposed
approach and the algorithms presented in [19], [22]. In the
table, we also show the standard deviation of the uncorrelated
random variation for the smallest device (with four unit cells)
used in the CMBs, based on Pelgrom’s model [3]. Please note
that we did not use the technique presented in [18] for a
comparison for the testcases in Table I due to their large size.
As stated in Section I, the approach in [18] enumerates all
Euler paths in the graph. This enumeration scales poorly for
testcases with a large number of unit cells, and therefore the
method is unable to handle these testcases.

We can observe from the table that the impact of second-
order gradients increases significantly with the layout size.



The placements generated using [19], [22] have similarly high
values of △V max

th and the maximum deviation in current ratio
compared to the proposed work as shown in Table I. For
example, for a ten-device CMB the proposed work reduces
the maximum deviation in the current ratio to 1.54% which
is ∼ 14 − 17× less compared to the placements generated
using algorithms in [19], [22]. The table also shows that while
△V max

th from [19], [22] is larger than the uncorrelated random
variation, its value is reduced to be lower than the uncorrelated
random variation in our approach. For reference, we show a
six-device CMB testcase and its placements generated using
the proposed technique and the algorithms in [19], [22] in
Fig. 8.

Table I: Comparison of CMBs with nonlinear gradients.
CMB multiplicity vector M △V max

th (mV) Max. deviation in current ratio (%) Uncorrelated
Proposed [22] [19] Proposed [22] [19] random σ (mV)

[4:8:16:32:64:128] 0.14 1.66 1.67 0.15 1.84 1.90 1.34
[4:8:16:32:64:128:256:512] 0.14 6.58 5.48 0.16 7.18 6.50 1.34
[4:8:16:32:64:128:256:512:1024:2048] 1.20 25.52 16.87 1.54 26.35 21.89 1.34

The runtime of our proposed algorithm for the CMB test-
cases are shown in Table II. These runtimes are measured on
a personal computer with an Intel(R) Core i7 8665U CPU
@1.90 GHz and indicate that the method scales sublinearly
with the number of unit cells.

Table II: Runtime for the proposed algorithm for CMBs.

# devices 6 8 10
# unit cells 252 1020 4092
CPU time 8s 79s 314s

C. Post-layout Simulation Results

In the previous sub-sections, we have shown that our proposed
placement is better than the algorithms presented in [19],
[22] in the presence of second-order gradients. Here, we
show that our proposed placement is comparable to [22]
and better than [18], [19] in the presence of all variations:
linear/nonlinear systematic variations, LDEs, and routing par-
asitics. For this experiment, we use the same routing technique
as in our work [22] and compare the layouts in a commer-
cial 12nm FinFET process. Post-layout simulation results are
necessary to show the impact of LDEs and parasitics on the
layout, and these are presented for two CMBs and a cascoded
differential pair (DP) in Table III.

Table III: Post-layout simulations results for a cascoded
differential pair (DP) and two CMBs.

Specification Proposed [22] [19] [18]
Fig. 8(a): CMB1 (Schematic: M : [2: 2: 4: 8])

Current ratio 2.00:2.00:3.99:7.99 2.00:2.00:4.00:7.98 2.00:1.99:3.99:7.60 2:2.01:3.67:7.88
Max. deviation (%) –0.25 –0.25 –5.00 –8.25
Max. IR drop (mV) 1.7 1.8 4.0 3.7

Fig. 8(c): CMB2 (Schematic: M : [4: 4: 4: 10: 10])
Current ratio 4.00: 4.00: 3.99: 9.99: 10.01 4.00:3.97:3.97:9.98:9.98 4.00:4.02:4.11:9.61:10.10 4:3.64:3.61:9.39:9.48
Max. deviation (%) –0.25 –0.75 –3.90 –9.75
Max. IR drop (mV) 5.4 5.7 19.5 18.5

Fig. 10: Cascoded DP (Schematic: Gm = 825µA/V; Offset = 0V; Output capacitance (C) = 0.8fF)
Gm(µA/V) 804 764 NA 786
Offset (µV) 7 13 NA 899
C (fF) 1.26 1.30 NA 1.35

For CMB1, four-device CMB in Fig. 6(a), and CMB2, five-
device CMB in Fig. 6(c), our proposed placement is better

than in [18], [19] since it considers LDEs, has no diffusion
breaks and has better routing parasitics (due to no diffusion
breaks). In addition, our placement is comparable to [22] while
considering LDEs and parasitics and better when considering
second-order gradients (shown in the previous sub-section).
We are able to achieve current ratios close to the ideal value
while considering LDEs as shown in Table III. We also
tabulate the maximum deviation of the current ratio from the
ideal value for any device in the array and this is −0.25% for
CMB1 and CMB2.

We also show results for the cascoded differential pair (DP)
in Fig. 7 and compare the input-referred offset, Gm, and output
capacitance. The algorithms presented in [19] can only be
applied to current mirror banks, therefore, it is not applicable
to generate the placement for the cascoded differential pair.
Table III shows that our Gm and output capacitance are in a
similar range as [18], while the offset is greatly improved.

VI. CONCLUSION

This paper develops an approach for constructively creating
common-centroid layouts, accounting for linear and nonlinear
process gradients, layout-dependent effects, and minimizing
parasitics by maximimizing diffusion sharing. The approach
is applied to FinFET technology nodes to create common-
centroid layouts of arrays of unit cells of transistors. The
method is applied to several commonly-encountered analog
cells – a differential pair, current mirror banks, and a cascoded
cell – and significant improvements over prior methods are
demonstrated.
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