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Abstract—Process variations and the effect of interconnect
parasitics can cause significant perturbations in the performance
metrics of capacitive digital-to-analog converters (DACs). This
paper develops fast constructive procedures for common-centroid
placement and routing for binary-weighted and split capaci-
tor array topologies of charge-sharing DACs. Our approach
particularly targets FinFET technologies with high wire and
via parasitics: in these technology nodes, we show that the
switching speed of the capacitor array, as measured by the 3dB
frequency, can be severely degraded by these parasitics, and
develop techniques to place and route the capacitor array, for
both binary-weighted and split DACs, to optimize the switching
speed. A balance between 3dB frequency and DAC INL/DNL is
shown by trading off via counts with dispersion. The approach
delivers high-quality results with low runtimes.

I. INTRODUCTION

Charge-scaling digital-to-analog converters (DACs) (Fig. 1(a))
are widely used in analog design, and their precision, accuracy
and performance depend on building well-matched capacitor
arrays with binary-weighted capacitor ratios [1], [2]. It is
widely recognized that these ratios may be perturbed by
systematic or random mismatch and designers have long
used the common-centroid (CC) layout technique to cancel
the impact of the linear systematic mismatch [3], [4]. This
work considers the problem of CC layout for binary-weighted
capacitor arrays for DACs, taking advantage of the problem
structure to optimize DAC performance metrics. Several re-
lated works (e.g., [5], [6]) address CC layout in general, but do
not leverage the specific properties of DACs. Among methods
that specifically target DAC structures, many prior CC place-
ment methods [6]–[8] ignore the impact of routing parasitics,
which are critically important to DAC performance. Methods
that do incorporate routing considerations [9]–[11] are based
on computationally expensive stochastic search [1], [2], [9],
[11]. In this paper, we develop a set of fast, constructive
approaches to obtain routability-conscious performance-driven
CC capacitor array layout for DACs, with a special emphasis
on designing layouts for FinFET technology nodes.

One of the classical approaches for building a capacitive
DAC uses a set of binary-weighted capacitors to provide the
required capacitor ratios. For an N -bit DAC, the number
of unit capacitors is 2N : as a result, both the silicon area
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and total capacitance of a binary-weighted DAC increases
exponentially with N , causing power dissipation to rise ex-
ponentially with the number of bits [12] and resulting in
larger settling times due to the large charging time constant
required to charge/discharge the capacitors. These problems
can be addressed by using a split DAC [13], [14], in which
an additional attenuation capacitor is used to separate an L-bit
LSB capacitor array from an (N − L)-bit MSB array in the
schematic. This is depicted in Fig. 1(b), where the LSB, D1,
corresponds to the leftmost switch, and the MSB, DN , to the
rightmost switch. Let CLSB

T [CMSB
T ] is the total capacitance

from the LSB [MSB] array. The value of the attenuation
capacitor, CA, is given by

CA = (CLSB
T /CMSB

T )Cu (1)

This value is, in general, not an integer, and is typically not
a multiple of the unit capacitor used to build the MSB and
LSB capacitors. This may cause poor matching with other
capacitors. To resolve this issue [15] proposed to use a unit
bridge capacitor and removed the first capacitor from the LSB-
side array. However, this solution suffers from a 1 LSB gain
error. For metal-insulator-metal (MIM) capacitors, it has been
shown that the implementation of non-unit sized capacitors can
be handled by maintaining their perimeter to area ratio [16].

Fig. 1: Schematic circuit of a charge-scaling (a) binary, and
(b) split DAC with the kth bit set to 1 and all other bits set
to 0.

This work focuses on the layout in FinFET nodes, which



bring forth several new challenges as compared to older bulk
technologies. Although bulk technologies are generally better
for analog designs than FinFET nodes, the need for integrating
analog and digital circuitry together in the same chip forces
designers to build analog designs in FinFET nodes. These
advanced technologies result in several significant challenges
for the design of passive capacitor arrays. First, the per-unit
wire/via resistances become higher as technology nodes scale
down, and are particularly acute in FinFET nodes. Second,
lithography rules dictate that wiring in a single layer must be in
the same direction, implying that a change in routing direction
invokes the significant resistive penalty of going through a
via to another layer. Prior techniques that address older bulk
technology nodes do not face these restrictions and cannot
easily be adapted to FinFET designs. For example, the routing
detours and bends in [17], [18] incur high resistance penalties
in FinFET nodes. Third, analog design in FinFET nodes favors
Metal-oxide-metal (MOM) capacitors with high capacitance
density and low-resistance connections (going through few
vias) to the device layer, but prior efforts primarily target MIM
capacitors in the upper layers of the interconnect stack. The
high cost of going through multiple vias to reach the MIM
capacitor layer can cause significant RC-induced degradation
on the 3dB frequency at which the capacitor array can operate.
Only a few efforts [10], [11] consider CC layout for MOM
capacitors, and none address issues specific to FinFET nodes.

We summarize the chief results and novel aspects of this
paper here. First, in contrast to prior iterative/stochastic layout
generators for CC capacitor arrays, we build a fast, construc-
tive approach for generating the array layout. Our constructive
approaches present a new spiral CC layout that has very few
bends, and thus low via counts, resulting in high 3dB fre-
quencies. We also apply our approach to existing chessboard
methods, and we devise a new family of block chessboard
placements that can achieve a balance between the dispersion
advantages of chessboard layouts and the low via counts of
spiral layouts. Second, we address the layout of CC capacitor
arrays for both binary-weighted DACs and split DACs; to the
best of our knowledge, split DACs have not been addressed
in prior work. For the split DAC, we propose a method to
determine the size of the non-unit capacitor which is used
as the attenuation capacitor. Third, unlike prior work that has
focused mainly on bulk technologies, our method specifically
targets FinFET technologies, addressing the deleterious impact
of high via resistances and per-unit wire resistances. Our
capacitor array layouts are specifically designed to have few
vias, particularly for the most significant bits, which determine
the 3dB frequency. Moreover, we reduce wire resistances on
these connections through the use of parallel wires, which
effectively result in the use of wider wires while obeying the
FinFET technology requirements of allowing only quantized
wire widths. Fourth, we explore the impact of using spiral,
chessboard, and block chessboard methods on a variety of
DACs and demonstrate the impact of parasitics on 3dB fre-
quency: in particular, we show that chessboard layouts are very
constraining in FinFET technologies. Our spiral placement
approach provides large improvements in 3dB frequency over
prior work, with some penalty in the INL/DNL, and our block

chessboard approaches explore intermediate design points by
trading off 3dB frequency with INL/DNL.

II. BACKGROUND

A. Binary-weighted DACs

A digital input code is applied to the binary-weighted charge-
scaling DAC shown in Fig. 1(a)‘, which is typically used as
part of charge-redistribution ADC. This is used to sample
a fixed reference voltage, and the common terminal of the
capacitor array is connected to a unity-gain amplifier in
Fig. 1(a) to produce the analog output voltage; however, this
requires a rail-to-rail input and output buffer. If the voltages
are not rail-to-rail, as may happen in a stand-alone DAC, it
is possible to compensate for the difference by appropriately
amplifying the signal by using a switched-capacitor amplifier
with programmable gain [16]. Since our focus is on the binary-
weighted capacitor array, for convenience we consider the case
when the capacitors are connected to a unity-gain amplifier.
The black capacitors correspond to the intentionally inserted
capacitances, while those shown in blue, purple, orange, and
grey correspond to parasitic capacitances.

Fig. 2: Equivalent circuit of a charge-scaling DAC with the
kth bit set to 1 and all other bits set to 0.

For the ideal case, we assume that these parasitics are zero
and consider only the capacitors shown in black. Let Dk(i)
be the kth bit of code i; let CT and CON (i) [COFF (i)] be
the total capacitance and sum of capacitors whose bottom
plates are connected to VREF [ground] and Rk is the parasitic
resistance associated with the capacitor Ck. In a binary-
weighted DAC, Ck = nkCu, where nk = 1 for k = 0;
nk = 2k−1 for k ≥ 1. Noting that C0 = Cu is always
grounded,

CT (i) = Cu ·
(
1 + 1 + 2 + · · ·+ 2N−1

)
= 2NCu (2)

CON (i) =
∑N

k=1 Dk(i)2
k−1Cu ; COFF (i) =

∑N
k=1 Dk(i)2

k−1Cu

For perfect capacitor matching and an ideal opamp the output
voltage can be represented as,

V ideal
OUT (i) = VREF · CON (i)

CT
= VREF ·

∑N
k=1 Dk(i)2

(k−N−1)

(3)

Different routing parasitics are seen for capacitor Ci in the
CC array [19] as shown in Fig. 2: (1) top-plate to ground
parasitic capacitance, CTS

i , (2) top-plate-to-bottom-plate para-
sitic capacitance, CTB

i , (3) the bottom plate capacitance CBS
i

to ground, and (4) bottom [top] plate to bottom [top] plate
CBB

ij [CTT
ij ]. If the bottom plates [top plates] of two different

capacitors are both at VDD or both at ground, CBB
ij [CTT

ij ]
will be effectively zero, since it depends on the excitation.
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However, for the binary-weighted DAC all the top plates of
the capacitors have the same potential.

Depending on whether the bottom plate is switched to VDD

or ground, the top-plate-to-bottom-plate parasitic capacitance
CTB

i accumulates to CTB
ON or CTB

OFF , respectively. The par-
asitics associated with CTS and CTB can alter V ideal

OUT , as
shown analytically in Section III-A. Increasing the minimum
unit capacitance value Cu can reduce these effects. However,
it would increase the power consumption. Moreover, with the
increase of Cu, the layout area also increases since in N-bit
binary-weighted DAC most of the area is occupied by the 2N

unit capacitors. The parasitic capacitance associated with the
bottom-plates, does not affect DAC linearity, but affects the
load for VREF , and impact the power and 3dB frequency.
The impact of routing induced parasitics on 3dB frequency is
explained in Section III-C.

B. Split DACs

The split DAC structure, shown in Fig. 1(b), contains two
sets of switched capacitances, corresponding to the LSB array
and the MSB array. The top plates of the capacitors in each
array are connected together at two different electrical nodes
that are separated by an attenuation capacitor, CA. The LSB
and MSB arrays each consist of binary-weighted capacitors. In
the LSB array, like the binary-weighted DAC, we have Ck =
nkCu, where nk = 1 for k = 0; nk = 2k−1 for k ≥ 1, and
with C0 kept permanently grounded. In the MSB array, Ck =
nkCu, but here, nk = 2k−1−L – i.e., successive capacitors in
both the LSB and MSB array are double the value of their
predecessor, but the first capacitance in the MSB array is set
to Cu. Hence, the largest capacitance is well below that in the
binary-weighted DAC.

For a binary code corresponding to the integer input i, let
CLSB

ON (i) and CLSB
OFF (i) be the sum of capacitances whose

bottom plates are connected to VREF and ground, respectively
and RLSB

ON [RMSB
ON ] is the parasitic resistance associated with

the capacitor CLSB
ON [CMSB

ON ], from the LSB capacitive array,
and let CMSB

ON (i) and CMSB
OFF (i) denote the corresponding

values for the MSB array. Quantitatively,

CLSB
ON (i) =

∑L
k=1 Dk(i)2

k−1Cu

CLSB
OFF (i) =

∑L
k=1 Dk(i)2

k−1Cu + Cu

CMSB
ON (i) =

∑N
k=L+1 Dk(i)2

N−kCu

CMSB
OFF (i) =

∑N
k=L+1 Dk(i)2

N−kCu

The total LSB [MSB] array capacitance, CLSB
T [CMSB

T ] is

CLSB
T = CLSB

ON (i) + CLSB
OFF (i) (4)

CMSB
T = CMSB

ON (i) + CMSB
OFF (i) (5)

For the scenario where only the capacitors from LSB array
are connected to VREF or ground corresponding to the code
i, and all capacitors from the other array are connected to
ground, as shown in Fig. 3(a), we denote the output voltage by
V LSB
OUT,ideal. For the similar case where the LSB capacitors are

all grounded and the MSB array implements the corresponding
digits of code i, shown in Fig. 3(b), we denote the response
at the output as V MSB

OUT,ideal. The figures show all capacitors

Fig. 3: Equivalent circuit of a split DAC with excitations
applied to (a) the LSB array, and MSB excitations set to 0,
(b) the MSB array, and the LSB excitations set to 0. The two
cases are superposed to determine V LSB

OUT .

in the system, including the parasitic capacitances shown in
purple and grey.

The counterpart of Equation (3) is obtained by superposi-
tion, by adding the output voltages for the two scenarios above.
From Fig. 3(a), denoting VA as the voltage on the left terminal
of CA,

V LSB
OUT,ideal(i) =VA · CA

CA + CMSB
T

= VREF · CLSB
ON (i)

CLSB
T + CMSB

A

· CA

CA + CMSB
T

(6)

where CMSB
A is the equivalent capacitance of series connec-

tion between attenuation capacitor CA and the MSB capacitors
whose bottom plates are connected to the ground, i.e.,

CMSB
A =

CAC
MSB
T

CA + CMSB
T

(7)

For the second component of superposition in Fig. 3(b),

V MSB
OUT,ideal(i) = VREF · CMSB

ON (i)

CMSB
T + CLSB

A

(8)

where CLSB
A is the equivalent capacitance of series connection

between attenuation capacitor CA and the LSB capacitors
whose bottom plates are connected to the ground, i.e.,

CLSB
A =

CAC
LSB
T

CA + CLSB
T

(9)

For an applied code i, the expression for V ideal
OUT is the

superposition of the cases described in Eqs. (6) and (8), i.e.,

V ideal
OUT (i) = V MSB

OUT,ideal(i) + V LSB
OUT,ideal(i) (10)

Similar to the case of binary-weighted DACs, the parasitics
CTS and CTB associated with LSB [MSB] array can alter
V LSB
OUT,ideal [V MSB

OUT,ideal], and therefore the V ideal
OUT of the

circuit. We will further elaborate on this in Section III-B.
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Here too, increasing Cu can reduce these effects, at the cost
of increased power. The impact of various types of parasitic
capacitances on 3dB switching frequency is explained in
Section III-C.

C. Modeling variations in a DAC capacitor array

To reduce systematic mismatch, the unit capacitors Cu, which
are built as identical-sized capacitor cells (called unit cells)
that are placed in a gridded common-centroid matrix [3], [4].
Unit capacitors may be built using a range of technologies. A
MIM capacitor consists of two metal layers and a dielectric
layer. MOM capacitor structures consist of a set of metal wires
that can be connected in various configurations, e.g., alternate
polarity MOMs (APMOMs), woven, parallel stacked, or ver-
tical structures [10]. This work focuses on MOM structures in
FinFET nodes, although many ideas can be applied to MIM
structures.

Taking the origin to be at the center of an r × s CC array,
we can obtain the location (xk, yk) of a unit capacitor in row
rk and column sk by following [20] from its width and height,
W and H , and the vertical and horizontal spacing, Sv and Sh

between unit capacitors as shown below:

xk = (sk − (s+ 1)/2) (W + Sh)

yk = ((r + 1)/2− rk) (H + Sv)

1) Modeling systematic variation due to a linear gradient:
Systematic variations are typically modeled as a gradient
across the layout area [5]. At the center of the CC array, if
t0 denotes the spacing between MOM cap wires, and Cu is
the unit capacitance, then the oxide thickness at (xj , yj) is
tj = t0+γ(xj cos θ+yj sin θ). Here, γ and θ (0 ≤ θ ≤ 180◦)
are the linear oxide gradient magnitude and angle at the origin,
respectively, where γ and θ randomly differ from array to
array (as they are subject to manufacturing variability), but
are constant for a given array. A unit capacitor at (xj , yj)
thus has value Cu(t0/tj). Each capacitor value Ck is then
shifted due to systematic variations to

C∗k =
∑

j Cu × (t0/tj) (11)

If an ideal capacitor ratio, C0 : · · · : CN , shifts to C∗0 :
· · · : C∗N due to a process gradient, then the systematic ratio
mismatch is:

Msys = max
p,q∈{0,··· ,N},p̸=q

∣∣∣∣∣
(
C∗p/C

∗
q

)
− (Cp/Cq)

(Cp/Cq)

∣∣∣∣∣ (12)

2) Modeling random variations: A unit capacitor has zero-
mean random variations with variance σ2

u = A2
f/(WH) [21],

where Af is similar to a Pelgrom mismatch coefficient [22],
W and H are the width and height of the unit capacitor. The
correlation coefficient for two unit capacitors A at (x1, y1) and
B at (x2, y2) in the (r × s) CC matrix is [6], [23]:

ρAB = (ρu)
D(A,B) (13)

where D(A,B) =
(√

(x2 − x1)2 + (y2 − y1)2
)
/Lc (14)

Here 0 < ρu < 1 and Lc are process-specific parameters.

If Cp = pCu [Cq = qCu], with p [q] unit capacitors,
correlation coefficient ρpq = Cov(p, q)/(σpσq) where

σ2
p = σ2

u (p+ 2Sp); σ
2
q = σ2

u (q + 2Sq) (15)

Cov(p, q) = σ2
uSpq (16)

Sp =

p−1∑
a=1

p∑
b=a+1

ρab ; Sq =

q−1∑
a=1

q∑
b=a+1

ρab ; Spq =

p∑
a=1

q∑
b=1

ρab

III. CIRCUIT-LEVEL METRICS

In this section, we examine the impact of nonidealities due
to parasitic capacitance mismatch on performance metrics for
the binary-weighted and split DAC topologies.

The differential nonlinearity (DNL) is the difference be-
tween the ideal and nonideal step for input code 1 ≤ i ≤
2N − 1. The DNL at input code i is given by:

DNL(i) = (VOUT (i)− VOUT (i− 1)− VLSB) /VLSB (17)

where VLSB = VREF /2
N . The integral nonlinearity (INL) is

the deviation between the ideal output and the actual output
in the presence of mismatch. By definition, INL(0) = 0, and
for 1 ≤ i ≤ 2N − 1,

INL(i) =
(
VOUT (i)− V ideal

OUT (i)
)
/VLSB (18)

A. Errors in linearity metrics for a binary-weighted DAC

For a binary-weighted DAC, under nonidealities the output
voltage can be represented as [8]:

VOUT (i) = VREF · CON (i) + ∆CON (i)

CT +∆CT
(19)

where ∆CON (i) [∆CT ] is the shift in CON (i) [CT ]. The
shifts in CON (i) and CT in (2) due to nonidealities are:

∆CON (i) =
∑N

k=1 Dk(i)∆Ck + CTB
ON (20)

∆CT =
∑N

k=0 ∆Ck + CTB
ON + CTB

OFF + CTS (21)

where CTB
ON , CTB

OFF , and CTS represent the parasitics illus-
trated in Fig. 2; ∆Ck is the sum of the statistical variations,
∆Csta

k , and systematic variations. The systematic variation of
the kth capacitor ∆Csys

k is given by:

∆Csys
k = (C∗k − nkCu) (22)

We followed the statistical variation model from the prelim-
inary conference version of this paper [19] using a 3σ model.
The variances of ∆CON (i) and ∆CT are:

σ2
∆CON (i) =

∑N
j=1

∑N
k=1 Dj(i)Dk(i)Cov(j, k) (23)

σ2
∆CT

=
∑N

j=0

∑N
k=0 Cov(j, k) (24)

where Cov(i, j) is given by (16). Therefore,

∆CON (i) =
∑N

k=1 Dk(i)∆Ck +
(
3σ∆CON (i) + CTB

ON

)
∆CT =

∑N
k=0 ∆Ck +

(
3σ∆CT

+ CTB
ON + CTB

OFF + CTS
)
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B. Errors in linearity metrics for a split DAC

To model the split DAC under nonidealities, as before, we
superpose the effect of the LSB and MSB arrays on the output
voltage. For an applied code i, depending on whether the kth

bit, Dk, is 0 or 1, capacitors in each array may be connected to
VREF or ground, respectively; those in the other are grounded
for the purposes of superposition calculations.

For a split DAC under nonideal conditions, we update
CX

ON (i), CX
T and CX

A , where X ∈ {MSB,LSB} in (6)
and (8). We will denote the shifts in CX

ON (i), CX
T , and CX

A as
∆CX

ON (i), ∆CX
T , and CX

A,nonideal, respectively. We calculate
the output voltage V LSB

out under nonidealities for the excitation
to the LSB array (Fig. 3(a)) by first calculating voltage VA as

VA(i) = VREF · CLSB
ON (i) + ∆CLSB

ON (i)

CLSB
T +∆CLSB

T + CMSB
A,nonideal

(25)

The output voltage as in Eq. (6) under nonidealities is given
by:

V LSB
OUT (i) = VA(i) ·

CA + CTB
A

CA + CTB
A + CMSB

T +∆CMSB
T

(26)

For the MSB array (Fig. 3(b)), Eq. (8) is modified to:

V MSB
OUT (i) = VREF · CMSB

ON (i) + ∆CMSB
ON (i)

CMSB
T +∆CMSB

T + CLSB
A,nonideal

(27)

The nonideal counterparts of Eq. (7) and Eq. (9) are repre-
sented as CX

A,nonideal, where X ∈ {LSB,MSB}. These are
based on the nonideal version of each of the corresponding
capacitors, and are given by the equivalent series capacitance
of (CA + CTB

A ) with (CX
T +∆CX

T ).
The ideal output voltage, VOUT (i) in Eq. (10) can be

modified for the nonideal case superposing Eqs. (26) and
(27). To evaluate these two equations, we require the shifted
values of the LSB and MSB capacitors in Figs. 3(a) and (b),
respectively, which are given by:

∆CLSB
ON (i) =

∑L
k=1 Dk(i)∆Ck + CTB

LSB,ON

∆CMSB
ON (i) =

∑N
k=L+1 Dk(i)∆Ck + CTB

MSB,ON

∆CLSB
T =

∑L
k=0 ∆Ck + CTB

LSB,ON + CTB
LSB,OFF + CLSB

TS

∆CMSB
T =

∑N
k=L+1 ∆Ck + CTB

MSB,ON + CTB
MSB,OFF

+ CMSB
TS

As before, ∆Ck represents the shift due to process variations
and D0(i) = 0 for all i as C0 is connected to ground.

The extent of statistical variations is given by the 3σ points
of the statistical summations of Ck terms for the variances
of ∆CLSB

ON (i) [∆CMSB
ON (i)] and ∆CLSB

T [∆CMSB
T ] for LSB

[MSB] bits are shown below:

σ2
∆CLSB

ON (i) =
∑L

j=1

∑L
k=1 Dj(i)Dk(i)Cov(j, k) (28)

σ2
∆CMSB

ON (i) =
∑N

j=L+1

∑N
k=L+1 Dj(i)Dk(i)Cov(j, k) (29)

σ2
∆CLSB

T
=

∑L
j=0

∑L
k=0 Cov(j, k) (30)

σ2
∆CMSB

T
=

∑N
j=L+1

∑N
k=L+1 Cov(j, k) (31)

Using the 3σ model, the shifts in CLSB
ON (i) [CMSB

ON (i)] and
CLSB

T [CMSB
T ] can be written as:

∆CLSB
ON (i) =

∑L
k=1 Dk(i)∆Ck + 3σ∆CLSB

ON (i) + CTB
LSB,ON

∆CMSB
ON (i) =

∑N
k=L+1 Dk(i)∆Ck + 3σ∆CMSB

ON (i)

+ CTB
MSB,ON

∆CLSB
T =

∑L
k=0 ∆Ck + CTB

LSB,ON + CTB
LSB,OFF

+ CLSB
TS + 3σ∆CLSB

T

∆CMSB
T =

∑N
k=L+1 ∆Ck + CTB

MSB,ON + CTB
MSB,OFF

+ CMSB
TS + 3σ∆CMSB

T

C. Capacitor 3dB frequency

The switching response of a capacitor array is encapsulated
in the 3dB frequency metric, which defines the maximum
speed at which switches can close the bottom plates of the
unit capacitors of the DAC. For high-resolution DACs, the
routing-induced parasitics may substantially affect the 3dB
frequency. In FinFET technologies in particular, high wire
and via parasitics can result in high RC time constants, which
degrade the 3dB frequency.

In our preliminary version of this paper [19], we had shown
that this effect is particularly acute when CC layout techniques
attempt to increase capacitor dispersion, which requires the
connecting wires to use a large number of vias, resulting in
high parasitic resistance. We had also shown a model based
on [24] to obtain the critical frequency for the binary-weighted
DAC. Since each cycle goes through a charge-discharge phase,
the 3dB frequency, f3dB , for a full cycle of a capacitor is
represented as:

f3dB = 1/(2(N + 2)ln(2)τ) (32)

For each capacitor Ci, τ is measured by computing the Elmore
delay of the RC mesh to the unit capacitors of Ci. Over all
bits, the charging network with the maximum Elmore delay
limits the frequency and is used as τ in (32). For a binary-
weighted DAC, the Elmore delay for a mesh can be computed
using standard techniques [25].

Fig. 4: Equivalent circuit of a split DAC with the kth bit from
(a) LSB side, (b) MSB side set to 1 and all other bits set to
0.

To determine the RC product associated with the switching
of a specific bit k for a split DAC, we consider the case
when bit k is set to 1 and all other bits are 0. The equivalent
circuits for these two cases, when the kth capacitor (CX

k ) is
connected to VREF and other N − k capacitors (CX

T−k) are
connected to the ground in the LSB and MSB arrays, where
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X ∈ {MSB,LSB}, are displayed in Figs. 4(a) and (b).1 The
equivalent capacitance of Fig. 4(a), excluding the kth capacitor
from the LSB side array which is connected to VREF with all
other capacitors grounded, can be written as

CLSB
A,eq = CLSB

T−k + CTB
LSB,T−k +

(CA + CTB
A )(CMSB

T + CTB
MSB)

CA + CTB
A + CMSB

T + CTB
MSB

(33)

The total equivalent capacitance for excitation to the LSB side
array (Fig. 4(a)) can be represented as

CLSB
eq =

(CLSB
k + CTB

LSB,k)C
LSB
A,eq

CLSB
k + CTB

LSB,k + CLSB
A,eq

(34)

Similarly, the equivalent capacitance for Fig. 4(b) at the right
side of the kth bit from the MSB array which is set to 1, with
all other capacitors connected to the ground is given by

CMSB
A,eq = CMSB

T−k +CTB
MSB,T−k

+
(CA + CTB

A )(CLSB
T + CTB

LSB)

CA + CTB
A + CLSB

T + CTB
LSB

(35)

The total equivalent capacitance for Fig. 4(b) is shown below

CMSB
eq =

(CMSB
k + CTB

MSB,k)C
MSB
A,eq

CMSB
k + CTB

MSB,k + CMSB
A,eq

(36)

To calculate the 3dB frequency, the resistance for the RC
product corresponds to the parasitic resistance RLSB

k [RMSB
k ]

which is associated with the capacitor from the LSB [MSB] ar-
ray whose bottom plate is connected to VREF and capacitance
corresponds to the equivalent capacitance from the equivalent
circuits (Fig. 4). The frequency calculation is performed by
using (32) for each capacitor from the capacitor array, and
the minimum of these frequencies is considered as the 3dB
frequency of the circuit.

D. Non-unit capacitor aspect ratio

In the split DAC, the top plates from the LSB and MSB
array are connected via an attenuation capacitor. In a con-
ventional split DAC, the attenuation capacitor is a non-unit
capacitor (i.e., not an integer multiple of the unit capacitor
Cu used to build the binary-weighted (sub)array(s)). The
overall dimensions are usually set to between one and two
times the unit-sized capacitor (Cu), and the capacitor has a
rectangular bounding box [16]. To obtain the correct non-unit
capacitive ratio, we will show that the relative error due to
process variation for the MOM capacitors is similar to the
MIM capacitors, where the relative error is equal to the ideal
perimeter-to-area ratio.
Let N be the number of coupled segments as shown in Fig. 5.
The capacitance can be represented as

C = Nϵ

(
lt

d

)
(37)

1Note that this differs from the scenario in Fig. 3, where multiple bits in
the MSB/LSB array may be switched on; here, to calculate the 3dB frequency
for bit k, only bit k is activated and all others are set to 0.

Fig. 5: Cross-section of a MOM capacitor in one metal layer.

where ϵ, l, t and d are the dielectric constant, coupling length,
thickness, and distance between the fingers, respectively. Here,

l = w − c ; H = Np (38)

where c is a constant, corresponding to the spacing between
the top and bottom plates along the direction of l as shown
in Fig. 5, p is the pitch between two adjacent wires, and w
and H are the width and height of the MOM capacitor. Since
N = H/p,

C =

(
ϵt

dp

)
lH (39)

Under process variations, the total capacitance is represented
as

C +∆C =

(
ϵt

dp

)
(l +∆l) (H +∆H) (40)

i.e., ∆C =

(
ϵt

dp

)
(l∆H +H∆l) (41)

Neglecting ∆l ·∆H , the relative error in the capacitance is

∆C

C
=

l∆H +H∆l

lH
=

∆H

H
+

∆l

l
(42)

Using notation consistent with the analysis in [16] for MIM
capacitors, we assume that under process variations, the cou-
pling length, width, and height of the MOM capacitor change
by 2δ, i.e.,

l → l + 2δ ; w → w + 2δ ; H → H + 2δ (43)

The relative error in the capacitor is therefore given by

∆C

C
=

2δ

H
+

2δ

l
(44)

∆C

C
= 2δ

(
H + l

Hl

)
= 2δ

(
H + w − c

H(w − c)

)
(45)

Thus the relative capacitor error for a MOM capacitor due
to process variations has a similar form as that for the MIM
capacitor [16], where the relative error is proportional to the
the ideal perimeter to ideal area ratio: the difference here is
in the use of w− c instead of w in the MIM case. for a given
capacitance value C, we set the relative error to be the same as
that for a unit capacitor on the left-hand side of (45). Together
with (39), this yields two equations in two variables that are
solved to obtain H and l.
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IV. COMMON-CENTROID PLACEMENT AND ROUTING

Our constructive routing-friendly common-centroid placement
flow optimizes mismatch, interconnect wirelength, parasitic
RCs, and 3dB frequency for both the binary-weighted and split
DACs; next, a routing step optimizes DAC performance. We
first present the placement and routing algorithms for a binary-
weighted DAC in Sections IV-A and IV-B, respectively. Next,
we shown how these algorithms are modified to generate the
layout for a split DAC in Section IV-C. In our work [19] we
presented the formulation for obtaining array size for N-bit
binary-weighted DAC.

A. CC placement for a binary-weighted DAC

1) Placement tradeoffs between wire resistance and dis-
persion: Good matching under random variations is ensured
through dispersion, which reflects the spread of the unit
capacitances of C0 through CN in the CC array. An additional
major consideration is to build routing-friendly placements that
optimize interconnect parasitic effects. Previous efforts have
not addressed the specific needs of FinFET technologies, with
high wire resistance and higher via resistances. As FinFET
technologies used reserved-direction routing, especially in the
lower metal layers that are used for MOM capacitors, every
bend in a wire incurs a via resistance cost due to a layer
change.

Reducing via count is critical for reducing interconnect
resistance and improving 3dB frequency. An extension of
high-dispersion chessboard placement [8] matches capacitive
routing parasitics but neglects resistance: results show high via
counts. We consider a range of new constructive placement
solutions – spiral placement and block chessboard (BC)
methods – to trade off interconnect parasitics with dispersion
for the binary-weighted DAC.

Fig. 6: An example illustrating our CC placement algorithm.

Spiral placement for optimized interconnect parasitics
This placement algorithm reduces the number of bends in the
connections and is illustrated for a 6-bit DAC in Fig. 6(a).
Since the number of unit capacitors in C0 and C1 is 1, an
odd number, it is not possible to achieve a common-centroid
placement. Instead, we place these as close to the common-
centroid as possible to limit the impact of process variations.
Here, we place C0 and C1 diagonally opposite each other
near the center. Next, we place all the capacitors of C2, then
C3, and so on, in a spiral sequence from the center.

Whenever we place a unit capacitor at a location along a
spiral, we also place another unit capacitor at its reflection to
maintain the CC property. Considering the CC point as the
origin (the red dot in the figure), if we place a unit capacitor

in a square (d1, d2), it will be accompanied by another unit
capacitor at location (−d1,−d2). For example, when the spiral
places a unit capacitor of C2 at (−1,−1) in the figure, we
place another unit capacitor of C2 at (+1,+1). We place the
unit capacitors of C3 at the first empty location along the
spiral, first at (1, 2) and its reflection at (−1,−2), and so on.

Beyond C2, this technique naturally aligns numerous unit
cells of a capacitor to lie in the same row or column, the
method reduces the number of vias (corresponding to wire
“bends”) required to connect them. This approach maintains
adequate dispersion while using a number of bends (corre-
sponding to vias) for the routing connections. Although our
proposed placement algorithm is simple, it is different from
previous methods: the nearest similar methods are [5], with
a mix of rectangles and circles for placement, and [26] with
interleaved rows, but it does not achieve good dispersion.
Chessboard placement for optimized dispersion [8] At the
other extreme, [8] optimizes dispersion by interspersing unit
capacitors in a chessboard pattern, as illustrated for a 6-bit
DAC in Fig. 6(b). For a 6-bit DAC, the 32 unit capacitors of
C6 are first placed in an 8 × 8 array on the black squares of
a “chessboard”; then the 16 unit capacitors of C5 are placed;
and so on. However, the routing resistance costs here are large.
Block chessboard (BC) approaches A block chessboard ap-
proach attempts to find the best of both worlds, by achieving
the dispersion of the chessboard approach and the lower
routing costs of the spiral approach. Examples of this approach
for a 6-bit DAC are shown in Figs. 6(c) and 6(d). The inner
core of this structure is a conventional chessboard layout for
the capacitors with a smaller number of unit cells (here, C0

through C4): this provides good dispersion, and while it has a
high number of bends/vias, its wire RCs are typically smaller
than those of the larger capacitors C5 and C6, and do not
constrain the 3dB frequency, which is determined by the worst-
case time constant. The outer corridor here has a width of 2
cells. Since n6 : n5 = 2 : 1, we first lay out half the cells of C6

in clusters and then perform chessboard placement, alternating
the remaining cells of C6 with C5. Two layouts are shown for
different granularities in the outer corridor.

Other block chessboard structures may be built with the
inner full-chessboard core of C0 − Ck, and an outer block
structure for Ck+1−CN . MSB capacitors do not greatly affect
the DAC accuracy since their variation is averaged over more
unit capacitors than LSB capacitors.2 We design the block
chessboard scheme so that MSB capacitors use fewer vias than
in the chessboard scheme, resulting in an improved (higher)
3dB frequency. Our block chessboard placement method is
outlined in Algorithm 1. The approach consists of three steps:
performing the inner complete chessboard (Step 1), creating
the outer block chessboard pattern, and completing the block
chessboard (Step 2).

For the block chessboard placement, we focus on reducing

2In case of uncorrelated random variations, MSB capacitors will show a
lower σ/µ variation, and for a sum of n random variables, µ = nµu, σ =√
nσu, where µu and σu are the variances of Cu. As a result, in general, we

observe that the relative variations in MSB capacitance values is less than for
LSB capacitors. Note that the deviation in the capacitor ratio (i.e., the ratio
of Ck/C0) depends on C0, which shows significant variations.
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the number of vias in the highest-order bits, since they have
the largest RCs, and to provide good dispersion for the lower-
order bits, which have small capacitors that are susceptible
to variation effects. For this reason, we perform an inner
complete chessboard for C0, · · · , Ck and block chessboard
layout for Ck+1, · · · , CN . In practice, it is reasonable to
assume that k and N−k is even to obtain a placement without
dummies.

We first calculate the number of rows, (rc), and columns,
(sc), for the inner complete chessboard (line 5). Next, we lay
out the inner complete chessboard for C0 − Ck in a manner
similar to [8].

In step 2 (line 7), we lay out (N − k) capacitors in the
outer corridor of the inner complete chessboard in a block
chessboard pattern using the selected block size, bs. For finer
[coarser] granularity, a smaller [larger] block size can be
chosen. To create a block chessboard layout, starting from
i = k+1, we place the blocks in chessboard fashion using the
selected block size, bs, for Ci. First, we determine the number
of blocks for the ith capacitor (i.e., we define the range of the
outer two loops), which can be placed at the upper half of the
placement across the block columns and rows. Here, a block
column [row] consists of the number of columns [rows] of
size bs.

The unit capacitors of Ci are placed in lines 17–21. We then
reflect the solution simultaneously at its diagonal symmetric
location with respect to the center to maintain CC symmetry.
Next, we calculate the initial column location for other blocks

Algorithm 1 Block chessboard placement
1: Input: C = [C0, · · · , CN ]; r, row; s, column; k, capacitor number for inner

complete chessboard; bs[i], a list of block sizes for capacitor Ci.
2: Output: Common-centroid placement
3: //Step 1: Perform inner complete chessboard
4: //Calculate row and column for inner complete chessboard for C0−Ck capacitors

5: rc ←
⌈√∑k

i=0 Ci

⌉
, sc ←

⌈(∑k
i=0 Ci

)
/rc

⌉
6: Fill out the inner black and white squares of a chessboard with row and column size

of (rc, sc) using [8].
7: //Step 2: Perform outer block chessboard placement
8: //Place (Ck+1 − CN ) capacitors at the outer corridor of inner chessboard
9: for i = k + 1 to N by 2 do

10: //Calculate row and column for BC placement for Ci − Ci+1 capacitors

11: ri ←
⌈√∑i+1

j=0 Cj

⌉
, si ←

⌈(∑i+1
j=0 Cj

)
/ri

⌉
12: (xs, ys)← (si/2− sc/2, ri/2− rc/2) //Initial (row, column) position
13: //Create block chessboard pattern using capacitor Ci

14: for p = 1 to
⌈

ri/2

bs[i]

⌉
do //Over number of blocks in a block column

15: for q = 1 to
⌈

(si−sc)

bs[i]

⌉
do //Over number of blocks in a block row

16: //Create a block of block size bs for capacitor Ci

17: for x = xs to xs + bs[i] do //Over columns
18: for y = ys to ys + bs[i] do //Over rows
19: Place a unit of Ci at (x, y) and diagonal symmetric of (x, y) location.
20: end for
21: end for
22: Calculate starting column location for the next block across a block row.
23: end for
24: //Update initialization of starting column location for the next set of blocks
25: if p%2 == 0 then
26: xs ← 0
27: else
28: xs ← bs[i]
29: end if
30: ys ← ys + bs[i] //Update starting row location for the next set of blocks
31: end for
32: Place the units of Ci+1 at the leftover location, outside of (rc, sc)
33: within (ri, si).
34: rc ← ri, sc ← si //Reset the outer corridor for the next set of capacitors
35: end for

in the row and place them successively. After finishing the
placement of blocks in one block row, we reset the starting
column location across each block row (lines 25–29) and
increment the row by a block size (line 30) to perform the next
set of block chessboard placement. Once all unit capacitors
of Ci have been placed, we place the unit capacitors of the
next largest capacitor (Ci+1) in the rest of the locations of the
outer corridor (line 33). To define the next outer corridor for
i = k + 3 if N − k > 2, here at line 34 we reset the row and
column (rc, sc) of inner chessboard placement. We increment
i and repeat the process until i = N − 1.

B. Routing for a binary-weighted DAC

There are several routing induced parasitics as discussed
in [19], we minimize CTB

i as in [9] with nonoverlapped rout-
ing that separates the wires that route the top-plate and bottom-
plate. A detailed description on the bottom plate routing is
presented in [19].

1) Connected unit capacitor group formation: To connect
all bottom plates of unit capacitors of each Ci, we first create
a connected capacitor group of neighboring unit capacitors
of each Ci. We represent unit capacitors by nodes in graph
G, with edges between nodes for these neighboring unit
capacitors.

Fig. 7: Graph representation of connected capacitor groups.

We apply a breadth first search (BFS) algorithm on graph
G to find its connected components (connected capacitor
groups). The bottom plates of neighboring unit capacitors
in the BFS tree are connected using branch wires: each
connection is immediately mirrored to the unit capacitor at
the diagonally symmetric location in the common-centroid
placement, maintaining symmetric routing. The graph repre-
sentation of the connected unit capacitor groups for a 6-bit CC
array for the placement presented in [9] is shown in Fig. 7.

2) Bottom-plate routing: Bottom-plate routing requires sep-
arate routes to connect the unit capacitor groups of each Ci.
For a DAC, the bottom-plate terminals in the capacitive array
are connected to switches and drivers that are clustered to-
gether outside the array, since these are noisy digital structures
and the terminals must go to the bottom of the array.

We use three types of wires for routing (Fig. 8): branch
wires are used to connect unit capacitors within capacitor
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Fig. 8: Routing topology for C4.

Fig. 9: Routing for a CC placement of a 6-bit DAC, (a) Con-
nected capacitor groups formation [bottom-plate connections
are shown in red], (b) Bottom plate routing, (c) Parallel wire
routing, (d) Top-plate connections are shown in black.

groups, or unit capacitor groups to trunk wires, trunk wires
connect disjoint connected capacitor groups along the vertical
tracks, and bridge wires connect trunk wires at the periphery
of the array (the definition of all the wires are represented
in Fig. 8). The detailed routing method is outlined in an
Algorithm in our previous work [19], and consists of three
steps: channel selection, track assignment, and routing.

In FinFET nodes under discrete wire widths we use multiple
parallel wires for critical bits to reduce resistance and improve
3dB frequency, we use multiple parallel wires for critical bits.
Using multiple parallel wires allow multiple parallel vias with
every change in wire direction. Fig. 9(c) shows bottom-plate
connections using two parallel wires.

3) Top-plate routing: The objective of top-plate routing is
to minimize the top-plate to substrate parasitic capacitance
(CTS). We create a graph G such that each vertex v ∈ G
is a unit capacitor for any Ci (since all Ci top plates must
be connected). Each unit capacitor is connected to its north,
south, east, and west neighbor (if they exist), with an edge
weight corresponding to the horizontal or vertical spacing, as
applicable. In our case, since the vertical space between unit
capacitors is less than the horizontal spacing for channels,
the minimum spanning tree (MST) can be built by simply
connecting all unit capacitors in each column using branch

wires, and then connecting the unit capacitors in adjacent
columns using a branch wire. The use of this MST minimizes,
shown in Fig. 9(d), the parasitic capacitance, CTS

i .

C. Layout generation for a split DAC

There are some differences between the common-centroid
placement and routing algorithm for the split DAC and the
binary-weighted DAC, since in the split DAC, the ratio of
the capacitors and the circuit connection diagram is different
from the binary-weighted DAC. This section outlines those
differences.

1) Array size calculation: As in the binary-weighted DAC,
to minimize the impact of systematic variations, the aspect
ratio of the rectangular CC array in the split DAC is made
as close to a square as possible. We calculate the array size,
r×s, by using an approach similar to presented in [19] for the
LSB and MSB arrays. For an N -bit split DAC, the capacitor
ratios are [n0 : n1 : n2 : · · · : nL : nL+1 : nL+2 : · · · :
nN ] = [1 : 1 : 2 : · · · : 2L−1 : 1 : 2 : · · · : 2N−L−1]. The
required number of dummy unit capacitors to complete the
array is given by DC = (r × s)−

(∑N
i=0 ni + 2

)
. Here, the

addition of the number 2 considers the case associated with
the non-unit attenuation capacitor, which is implemented using
two slots in the capacitor array.

Fig. 10: CC placement and routing for a split DAC.

2) Placement: A modified spiral method can be applied
for the placement of the split DAC and is illustrated for 8-bit
DAC using L = 4 in Fig. 10(b), with a non-unit attenuation
capacitor. The capacitors are represented by the numbers
shown at the top of the schematic in Fig. 10(a). To obtain a
common-centroid placement among the unit capacitors of both
LSB and MSB capacitive arrays, first, we place two slots of the
non-unit attenuation capacitor C5, near the center of the array
while maintaining the CC property, since it is at the center of
the split DAC, connecting LSB and MSB arrays (Fig. 10(a)).
Note that the actual size of each of the two capacitors for C5

are smaller than Cu. Therefore, the relative perturbations in
their values due to the routing capacitance is liable to be the
largest, and can be minimized if they are placed as close to
the center as possible.
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Next, we consider C0, C1, and C6, each of which has
one unit capacitor, i.e., an odd number. The total number of
capacitors having an odd number of unit capacitors is three,
also an odd number, and this may cause asymmetry in the
CC array. To achieve a CC placement, we place capacitor C0

and D (dummy) diagonally opposite to each other near the
center of the CC placement to reduce the impact of process
variations. We place C1 at the first empty location along the
spiral and C6 at its diagonally symmetric location near the CC
point. We also evaluated an alternative approach that places
C0, C1, C2, and a dummy in the inner four squares, and the
two unit capacitors of C5 in symmetric locations in the next
ring: we did not find a significant difference in performance
metrics between this approach and the one outlined above.

After completing the placement of the odd-numbered ca-
pacitors, we place all unit capacitors of C2 from the LSB
array, and then the unit capacitors of C7 from the MSB array
into the CC matrix, by following the spiral order from the
center. The process is continued alternately (e.g., by placing
all unit capacitors of C3 next, then C8, and so on). As in the
binary-weighted DAC, whenever we place a unit capacitor at
a location along a spiral, we also place another unit capacitor
at its reflection to maintain the CC property.

Fig. 11: Block chessboard placement for (a) 6-bit, (b) 8-bit,
and (c) 10-bit split DAC.

Chessboard and block chessboard placement method can
also be applied on split DAC. As in binary-weighted DAC we
can create a complete chessboard pattern using the smaller
capacitors and block chessboard pattern using larger capacitors
where same block size can be applied for the larger capacitors
from the LSB and MSB arrays for the same sized capacitors
(e.g., block size of C4 and C9 can be same). During placement
we place the blocks of the unit capacitors of same capacitor
at the diagonal symmetric location with respect to the center
as shown in Fig. 11. Block chessboard pattern can help to
increase dispersion among the unit capacitors of same type
of capacitor and can improve INL/DNL. However, due to
increased dispersion routing induced parasitics will increase.

3) Routing: The following routing method is followed to
route the capacitors of the split DAC in the CC array:
(1) Bottom plate routing: For routing the bottom plates of
a split DAC for a modified spiral method, we followed a
similar routing algorithm as for the binary-weighted DAC
by constructing the connected capacitor groups for different
capacitors as presented in Section IV-B1; next, we connect
the bottom plates of those capacitor groups (Fig. 10(c)) by
following the routing Algorithm outlined in [19]. The routing
for a CC placement of an 8-bit split DAC shown in Fig. 10(c),
where different shades of the same color is used to represent
connected capacitor groups as used for the binary-weighted
DAC (Fig. 9), and top-plate [bottom-plate] connections are
shown in red [black]. The parallel wire routing method can
also be applied on split DAC to reduce resistance and improve
the 3dB frequency as presented in [19].
(2) Attenuation capacitor routing: Unlike binary-weighted
DAC in split DAC there is a non-unit attenuation capacitor and
to connect two slots of the attenuation capacitor we first check
for their locations in the CC array. If the slots are adjacent to
each other, they can be connected during connected capacitor
group formation, but if the slots of the attenuation capacitor
are not adjacent an extra vertical track must be assigned to
connect them.
(3) Top plate routing: The top plate connection of the ca-
pacitors in split DAC is different from the binary-weighted
DAC, since the top plates of the capacitors in each side
array are connected together at two different electrical nodes
that are separated by an attenuation capacitor. The top plate
connection between two adjacent unit capacitors of a capacitor
for the LSB and MSB capacitive arrays in the horizontal and
vertical directions is performed during connected capacitor
group formation using breadth-first search (BFS) as presented
in Section IV-B1. Later, we again use BFS on the connected
capacitor groups of both LSB, and MSB arrays to connect the
adjacent capacitor groups as shown in Fig. 10(c) of different
capacitors.

The top plates of the connected capacitor groups which are
not adjacent to any other capacitor groups in both the LSB
and MSB side arrays can be connected using a minimum
spanning tree (MST). We create a graph G such that each
vertex v ∈ G is a connected capacitor group for any Ci from
LSB [MSB] side array. We build an MST over this graph to
find an optimal connection between these capacitor groups and
complete the top plate routing by connecting the top plates of
different capacitors (Ci) from each side array. This type of
routing helps to minimize the top plate to substrate parasitics,
CTS

LSB , and CTS
MSB (Fig. 3(a) and (b)). Later we connect the

attenuation capacitor between the top plates of LSB and MSB
side arrays. To minimize the routing induced parasitics, we
connect the attenuation capacitor with the top plates of the
adjacent unit capacitors from each side array.

V. RESULTS AND DISCUSSION

Our approach is implemented in Python and evaluated on a
commercial 12nm technology for N -bit binary-weighted DAC
arrays with capacitors ratios of 1 : 1 : 2 : 4 : · · · : 2N−1, with
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N ranging from 6 to 10. We evaluate four techniques: the
placement in [1]; the chessboard placement [8]; spiral place-
ment (“S”) and the block chessboard (“BC”) [Section IV-A].
Several BC structures are considered, as shown in Fig. 12 and
the best BC result is reported. All even/odd bit DACs use the
same BC structure with a full chessboard for the inner core.

Our routing approach is applied to the S and BC methods.
Since [8] only proposes a placement without routing, we use
our router on their placement (Section IV-B).

Fig. 12: 8-bit block chessboard layouts at various granularities.

For systematic variations, the wire spacing t0 is based on
a wire pitch of 64nm. Parasitic extraction is performed by
considering the foundry-provided per-unit wire resistance r
and per-unit wire capacitance c for each metal layer, the
resistance and capacitance of a wire segment of length l
are, respectively, (r · l) and (c · l). For adjacent wires, if
the per-unit coupling capacitance is cc(s) for a spacing of s,
the coupling capacitance between two segments with overlap
length loverlap is (cc(s) · loverlap). The per-unit models for
resistance, capacitance to ground, and coupling-capacitance
are taken from a commercial 12nm process. The systematic
variation parameters were set to γ = 10ppm, ρu = 0.9,
Lc = 1mm [1], [9], and we use A2

f = 0.85% × 1fF [21]. A
unit capacitance value of 5fF is used for all cases for binary-
weighted DACs. The MOM capacitors are built in three metal
layers, with the bottom-plate and top-plate terminals available
in metal1 and metal2, respectively.

Table I shows various parameters associated with the RC
parasitics for routing the binary-weighted DAC. The capac-
itances, ΣCTS (total top-plate-to-substrate), ΣCwire (total
wiring capacitance), and ΣCBB (total bottom-plate to bottom-
plate), represent the parasitics shown in Fig. 2; CTB is
negligible due to nonoverlapped routing (Section IV-B). The
next set of metrics – ΣNV , the total number of vias and ΣL
the total wire length – are correlated with the total resistance.
Since f3dB only depends on resistances on the critical bit
with the largest RC delay, the last column shows the total
via resistance, RV , and the total wire+via resistance, Rtotal

for the critical bit.
Here, S has low resistive parasitics; BC has moderate

parasitics, much lower than [1], [8]. The impact of parasitic
resistance can be observed in Fig. 13 for different bit DACs for
different placement methods. Both S and BC use our proposed
parallel routing method: when parallel routing is used on the
MSB, the second-most MSB, then the third-most MSB, etc.,
may become critical, and parallel routing is used there too.
If parallel wires need channel resources, the spacing between

columns is increased appropriately. For any number of bits for
S, the only vias are at the input connection. Unit capacitors
use nearest-neighbor connections using the same metal layer
with no vias.

Fig. 13: Parasitic resistance for different bit DACs.

The CTS values for S and BC are better than those
of [1]; we apply the same solution to our routing for [8]
(although their subsequent work [18] leads to higher top-
plate wire lengths, i.e., higher CTS). For other metrics
(Cwire, CBB , NV , L and R), the spiral approach provides the
best solution and the chessboard method [8] the worst, and the
block chessboard method provides an intermediate solution.

Table II shows circuit-level metrics: Area of the routed
CC binary-weighted array; |DNL| / |INL| the maximum
absolute DNL(i) (Eq. 17) / INL(i) (Eq. 18); f3dB , the 3dB
frequency (Eq. (32)). Like [1], [8], we evaluate DNL/INL
under capacitor nonidealities, assuming an ideal opamp. Area
is lowest for the spiral method due to low routing overhead
and comparable with other methods (except 7-bit and 9-bit
solutions for [8], which double the unit capacitors). The table
shows the INL/DNL vs. f3dB tradeoff (particularly for >8
bits): S has the best f3dB but the worst INL/DNL; [8] is the
opposite; BC is a good compromise. All INL/DNL values are
below 0.5LSB and are acceptable.

Figs. 14(a) and (b) show a Python-generated view of the
placement and routing for an 8-bit DAC in a commercial 12nm
process, using the approach in [8] and our spiral placement

Fig. 14: CC layout in (a) [8] (b) spiral approach. High
wirelength for [8] is inevitable: cells are spread for high
dispersion.
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TABLE I: CC array: Electrical metrics for binary-weighted DACs of various resolutions (Cu = 5fF).
#

∑
CTS (fF)

∑
Cwire (fF)

∑
CBB (fF) (

∑
NV ,

∑
L) (µm) (RV , Rtotal) (KΩ) for critical bit

bits [1] [8] S BC [1] [8] S BC [1] [8] S BC [1] [8] S BC [1] [8] S BC
6 0.10 0.10 0.10 0.10 3.8 8.3 2.8 7.1 5.3 9.3 2.1 5.6 (34, 321) (81, 686) (118, 243) (154, 583) (0.2, 1.2) (1.1, 3.6) (0.002, 0.05) (0.01, 1.1)
7 – 0.38 0.20 0.22 – 36.9 4.5 7.0.0 – 70.3 3.7 9.1 – (295, 2993) (76, 385) (110, 591) – (4.1, 14.0) (0.002, 0.09) (0.002, 1.7)
8 0.40 0.38 0.38 0.38 12.3 36.6 5.8 18.5.0 17.6 73.3 6.1 15.8 (60, 1042) (295, 3012) (60, 514) (234, 1535) (0.3, 4.1) (4.1, 14.0) (0.002, 0.16) (0.02, 0.67)
9 0.72 1.54 0.76 0.78 15.3 162.8 10.1 19.7 61.0 633.0 9.6 22.8 (143, 1319) (1126, 13299) (78, 907) (190, 1682) (1.2, 6.9) (15.8, 56.3) (0.002, 0.28) (0.002, 3.3)

10 – 1.54 1.50 1.50 – 163.9 17.6 49.5 – 634.7 16.7 66.6 – (1126, 13308) (92, 1596) (473, 4165) – (15.8, 56.3) (0.002, 0.58) (0.02, 1.60)
Notes: (1) [8] doubles the number of unit capacitors for odd bits ⇒ {7-bit, 8-bit}, {9-bit, 10-bit} results are similar. (2) 7-bit, 9-bit DACs not reported in [1].

TABLE II: CC array: Performance metrics for binary-weighted DACs of various resolutions (Cu = 5fF).
# Area (µm2) {|DNL|, |INL|} (LSB) f3dB (MHz)

bits [1] [8] S BC [1] [8] S BC [1] [8] S BC
6 629 634 622 634 {0.00,0.02} {0.00,0.02} {0.01,0.02} {0.01,0.02} 947 313 21179 3883
7 – 2541 1293 1421 – {0.01,0.03} {0.02,0.04} {0.02,0.03} – 18 5505 1197
8 2641 2541 2509 2541 {0.00,0.08} {0.01,0.06} {0.05,0.08} {0.02,0.07} 56 16 1411 339
9 5354 10627 5085 5224 {0.01,0.14} {0.02,0.14} {0.12,0.16} {0.11,0.15} 15 0.9 361 123

10 – 10627 10076 10157 – {0.05,0.30} {0.22,0.31} {0.11,0.30} – 0.8 81 29

TABLE III: CC array: Performance metrics ({|DNL|, |INL|} (LSB)) for binary-weighted DACs of various resolutions, varying
the linear process gradient coefficient, γ (Cu = 5fF, ρ0 = 0.9).

[8] S
γ 6-bit 8-bit 10-bit 6-bit 8-bit 10-bit
1 {0.00,0.02} {0.01,0.08} {0.05,0.31} {0.01,0.02} {0.06,0.08} {0.27,0.31}
10 {0.00,0.02} {0.01,0.08} {0.05,0.31} {0.01,0.02} {0.05,0.08} {0.22,0.31}

100 {0.01,0.02} {0.02,0.09} {0.06,0.34} {0.01,0.02} {0.27,0.17} {4.93,2.56}

TABLE IV: CC array: Performance metrics ({|DNL|, |INL|} (LSB)) for binary-weighted DACs of various resolutions, varying
the correlation coefficient ρu (Cu = 5fF, γ = 10ppm).

[8] S
ρu 6-bit 8-bit 10-bit 6-bit 8-bit 10-bit

0.10 {0.00,0.02} {0.00,0.08} {0.00,0.31} {0.00,0.02} {0.00,0.08} {0.05,0.30}
0.50 {0.00,0.02} {0.01,0.08} {0.01,0.31} {0.02,0.02} {0.02,0.08} {0.03,0.30}
0.70 {0.00,0.02} {0.01,0.08} {0.02,0.31} {0.02,0.02} {0.05,0.08} {0.07,0.30}
0.75 {0.00,0.02} {0.01,0.08} {0.03,0.31} {0.02,0.02} {0.06,0.08} {0.09,0.30}
0.80 {0.00,0.02} {0.01,0.08} {0.03,0.31} {0.01,0.02} {0.06,0.08} {0.13,0.30}
0.85 {0.00,0.02} {0.01,0.08} {0.04,0.31} {0.01,0.02} {0.06,0.08} {0.18,0.30}
0.90 {0.00,0.02} {0.01,0.08} {0.05,0.31} {0.01,0.02} {0.05,0.08} {0.22,0.30}
0.95 {0.00,0.02} {0.01,0.08} {0.04,0.31} {0.01,0.02} {0.03,0.08} {0.19,0.30}
0.99 {0.00,0.02} {0.00,0.08} {0.01,0.31} {0.00,0.02} {0.01,0.08} {0.02,0.29}

0.999 {0.00,0.02} {0.00,0.08} {0.00,0.31} {0.00,0.02} {0.00,0.08} {0.04,0.29}

method, respectively. While the former requires five vertical
tracks in the vertical channels, the spiral approach, even with
parallel routes, requires two routing tracks, resulting in lower
CBB , as documented by the total CBB number in Table I.
The total routing wirelength is significantly higher for the
placement of [8], leading to higher Cwire parasitics, as shown
in the same table. Both factors degrade the 3dB frequency
of [8]. This effect is worse as the number of bits in the DAC
increases.

In FinFET nodes, NV adversely affects performance due
to high via resistance. The spiral method uses the fewest
vias of all methods, and the chessboard method [8] uses the
most. Fig. 15(a) shows the impact of using parallel routes,
which reduce interconnect resistance, on the 3dB frequency for
spiral placement. We show the frequency improvement factor,
where the ratio of the 3dB frequency using k wires vs. using
one wire (i.e., a value of ≥ 1 represents an improvement).
The increase in parasitic capacitance due to parallel wires is
minimal and is dominated by the capacitance in the array, but
the wire resistance reduction is significant. As k increases, we
see diminishing returns. Similar trends are seen for the block
chessboard scheme. When two parallel wires are used, the
frequency improvement factor exceeds 2: for this resistance-

dominated case, the connection from the trunk wire to a branch
wire creates a 2×2 mesh with four vias. The gain lies between
2× (wire-dominated case) and 4× (via-dominated case). With
more wires, the wire capacitance becomes noticeable, leading
to lower improvement and we do not get the improvement
in terms of frequency by a factor of k. Fig. 15(b) shows the
impact of parallel wires for all methods, normalized to the
3dB frequency for S. Both BC and [1] improve, but have
much lower baseline frequencies than S; chessboard [8] is
bottlenecked by high via counts.

Table V shows the results for the split DAC with two parallel
wires for routing for Cu = 5fF for 6-bit to 12-bit and 10fF
for 14-bit for both spiral and block chessboard placement.
Here, we use similar systematic variation parameters as for
the binary-weighted DAC. Various parameters associated with
the RC parasitics for routing for the split DAC are shown
in the table. The capacitances, ΣCTS , ΣCwire, and ΣCBB ,
represent the total parasitics for the circuit shown in Fig. 3;
noting that the parasitics from the LSB and MSB side arrays
are added; CTB from each side array is negligible due to
nonoverlapped routing used for connected capacitor group
formation. The total number of vias ΣNV , and the total
wire length, ΣL, of the capacitor array are listed next. We
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TABLE V: CC array: Electrical and performance metrics for split DACs.
# bits

∑
CTS (fF)

∑
Cwire (fF)

∑
CBB (fF) (

∑
NV ,

∑
L) (µm) (RV , Rtotal) (KΩ) for critical bit Area (µm2) {|DNL|, |INL|} (LSB) f3dB (MHz)

bits S BC S BC S BC S BC S BC S BC S BC S BC
6 0.03 0.03 2.37 2.97 0.58 0.72 (45, 194) (70, 243) (0.02, 0.34) (0.05, 0.67) 194 193 (0.01, 0.01) (0.03, 0.00) 47569 33572
8 0.06 0.06 3.87 5.29 1.68 1.60 (65, 319) (85, 433) (0.03, 0.38) (0.03, 0.73) 362 353 (0.06, 0.04) (0.04, 0.03) 19977 15256
10 0.12 0.11 6.47 9.34 6.62 7.85 (68, 534) (105, 766) (0.02, 0.71) (0.05, 0.78) 724 719 (0.14, 0.10) (0.12, 0.08) 8153 3615
12 0.20 0.21 7.98 12.4 7.16 12.23 (65, 666) (100, 1024) (0.02, 0.72) (0.03, 0.84) 1302 1339 (0.17, 0.16) (0.13, 0.17) 2136 1504
14 0.43 0.41 11.4 23.4 24.48 26.55 (72, 970) (126, 1932) (0.03, 1.61) (0.05, 1.64) 2809 2719 (0.49, 0.31) (0.51, 0.20) 484 169

TABLE VI: Runtimes for the proposed CC layout algorithms
for binary-weighted DACs

#bits 6-bit 7-bit 8-bit 9-bit 10-bit
Spiral 0.02s 0.04s 0.12s 0.35s 1.11s
BC 0.03s 0.05s 0.19s 0.38s 2.25s

Fig. 15: 8-bit CC array with parallel wires: 3dB frequency
improvements for (a) the spiral method. (b) all methods.

also list the total via resistance, RV , and the total wire+via
resistance, Rtotal for the critical bit. The capacitive routing-
induced parasitics for the split DAC are comparable with the
binary-weighted DAC. The resistive parasitics for the split
DAC for the critical bit are higher than the binary-weighted
DAC since in binary-weighted DAC all the unit capacitors for
the critical bit form a connected capacitor group and it requires
a very short routing wire to connect the connected capacitor
group with the switches and drivers; therefore, we use two
parallel wires for routing the capacitors of the split DAC,
whereas we used four parallel wires for routing the binary-
weighted DAC.

In Table V we also have listed Area; the maximum absolute
DNL(i)/INL(i); f3dB for the split DAC. The INL/DNL
for the split DAC as shown in the Table V is comparable
with the INL/DNL of the binary-weighted DAC (Table II),
at the same time it can provide significantly better area and
frequency since the total amount of unit capacitors is lower
for the split DAC. The main advantage of the split DAC is
that it can provide good performance in terms of INL/DNL
and 3dB frequency (f3dB) while using a smaller silicon area
than binary-weighted DAC. From the table it can be observed
that for block chessboard method the wire parasitics and wire
lengths are slightly higher than the spiral, but the INL/DNL
is better for block chessboard method from the spiral method.

Fig. 16(a), and (b) show the generated layout, visualized
using Virtuoso, based on the GDS generated by our proposed
spiral placement approach for 8-bit binary-weighted and split
DAC, respectively. As can be observed from the figures and
the comparison table (Fig. 16(c)), the layout area for the split
DAC is significantly lower than the binary-weighted DAC.

Fig. 16: CC layout of 8-bit (a) binary-weighted, and (b) split
DAC, (c) comparison result table.

Since the number of unit capacitors for the split DAC is much
less than the binary-weighted DAC, 3dB frequency (f3dB) is
considerably higher for the split DAC. Finally, the absolute
maximum INL/DNL values are comparable for both of the
DACs as shown in the table attached in Fig. 16(c).

The CPU times for both the spiral method and for each
block chessboard are similar and are reported in Table VI for
binary-weighted DACs. Because the method is constructive, it
is much faster than stochastic optimization, while providing
excellent quality of result. For split DAC the number of unit
capacitors is much smaller than the binary-weighted DAC with
the same number of bits, and the CPU times are therefore
much smaller than these already small runtimes for the binary
DACs.

The choice of ρ0 = 0.9 and γ = 10ppm is based on prior
work [1], [20]. In [23], a variational model for resistors, rather
than capacitors is used, and this model has been assumed
to be reasonable for other passives such as capacitors; work
in [27] develops an exponential model for transistor variations.
To our knowledge, there is no reported measured value for
correlations in capacitive structures: correlation is alluded to
in [21], but only data for uncorrelated variations are reported.
The value of ρ0 = 0.9 and γ = 10ppm has cascaded down
from older papers such as [6].

Therefore, we show the INL and DNL for a 6-bit, 8-bit, and
10-bit binary-weighted DAC, for a range of values of ρ0 and γ
in Tables IV and III, respectively, under spiral placement and
chessboard placement. When ρ0 is varied, we keep γ fixed
at 10ppm, and when γ is varied, we keep ρ0 fixed at 0.9. It
can be seen that the precise dependency of the INL and DNL
on ρ0 and γ is not monotonic. This is because the INL and
DNL expressions depend on Vout, which in turn depend on
the relative values of the uncorrelated capacitance variations,
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correlated capacitance variations, and the wire parasitics. At
different entries of these tables, different components become
more dominant, leading to this nonmonotonicity.

It should be noted that in Table III, as γ is increased, the
variation in the oxide thickness t increases linearly. Since the
capacitance C = Cu(t0/t) is nonlinearly related to t, the
linear approximation to C becomes increasingly inaccurate as
t deviates from its nominal value, t0. Thus, for higher values
of γ, these nonlinearities become more prominent, reducing
the ability of common-centroid layouts to cancel variations.
As a result, we see that the DNL and INL generally worsen
for large values of γ, overcoming smaller nonmonotonicities
at lower values of γ.

VI. CONCLUSION

A set of routing-conscious, constructive common-centroid
placement methods, followed by a routing step, are proposed
in this work. These methods attempt to optimize systematic
and random mismatches in order to improve performance and
accuracy for both binary-weighted and split DACs. To the best
of our knowledge, this is the first work in the literature to
propose models to evaluate tradeoffs between linearity metrics
as well as the 3dB frequency for binary-weighted DACs, and
the first to automate CC layout generation for split DACs. For
the split DAC, a method to determine the size of the non-
unit capacitor, which is used as the attenuation capacitor, is
also presented. Two different types of placement methods, the
spiral and block chessboard methods, have been presented and
experimental results show that a balance between INL/DNL
and 3dB frequency can be achieved by trading off wire
parasitics with dispersion.
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