
1

GNN-based Hierarchical Annotation
for Analog Circuits

Kishor Kunal, Tonmoy Dhar, Meghna Madhusudan, Jitesh Poojary, Arvind K. Sharma, Wenbin Xu,
Steven M. Burns, Jiang Hu, Ramesh Harjani, Sachin S. Sapatnekar

Abstract—Analog designs consist of multiple hierarchical func-
tional blocks. Each block can be built using one of several design
topologies, where the choice of topology is based on circuit per-
formance requirements. A major challenge in automating analog
design is in the identification of these functional blocks, which
enables the creation of hierarchical netlist representations. This
can facilitate a variety of design automation tasks such as circuit
layout optimization because the layout is dictated by constraints
at each level, such as symmetry requirements, that depend on
the topology of the hierarchical block. Traditional graph-based
methods find it hard to automatically identify the large number
of structural variants of each block. To overcome this limitation,
this paper leverages recent advances in graph neural networks
(GNNs). A variety of GNN strategies is used to identify netlist
elements for circuit functional blocks at higher levels of the
design hierarchy, where numerous design variants are possible.
At lower levels of hierarchy, where the degrees of freedom in
circuit topology are limited, structures are identified using graph-
based algorithms. The proposed hierarchical recognition scheme
enables the identification of layout constraints such as symmetry
and matching, which enable high-quality hierarchical layouts.
This method is scalable across a wide range of analog designs. An
experimental evaluation shows a high degree of accuracy over a
wide range of analog designs, identifying functional blocks such
as low-noise amplifiers, operational transconductance amplifiers,
mixers, oscillators, and band-pass filters in larger circuits.

I. INTRODUCTION

Despite many new developments over the years in the arena of
design automation for analog circuit layout [1], [2], automation
has found a low level of acceptance within the analog design
community. The traditional model for layout design involves a
human expert designer who translates a circuit from netlist to
layout. This designer-driven approach has survived primarily
because of the large number of layout styles as well as implicit
and explicit rules that must be captured by the layout. Optimal
techniques are internalized by the designer based on many
years of experience and have been difficult for automated tools
to replicate. While digital designs use a standardized set of
lowest-level cells from a standard cell library and use Boolean
algebra to guide transformations from one circuit topology to
another, analog designs see large variations at even the lowest
level across designs that implement the same functionality. For
example, between textbooks [3] and research papers, there are

K. Kunal, T. Dhar, M. Madhusudan, J. Poojary, A. K. Sharma, R. Harjani,
and S. S. Sapatnekar are with the Department of Electrical and Computer
Engineering, University of Minnesota, Minneapolis, MN; W. Xu and J. Hu
are with the Department of Electrical and Computer Engineering, Texas A&M
University, College Station, TX; S. M. Burns, is with Intel Labs, Hillsboro,
OR. This research was supported in part by the DARPA IDEA program under
SPAWAR contract N660011824048.

well over 100 widely used operational transconductance ampli-
fier (OTA) topologies of various types (e.g., telescopic, folded
cascode, Miller-compensated). Moreover, analog designers are
culturally likely to exercise such variations as this “secret sauce”
may provide tangible improvements in performance.

A prerequisite for truly generalizable analog automation is
to recognize all variants – including those that have not even
been designed to date. Prior methods are library-based [4], [5],
matching a circuit to prespecified templates, and requiring an
enumeration of possible topologies in an exhaustive database,
or knowledge-based [6]–[8], embedding rules for recognizing
circuits; however, the rules must come from an expert designer
who may struggle to provide a list (many rules are intuitively
ingrained rather than explicitly stated). Moreover, it is difficult
to capture rules for all variants of every circuit block.

Both classes of methods involve prohibitive costs in terms
of designer input, and cannot be easily adapted to new
topology variants. In contrast, an experienced expert designer
can examine a large circuit and recognize substructures of
known blocks; minor variations do not affect this judgment.
For instance, an OTA circuit consists of a bias network, a
current mirror, a differential pair, a differential load, and an
output stage: one look at a schematic is enough for an expert to
decipher these stages. Conventional algorithms cannot replicate
this. Thus, in spite of the large body of publications on analog
layout synthesis, these methods are seldom used in industry.

We seek to build a foundation for a generalizable analog
design methodology with no human in loop. At the core of
such a methodology is the ability to recognize blocks in a
circuit, at the level of an expert human designer. We draw
inspiration from machine learning (ML) methods that are adept
at recognizing variants of a target and have been widely used
for recognizing images. Unlike images, a netlist cannot be
abstracted into a planar graph with a simple 2D topological
embedding, and convolutional neural networks (CNNs) cannot
be used directly.

Our approach inputs a transistor-level netlist, aggregates
elements that implement a set of functionalities, and outputs a
circuit hierarchy. We abstract the circuit netlist as a graph and
leverage recent advances in the field of graph neural networks
(GNNs) [9]–[11] to perform approximate subgraph isomor-
phism, classifying circuit elements into classes, depending on
which subcircuit they belong to. Once smaller subcircuits are
identified, we use graph-based approaches on their subgraphs
and identify basic structures (“primitives”) that compose these
blocks. Primitives (e.g., differential pairs, current mirrors)
contain a small number of transistors/passives and do not

vary significantly across circuits and can be handled using
graph-based methods. In contrast, larger blocks (OTAs, low
noise amplifiers (LNAs), mixers, etc.) may appear in a number
of variants, and can benefit from using trained GNNs, which
can handle variants naturally. A GNN learns the rules during
training, thus mimicking the human expert.

This paper applies a variety of available GNN methodologies
for the task of identifying commonly encountered sub-blocks in
an analog design. We use supervised learning to train the GNN
network on a set of available circuit topologies and then use the
trained network to identify similar (but not necessarily identical)
structures in new unseen circuits using node classification.
This manuscript improves upon a preliminary version of this
work [12] in several ways. The differences with our preliminary
work are listed in Table I. First, it uses a wider range of GNNs
for feature aggregation, and shows a comparative analysis
of the performance of various GNNs for the task of circuit
identification. Second, the graph representation of the circuit
is modified from the bipartite graph in [12] to a bipartite
multigraph. This provides a better representation of a circuit,
where a net can connect to multiple terminals of devices: we
demonstrate a substantial gain in accuracy of the GNN models
using this new abstraction. This helps us in reducing the class-
based postprocessing thus making it more generalizable to new
classes of circuits.

Table I: A comparison of this work with our preliminary work.

GANA [12] This work
Circuit Bipartite Bipartite
Representation graph multigraph
Node-features 18 18 (modified)
GNN method ChebNet [10] Multigraph GNN [13]
Training Supervised Supervised
GNN accuracy Good Better
Post-processing I Graph-based Graph-based
Post-processing II Class-based None
New designs NA True

Our extracted circuit hierarchy can be used in various ways:
for automated layout using hierarchical block assembly using
the identified hierarchies; for automated constraint annotation
(e.g., identifying symmetry, matching, common centroid, guard-
ring around hierarchies, compact-placement); or constraint
budgeting to each block while meeting system-level constraints.

While it is obvious that the extraction of hierarchies is useful
for flat netlists, counterintuitively, it can even be useful for
layout generation of netlists where hierarchies are specified by
the schematic designer. This is because schematic designer’s
view of circuit hierarchy may not necessarily be optimal for
layout hierarchy. For example, in OTA circuits, a schematic
designer will typically keep the biasing circuit, which shares
current paths with the differential pair, in a single hierarchy
corresponding to the OTA signal paths. However, from a
layout standpoint the current mirror transistor that lies in the
signal path should be placed in a current mirror hierarchy,
which enables the entire current mirror structure to be placed
using a common-centroid or interdigitated methodology [14],

[15]. Thus, creating a separate layout hierarchy for bias and
signal paths provides better layout solutions. Another example
corresponds to a public-domain successive approximation
register (SAR) based ADC circuit design [16], where the netlist
mixes the control logic with the capacitor array. However, a
better layout solution is obtained by separating the two, using
a separate hierarchy for the capacitor array and generating a
common centroid layout for the capacitors. The objective of
this work is to create hierarchies that enable optimal solutions
for automated analog layout generation.
Related work: Early work on using ML for subcircuit identifi-
cation includes a compiler-inspired learning approach in [17]
that applies recursive compositions of prespecified rules to
recognize structures from a netlist, but inherits the limitations
of rule-based methods, and a CNN-based method [18] that
translates a matrix embedding of a circuit to a set of templates.
Both works operate on small structures with < 50 transistors,
and face challenges in scaling to larger netlists; our method is
demonstrated on blocks with > 500 transistors.

Motivated by the advances in ML techniques, several recent
approaches have used ML methods to address problems in the
domain of analog layout automation. The work in [19] solves
the parasitic extraction method using graph neural networks.
Research on extracting geometric constraints automatically has
also evolved rapidly in recent years [20]–[22]. Approaches
based on array recognition [23] recognize array structures
and extract their symmetry constraints, without attempting to
specifically target subcircuit recognition. Other methods work
at the upper layers of the design hierarchy and extract system-
level symmetries, leveraging statistical techniques [24]. The
approaches in [25], [26] focus on the identification of symmetry
pair constraints to match devices with similar net connections.
However, methods for extracting geometric constraints cannot
easily be generalized for subcircuit identification, e.g., the
supervised learning method in [26] for clustering requires the
number of clusters to be prespecified, but this information is
unavailable during subcircuit identification.

II. HIERARCHICAL RECOGNITION

A. Representing circuits hierarchically
Our recognition scheme creates a hierarchical representation of
the netlist, identifying smaller structures composed into larger
structures. At various levels of the hierarchical representation,
we have
• Elements, i.e., transistors (NMOS/PMOS) and passives

(resistors, capacitors, inductors), lie at the lowest level.
• Primitives, composed of a few elements form basic

building blocks of a circuit. These are typically simple
structures, largely invariant across circuits, e.g., differential
pairs, current mirrors.

• Sub-blocks form multiple levels of the design hierarchy
(i.e., some sub-blocks could be contained in others), and
are composed of primitives or other sub-blocks, and
contribute to building larger systems. Examples of sub-
blocks include operational transconductance amplifiers
(OTAs), analog-to-digital converters (ADCs), voltage-
controlled oscillators (VCOs), equalizers, and clock/data
recovery (CDR) circuits.

2

COUT

FAMP

FL

FAZ

FAMP

VinCM

CGAIN

Cfixed

FAZ

CAZ

VoutCM

FAMP

FL

FAZ
FAMP

VinCM

CGAIN

Cfixed

FAZ
VoutCM

Cin

FS

FS

FAMP VoutVin

FAZ

FAZ

OTA-P[FD]

COUT

Switch-Array

C-Array

SH-SC[FD]

(a)
SH-SC[FD]

C-ArraySwitch-Array

OTA-P[FD]

Sub-blocks

Primitive

GCN-based recognition

Graph-based
recognition

2-STAGE OTA

Component

SC-Ckt[SH] CMF[SC]

CM-P(5)

DP-P

CM-N(2)

CC-[RC]

C R

CS-Amp-NVR-N(CB)

BIAS

(b)

Vo1 Vo2

Vin1 Vin2

CMF[SC]

F1 F2

Vb-ref1

V11 V12

Vo1 Vo2

Vdd

Gnd

CM-P(5)

CS-Amp-N

CS-Amp-N

Vx

CC-[RC]

CC-[RC]

Vo1

F1

Vo2

Vx Vb-ref1

F1

F1F2

F2F2

Vb-ref1

CMF[SC]

Vo1

F1

Vo2

Vx Vb-ref1

F1

F1F2

F2F2

Vb-ref1

CMF[SC]

“OTA-P[FD]”

CM-N(2)

DP-P

Component

Sub-block

Primitive

STAGE 1

Ibias

VR-N(CB)

(c)

Figure 1: Multiple levels of abstraction in a sample-and-hold schematic.

Systems lie at the uppermost level of the hierarchy, and may
correspond to structures such as RF transceivers, DC-DC
converters, and a high-speed SerDes system. Our initial efforts
reported in this paper goes up to the level of sub-blocks.

Fig. 1(a) decomposes a sample-and-hold circuit with a
hierarchy tree (Fig. 1(b)) and at the schematic level (Fig. 1(c)):
• The uppermost level of hierarchy is the sample-and-hold

switched-capacitor circuit block (SH-SC).
• Below this are the switched capacitor circuit (SC-Ckt)

(the shaded blocks in Fig. 1(a)) and the OTA circuit.
• These are further decomposed into smaller structures

(Fig. 1(c)).
Note that the decomposition of the OTA sub-block contains a
telescopic-ota STAGE 1 having primitives – the PMOS current
mirror (CM-P(5)), the PMOS differential pair (DP-P), and
the cascoded current mirror (CM-N(2)), and the bias circuit
having primitives – the NMOS common-source amplifier (CS-
Amp-N), common-mode feedback (CMF), the current reference
(Ibias), and various passives (R, C, CC-RC) along with the
bias circuitry.

Thus, our approach builds multiple levels of hierarchy with
sub-blocks and primitives in the hierarchy tree. Our recognition
algorithm processes primitives and sub-blocks hierarchically
to come to the point at which an entire circuit of this type is
recognized, and a hierarchy tree similar to Fig. 1(b) can be
built.

B. Outline of the approach

Our input is a SPICE circuit netlist, and a netlist for a library
of primitive templates. The overall flow of our approach is:
Netlist flattening: During preprocessing, we flatten the input
netlist of the system. We do this to bypass designer-specified
hierarchies, which are highly dependent on the choices of
individual designers: different design houses, or even different
designers within the same house, may create different hierarchy
styles. Flattening allows our approach to be universal and

independent of designer idiosyncrasies, and allows us to
integrate design constraints (e.g., layout constraints) into the
recognized blocks in a consistent manner. Beyond the issue
of consistency, it should be noted that hierarchies that are
logical to the netlist designer may not be the most logical
for further optimization steps such as layout automation, e.g.,
passives have large dimensions as compared to active devices
and need to be placed separately for matching constraints, but a
schematic designer may create a hierarchies that keeps together
the passive and the switches controlling them. Preprocessing
also identifies netlist features that help performance but do not
affect functionality (and can be disregarded during recognition)
– the use of parallel transistors for sizing, series transistors
for large transistor lengths; identification of transistor source
and drain nodes using voltage levels; the presence of dummy
transistors, decaps, etc.
GNN-based recognition: We create a graph representation of
the flattened netlist and identify sub-blocks using a GNN-based
approach (Section III) for approximate subgraph isomorphism.
The output of this stage annotates nodes of the netlist as being
part of specific sub-blocks. Note that it is possible for graph
vertices to belong to multiple sub-blocks, e.g., a net that is an
output of one sub-block may be an input of another. At this
level of abstraction, there is substantial scope for variation in
the way designers build circuits. The GNN recognizes features
at various levels and identifies subcircuits corresponding to
known functionalities, even under design style variations.
Primitive annotation: We take each sub-block and recursively
identify lower-level blocks primitives within it. At the lowest
level, primitives are detected using an exact graph isomorphism
approach rather than a GNN: the element-level structure of
primitives is invariant across circuits and we may work with a
library of patterns that can be recognized using exact subgraph
isomorphism (Section III-D).
Postprocessing: After primitive annotation, we use postpro-
cessing to determine which primitives are an integral part of a
specific unit, and which are auxiliary to the unit (e.g., input

3

buffers) and can be separated. This step is necessary because
any neural network based approach can never be 100% accurate
under a limited training set. Even with a rich training set, we
run the risk of overfitting if we attempt to capture every possible
detail in every sub-block variant. We show in Section VI how
simple postprocessing can enhance recognition accuracy to
very high levels (100% for all of our testcases).

Each recognition step help in providing a set of substructures
that can be transmitted to a placement/routing algorithm
to be independently placed. Moreover, after recognizing a
substructure, it is easy to annotate it with any geometric
constraints (e.g., symmetry, matching, or common centroid)
that must be honored by layout tools.

C. Graph representation of the netlist

We represent an element-level circuit netlist as an undirected
bipartite graph G(V,E,R), where V is the vertex set, E is the
edge set, and R is the set of edge relations. The set of vertices
V can be partitioned into two subsets, Ve, corresponding to the
elements (transistors/passives) in the netlist, and Vn, the set of
nets. For each edge (vi, vj) ∈ E, one of vi of vj lies in Ve
and the other in Vn. Each device vertex stores the information
related to the type of a device (e.g., NMOS, PMOS, resistor,
capacitor) and related device properties, and each net vertex
stores information about net type (e.g., ports, signal, power,
and ground). A net may be connected to different terminals
of a transistor (source, drain, and gate) or a passive device:
this information is stored in a relation rij ∈ R associated with
the edge (vi, vj) ∈ E, and is used to infer disparate circuit
functionality.

In an analog circuit, a connection between terminals of the
same device, e.g., a drain-gate connection of M0 in Fig. 2(a),
has an important functionality. Using separate vertices for nets
and elements provides us a graph representation without any
self-loop; in contrast, using element vertices only would result
in a self-loop. The ability to handle a circuit graph without
creating self-loops is an important feature of this representation:
most GNN methods add a self-loop to all the vertices in a
graph [11], which allow the GNN to include features of the
vertex while calculating its embeddings. In general, the graph
representation used in GNNs allows for only one self-loop, and
any preexisting self-loops in the graph are removed. This can
cause a loss of a critical information in the circuit representation
if only element vertices are used: our model with separate net
and element vertices eliminates this problem.

In one representation, when nets are connected to multiple
terminals of the same device, e.g., net D0 is connected to
drain as well as gate of transistor M0 in Fig. 2(a), each
connection can be represented as a single edge with a label
(e.g., {D, G}). These edge labels can be converted directly to an
edge weight [12] and trained using standard GNN approaches
(Section III-B). We also use this representation for identifying
simple primitives using subgraph isomorphism (Section IV).
An alternative representation for a circuit is in the form of a
multigraph [19], [25]: this is a graph that can have multiple
edges of various edge types between pairs of vertices. As we
will show, in our context, the different types of edges may

correspond to each device terminal connection that is connected
to a net. This representation allows a GNN (Section III-C) to
learn from each edge type separately.

S

D1

M1M0

D0

S

D1

M1M0

D0

Current mirror

D1

D0

S

M0

M1

{D,G}

{G}

{D}

{S}

{S}

D1

D0

S

M0

M1

{D,G}

{G}

{D}

{S}

{S}

Labeled graph Multigraph

Edge types

D1

D0

S

M0

M1

D1

D0

S

M0

M1

{D} {G} {S}{D} {G} {S}

(a) (b) (c)

Figure 2: (a) An NMOS current mirror primitive, CM-N(2), with
two transistors. (b) Its representation as a bipartite graph with labeled
edges. (c) Its multigraph representation with color coded edges.

Vip Vin

VopVon
Id

Diff pair

Current Mirror

M0 M1

M2 M3

R4 R5

{D} {G} {S}

Vbn

Gnd

Vdd

Vbn

Id

Gnd

M0

M1

{D,G}

{G}

{D}

{S}
{S}

Von

Vin

Vip

Vdd

Vop

M3

M2

R5

R4

{S}

{S}
{G}

{G}

{P}

{P}
{D}

{D}

{P}
{P}

Vbn

Id

Gnd

M0

M1

Von

Vin

Vip

Vdd

Vop

M3

M2

R5

R4

Edge types

(a) (b) (c)
{P}

Figure 3: (a) A differential OTA (for simplicity, body connections
are not shown). (b) Its bipartite graph, showing the subgraph that
can be recognized as a current mirror (for clarity, edge labels are not
shown).

Fig. 2 illustrates an example of a current mirror primitive
with two transistors, M0 and M1, and the edge labeled graph
(Fig. 2(b)) as well as the multigraph (Fig. 2(c)) corresponding
to this structure. In both graphs, the vertices on the right
represent Ve and vertices on the left represent Vn. Fig. 2(b)
shows the edges connecting the vertices of the graph and the
edge labels represent the terminals they are connected. For
example, the connection between net vertex D0 and element
vertex M0 is represented by an edge between these vertices
in the graph, and the edge is labeled as {D, G}, representing
the drain and gate terminals of transistor M0 connected to
the net D0. Fig. 2(c) shows a multigraph representation of
the same graph where, instead of multiple edge labels on one
edge, multiple edges of different types, corresponding to (drain
(blue), gate (red), and source (green)), are defined. Similar
approaches can be used for larger structures: Fig. 3 shows a
differential OTA without bias details, its bipartite graph with
edge labels, and the multigraph representation. Here, we also
show passive devices (resistors); edges connected to passive
devices are labeled as {P} (orange).
Vertex features: Our implementation associates vertices in
the graph with 18 features and four edge types are considered

4

based on their connection to the drain, gate, or source terminals
of a transistor or connection to a passive device terminal:

• 6 features that annotate the vertex type, e.g., whether it is
an NMOS/PMOS transistor, resistor, inductor, capacitor,
and net.

• 9 features that denote the type of net – input, output, bias
signal, enable, io port, antenna (for RF Receivers), clock,
power, and ground.

• 3 features corresponding to size of the devices. We
normalize the size of devices in a circuit and classify
them as low, medium, or high (e.g., this can be used to
distinguish a DC-DC converter from a filter since the
former uses much larger capacitors).

III. GNN BASED RECOGNITION

A. Overview of GNNs

GNNs are learning models that are specific to graph data
structures. Recent advances in GNNs have shown remarkable
results on graph-structured data such as chemical compounds,
social networks, and circuits. The input to a GNN is a graph
and the vertex features. From this representation, GNNs extract
the graph structure information in form of vertex or graph
embeddings, i.e., vertices close to each other in the graph must
be close to each other in the embedding space. Similar to
convolutional neural networks (CNNs) that operate on image
data, GNNs learn the embeddings of a vertex in the graph by
aggregating information from nearby neighbors and the vertex
embeddings. Based on this embedding, a GNN can achieve
good separation between the feature representations of vertices
in a graph.

Using these embeddings, extracted directly from the graph
structure, GNNs can be generalized to perform inference on
previously unseen graphs.

ChebNet [10], which was inspired by the graph Fourier
transform, is one of the early works in this area. It proposes a
spectral graph convolution operation that is similar to the con-
volutions used in CNNs. In this context, spectral convolutions
are defined as the multiplication of a signal (vertex features)
by a kernel made of Chebyshev polynomials of the diagonal
matrix of Laplacian eigenvalues. These Chebyshev polynomials
can be approximated using a truncated expansion. In particular,
a Kth-order polynomial acts as a spectral filter that extracts
the information from a local neighborhood consisting of all
vertices that are up to K edges away in the graph.

Like ChebNet, other early GNN models such as the Graph
Convolutional Network (GCN) [11], GraphSAGE [27], and
Graph Attention Network (GAT) [28], focused on vertex
features and considered all edges to be of identical types.
Variants such as RGCN [29] and RGAT [30], extended the
principles of GNNs, which operate on graphs, to multigraphs.
These methods learn embeddings on each relation (edge type)
individually and then aggregate these embeddings together.
These multigraph models have been used on knowledge graphs
and achieved significant performance improvements [29]. In
this work, we compare the use of multiple GNN architectures
and see a notable improvement in results using multigraphs.

A high-level view of an embedding update method for a
GNN layer on multigraphs is shown in Fig.4. Approaches
for computing the vertex embedding can be divided into two
stages. In the first stage (aggregation), the embedding from
the neighbors of the vertex are aggregated using an aggregator
(green box), separately for each edge relationship. In the
second stage (accumulation) the aggregated embeddings are
accumulated using different operators (orange box), such as
mean or concatenation. These combined embeddings are then
passed through an activation function to obtain the updated
embedding for each node.

D1

D0

S

M0

M1

D1

D0

S

M0

M1

D1

D0

S

M0

M1

D1

D0

S

M0

M1

D1

D0

S

M0

M1

D1

D0

S

M0

M1

F(.)

{D}

{G}

{S}

Multigraph

Edge types

D1

D0

S

M0

M1

D1

D0

S

M0

M1

{D} {G} {S}

D1

D0

S

M0

M1

D1

D0

S

M0

M1

{P}

{P}

Figure 4: Overview of computing the update of a single graph node
embeddings. Activations from neighbors (green) are gathered for each
relation type individually. These activations are then accumulated
(orange) and passed through an activation function which is used to
update the vertex embeddings (red). *We also consider edge types
corresponding to passives which has not been shown here due to
absence of passives in this circuit.

A detailed explanation of various GNN models is provided
in the next two subsections.

B. GNNs on simple graphs

GNN models on simple graphs consider all edges to be of same
type, and thus have a common aggregation stage, without a
separate accumulation stage. For each model, Table II provides
the mathematical computations in the aggregation step. In the
table, AGGi is the function that aggregates embeddings from
the nearest neighboring vertex set N(i) of a vertex vi; hj ∈ RF

refers to the embeddings of dimension F of a vertex vj ∈ N(i);
W ∈ RF×F is a trainable parameter corresponding to every
node; Ci,j is a normalization coefficient; and b corresponds
a bias term. The result of accumulation, ACCi = AGGi, for
this class of GNN models.
GCN. In a GCN [11], the K−localized Chebyshev spectral
filters in ChebNet are extended to a first-order filter with
K = 1, thus limiting the feature extraction to the nearest
neighbors. This makes GCNs much more computationally
efficient than ChebNet. Multiple GCN layers can be stacked
to extract information from a larger neighborhood, where the

5

Table II: A summary of operations for various GNNs that operate on graphs and multigraphs.

GNN method Aggregation method Accumulation method
Fo

r
gr

ap
hs

GCN [11] AGGi = b+
∑

vj∈N(i)
1

cij
Whj ACCi = AGGi

GraphSAGE-pool [27] AGGi =W ′ · concat (hi, max(hj ,∀vj ∈ N(i)) + b) ACCi = AGGi

GAT [28]
ei,j = LeakyReLu(−→a T concat(Whi,Whj))

αi,j = softmaxj(ei,j)
AGGi =

∑
vj∈N(i) αi,jWhj

ACCi = AGGi

Fo
r

m
ul

tig
ra

ph
s RGCN [29] AGGi,r =

∑
vj∈N(i)r

1
|Nr(i)|Wrhj ACCi =W0hi +

∑
r∈R AGGi,r

GraphSAGE-pool+ [13] AGGi,r =W ′
r · concat (hi, max(hj , ∀vj ∈ Nr(i)) + b) ACCi =W ′ · concat(

∑
r∈R AGGi,r, hi + b)

RGAT [30]

ei,r,j = −→a T concat(Wrhi,Wrhj)

αi,r,j = softmaxj(ei,r,j) [WIRGAT and ParaGraph]
or, αi,r,j = softmaxr,j(ei,r,j) [ARGAT]
AGGi,r =

∑
vj∈Nr(i) αi,r,jWrhj

ACCi =
∑

r∈R AGGi,r [WIRGAT, ARGAT]
or ACCi =W ′ · concat(

∑
r∈R AGGi,r, hi + b)

[ParaGraph]

addition of each layer increases the radius of the region from
which information is extracted by 1.

The aggregation function is shown in Table II. The normaliza-
tion coefficient Ci,j is defined as

√
|N(i)||N(j)| where |N(i)|

and |N(j)| are the degree of vertices vi and vj , respectively.
Passing AGGi through a ReLU activation function provides
the updated embedding of a vertex.
GraphSAGE. GraphSAGE [27] leverages a convolutional
aggregator in the spatial domain to approximate the localized
filters. It proposes multiple aggregation filters such as mean,
LSTM, and pool. We use the max-pool filter in our evaluation
as it is shown to have better accuracy. The vertex embeddings
are updated by concatenating (using the “concat” operator) the
embeddings with the aggregated neighbor embeddings. This
is similar to a skip connection between different layers of the
GraphSAGE algorithm. These concatenated embeddings are
then fed through a fully connected layer W ′ ∈ RF×2F, which
transforms the representations to be used at the next step of
the algorithm. GraphSAGE also adds a neighborhood sampling
method which improves its scalability for graphs with a large
number of neighbors.
GAT. Both GCN and GraphSAGE consider all edges to be
of identical importance, and therefore the importance of the
neighborhood is dependent on the graph structure. Specifically,
higher degree nodes are generally observed to achieve higher
accuracy in mean-based aggregators than lower degree nodes.
This issue is resolved using attention-based weights in GAT [28]
networks, which compute the importance of each neighbor of
a vertex implicitly using attention weights. A relative attention
score, αi,j , is computed based on vertex embeddings, ei,j , using
a softmax function Pi(

−→a) = eai∑
k eak

. A updated embedding
is computed using a weighted mean of the neighborhood
embeddings, where αi,j operates as weight of the neighbor.

C. GNNs on multigraphs
The models built for simple graphs considered all edges of
a graph to be same type, but cannot be directly used for
multigraphs. Recall that for our problem, the GNN must
differentiate, for example, between the connections of a
net to the drain, source, and gate of a transistor, and in
order to consider such relationships, we employ a multigraph
(Section II-C) to represent a circuit. The RGCN [29] and
RGAT [30] models extend the principles from GCN and GAT to

multigraphs whose edge relationships are based on which port
of a device a net is incident on. An extension of GraphSAGE
that provides the flexibility to be applied to multigraphs is
provided in [13]. These algorithms transform each neighbor
of a graph vertex in terms of the relation on the edge, and
use multiple adjacency matrices corresponding to each edge
relationship.

In the table, AGGi,r is the aggregated embedding from the
nearest neighboring vertex set N(i) of a vertex vi correspond-
ing to each relation type; hj ∈ RF refers to the embeddings
of dimension F of a vertex vj ∈ N(i); Nr(i) is the set of
neighbors of vertex i with relationship r ∈ R; Wr ∈ RF×F is
a relation-specific trainable parameter corresponding to every
node; W ′r ∈ RF×2F is a trainable parameter corresponding to
concatenated features; and b is a bias term.
RGCN. For multigraphs, RGCN applies different weight
matrices to different relational edge groups and aggregates
each group independently. In Table II, |Nr(i)| is used as for
normalization of weights, and W0 is a trainable parameter
corresponding to self-loops introduced in the graph. RGCN also
introduces a basis-decomposition method (not shown in table)
for regularization to reduce overfitting in cases of large number
of relationships between nodes. As the number of edge types
for our graphs is not large, we do not observe this overfitting
problem even without the use of basis-decomposition.
GraphSAGE+. (HinSAGE) is an extension of the GraphSAGE
algorithm for relational data. We use the GraphSAGE-pool
aggregator for each relation individually and then use a mean
for accumulating embeddings corresponding to each relation.
These accumulated embeddings are again concatenated with the
vertex embeddings, and a fully-connected layer W ′ is applied
to convert the 2F-dimensional concatenated embeddings to
F-dimensional vertex embeddings. HinSAGE also provides the
option of using other concatenation variations such as full,
partial, and none. In this work, we choose the partial method
for our comparison.
RGAT. Relation Graph Attention networks (RGAT) intro-
duces two attention methods, Within-Relation Graph Attention
(WIRGAT) and Across-Relation Graph Attention (ARGAT),
extending attention mechanisms to the relational graph domain.
In WIRGAT, once the neighborhood embeddings, ei,r,j , are
computed for each neighbor with relation r, a softmax is taken
over each ei,r,j matrix for each relation type separately to

6

form the attention coefficients αi,r,j ; in ARGAT, the softmax
is taken across all edges independent of relation types. Next,
the relative normalization attention coefficients, αi,r,j , compute
a linear combination of all embedding from the neighbors to
get the intermediate embeddings for each relation type. During
the accumulation stage, the embeddings from different relations
are aggregated and passed through a ReLU activation function
to obtain the updated embeddings.

ParaGraph [19] uses the key ideas of RGCN, GraphSAGE,
and GAT to predict net parasitics. During the accumulation
stage, it uses a concatenation of the sum of neighborhood
embeddings with the vertex embeddings which are passed
through a linear transformation using a fully connected layer
(W ′ ∈ RF×2F) and ReLU activation function to get the final
embeddings.

D. Annotating the identified sub-blocks

As described in Section II-C, the circuit to be annotated can
be represented in the form of a graph or multigraph. The task
of annotation requires the vertices and edges of this graph to
be classified as belonging to specific analog sub-blocks. In
our work, we use the GNN algorithms described previously in
this section to classify vertices in the graph as members of a
specific sub-block. The sub-blocks identified by the GNN have
known functionalities, and are typically associated with a set
of specific constraints. For example, an OTA layout should be
symmetric about a differential pair axis; it is vital for an LNA
to be placed close to the antenna; devices in RF blocks such as
LNAs and mixers need guard rings for isolation; oscillators and
BPFs must be symmetric about a cross-coupled transistor pair.
Moreover, recognizing the class of circuit brings forward other
important constraints, e.g., if a sub-block is recognized as part
of a wireless circuit, minimization of wire lengths is important
due to the sensitivity to parasitics. Additionally, recognizing a
sub-block enables the ability to provide performance constraints
on that block: from the system-level constraints, we may
infer block-level constraints, e.g., we may place constraints
on parameters such as the gain, bandwidth, and offset on
an OTA sub-block. During layout, this places constraints on
the allowable wire parasitics on sensitive nodes of this sub-
block [31]. Therefore, for every known category of blocks, it is
possible to associate the recognized block with a set of layout
constraints based on its functionality.

For the sample and hold circuit example shown in Fig. 1(c),
the GNN classifies the nodes of the graph into two classes: bias
nodes and OTA nodes. The results after GNN classification
are shown in Fig. 5. Most of the nodes are identified correctly,
except the resistor and capacitor connected from Vo1 and
Vo2, and these misclassifications are rectified during the
postprocessing step explained in Section V. After identifying
the nodes in these sub-blocks, we identify the primitives using
a library-based approach, as explained in the next section.

IV. ANNOTATING PRIMITIVES

As described in Section III-D, once a sub-block is identified,
the next step in the hierarchy is to determine the primitives
that compose the sub-block. In our approach, we perform this

Figure 5: Graph nodes classified by the GNN as belonging to an OTA
or a bias circuit. Green circles highlight the correct OTA classification,
orange circles highlight the correct bias classification, and red circles
show the OTA nodes that are misclassified as bias nodes.

recognition by matching the nodes of the circuit graph to
those of predefined primitives. The major difference between
primitive identification and sub-block identification is that
primitives are fundamentally much simpler than sub-blocks:
they contain fewer elements and have fewer variants. As a result,
algorithmic graph-based matching techniques are adequate
for identifying primitives, and GNN-based methods are not
necessary at this level of hierarchy.

We use a library of 21 basic primitives from ALIGN [20],
[21] that are building blocks for larger sub-blocks. This list
of primitives is derived from previous works in this field [32],
[33] and some new structures encountered in testcases. The
primitives are specified as SPICE netlists, enabling a user to
easily add new primitives to the library. For each primitive,
we perform a one-time translation to a graph (Section II-C).

A. Identifying primitives

The problem of identifying primitives within a sub-block
corresponds to performing subgraph isomorphism checks
between the sub-block graph G and pattern graph Gi for every
element i of a library of primitives. For example, the current
mirror primitive of Fig. 2 is a subcircuit of the OTA, and
correspondingly, the graph of the CM is a subgraph of the
OTA. This is indicated by the blue edges in the Fig. 3, which
match Fig. 2.

For the sample and hold circuit example as shown in Fig. 1(c),
we identify the following primitives – one CM-P(5), one DP-P,
two CC-RC, one CM-N(2), two CS-Amp-N, one VR-N(CB),
and one CMF[SC] – as highlighted in Fig. 6.

The subgraph isomorphism problem is not known to be NP-
complete, but no polynomial time solution is known for the
general isomorphism problem. This problem is speculated to
be in the NPI class of intermediate difficulty [34]. We use VF2,
an established graph matching algorithm [35]. This method
has a worst-case complexity of Θ(n!n) but for the general
subgraph isomorphism problem, where n is the number of

7

Figure 6: Primitives annotated in each sub-block identified by the
GNN classifier.

vertices, for our problem where the library subgraph to be
matched has O(1) diameter and O(1) degree, the complexity
is O(n). Specifically, the complexity of VF2 can be estimated
by calculating the computation required for calculating the
next candidate pair P (s) of nodes (p, q) from two graphs and
determining the semantic feasibility of the new pair. Computing
the next pair takes O(N1 +N2) time where N1 and N2 are the
sizes of the original graph and the subgraph. Since N2 = O(1),
this becomes O(N1). The computation of semantic feasibility
depends on the number of edges incident on nodes p and
q, which is O(1) for a bounded degree graph. Thus, for our
problem, VF2 has O(n) complexity.

B. Layout constraint annotation

The primitive library allows designer annotation of basic
constraints. For instance, a symmetry and matching constraint
can be set at the primitive level for a differential pair (DP)
primitive. These geometric constraints can be transmitted to
a layout generator and used to identify further higher-level
symmetries involving groups of primitives or sub-blocks, e.g.,
in Fig. 1, the primitives for CM-N and DP in Stage 1 can be
annotated with matching/common centroid constraints. When
propagated to the next level, these two may be combined to
ensure a common symmetry axis for both structures.

V. POSTPROCESSING

In general, GNNs cannot guarantee 100% accuracy in their
classification results. Rather than placing the full burden of
recognition on the GNNs, we use an engineering approach that
allows the GNN to perform a large fraction of the recognition
task and then uses a set of simple postprocessing heuristics
to complete the annotation. As we will see, a simple set of
postprocessing steps brings the recognition accuracy to close to
100% for the evaluated circuits. Our postprocessing operation
uses simple graph-based heuristics after GCN classification in
which we associate the nodes that belong to the same channel-
connected component (CCC)1 with a sub-block. This idea of

1A channel-connected component is a cluster of transistors connected at the
sources and drains (not counting connections to supply and ground nodes).
It can be identified using simple linear-time graph traversal schemes [36].

using CCC is driven by the observation that the considered
hierarchies are separated by voltage signals connected to
gate of transistors as current signals across hierarchies can
create mismatch which are a major concern for analog designs.
Capacitor connections are also considered as endpoint of CCC.

After postprocessing, we cluster nodes with similar labels
into sub-blocks and identify all primitives within a using graph-
based approaches as described in Section IV for extracting
primitives within a sub-block. All primitives that are an integral
part of a sub-block (e.g., a differential pair in an OTA) are
added to the hierarchy tree at the same level; a primitive that
can be considered a stand-alone unit (e.g., an input buffer
for an oscillator, encountered in our phased array example
in Section VI) is separated from the sub-block and listed as
a stand-alone primitive in the hierarchy tree. Together, these
heuristics solve most of the misclassifications in the training
and test set for the given class of circuits.

For the sample and hold circuit example in Fig. 1(c),
the results after GNN classification (Fig. 5) consist of four
misclassified nodes in the graph, corresponding to the encircled
resistor and capacitor elements. These nodes are connected
to Vo1 and Vo2 pins at the drain terminal of the differential
pair primitive. Based on CCC rule i.e., the nodes connected to
drain/source terminal of the transistor are part of same cluster
these nodes and are considered as part of OTA sub-block. The
final hierarchy for layout generation is shown in Fig. 1(b) and
Fig. 1(c).
Generating layout: To illustrate a use case for circuit anno-
tation, we transmit the results of circuit recognition to the
ALIGN [37] custom layout generator under the ASAP7 [38]
PDK. The hierarchies identified by our algorithm are used
by the layout tool to construct layouts for primitives, which
are assembled into layouts for larger blocks. For example, by
clustering the OTA circuit (highlighted in dotted green box)
vertices together and annotating the differential pair and current
mirror primitives, we build a hierarchical representation that
generates layouts for these primitives and assembles them to-
gether. The generated layout is shown in Fig. 7. The annotation
helps in identifying and clustering the central annotated OTA
sub-block shown in the figure. Based on identification of the
OTA sub-block, we generate symmetry constraints for the OTA
sub-block with a common axis of symmetry (dotted red line).
The symmetry and proximity constraints are first detected at
the primitive level and propagated to other levels of hierarchy
(Section IV(B)), creating a common axis of symmetry for the
entire layout. The symmetric capacitors inside the OTA are
laid out in a common centroid fashion. The bias circuit does
not require matching and is optimized for area and wirelength.

VI. EXPERIMENTAL RESULTS

Our flow is implemented in Python 3.8.0 including a Ten-
sorFlow library for training and testing of the GNN, and the
scikit-learn library for sparse matrix computation.

A. Datasets

The dataset for the GNN was taken from several sources,
including standard textbooks [3], [39] and papers in the

8

Figure 7: Layout of the sample and hold circuit in Fig. 1(c) using
the ALIGN layout generator [37], guided by the hierarchy extracted
using our approach.

literature (e.g., [40]–[43]). We chose the SPICE format because
it is the most natural and universal mode in which an analog
designer (who typically does not have experience with graph
abstractions) may use the software can expand the training
set. Using these sources, two labeled datasets for OTA and
radio frequency (RF) sub-blocks have been created with
characteristics as listed in Table III. These benchmarks are
publicly available at [44]. The OTA-bias dataset consists of
multiple OTA configuration with appropriate signal and bias
subcircuit labels, while the RF-data dataset consists of different
RF circuits, with labels attached to elements that compose
low noise amplifiers (LNAs), mixers, oscillators (OSC), and
baseband amplifiers. The dataset is split into an 80% : 20%
ratio for the training set and validation set.

Table III: Statistics of our dataset.

Datasets # Circuits # Nodes # Labels # Features
OTA-bias 1026 52346 2 18
RF-data 2597 77918 2 or 3 or 4 18

The input to the GNN is the circuit graph, G(V,E,R), in
the form of sparse matrix and an n × d matrix of features,
where d is the number of features. All these models work on
directed graphs but can be adapted to the undirected graph of
circuits by providing edges in both directions.

The task of the GNN is to (a) identify and extract such

features, (b) compose a combination of [possibly approximate
versions of] these features from the training set to infer circuit
functionality as one of several trained classes of circuits, and
(c) identify the vertices (primitives) and edges (nets) that belong
to the recognized class.

B. Architecture and hyperparameter optimization

All of the GNN architectures listed in Table II are evaluated
to determine their performance on our annotation problem.
The implementation of the algorithms is similar to their
descriptions in the source references, with minor changes and
specific choices of settings. This inludes the type of layers,
activation functions, regularization, and the choice of dropout.
For GraphSAGE, as suggested in [27], we use max-pooling for
aggregation. GraphSAGE also proposes a sampling strategy
(randomly selecting 20 neighbors): this can be helpful for
larger graphs but does not provide any improvements for the
analog circuits, where the degree of a vertex is typically small
(less than three), and therefore we do not use sampling. For
a balanced comparison, we use same learning rate (0.001),
optimizer (Adam), error function (log softmax), initialization
weights (from [45]), learning rate decay (none), maximum
number of training epochs (200), pooling layers (none), and
batch size (1).
Comparison metric: As the size of different classes are not
balanced, we use the F1-score as a metric for comparison. This
metric is defined as

F1-score =
2 · Precision · Recall
Precision + Recall

(1)

where Precision and Recall are defined as:

Precision (PPV) =
TP

TP + FP
(2)

Recall (TPR) =
TP

TP + FN
(3)

where TP is the number of true positives, FP is the number
of false positives, and FN is the number of false negatives.
We also calculate F1-scores after postprocessing (“F1-p”) and
analyze them in the next section.
Baseline: As a baseline, we use GANA from the preliminary
conference version of this work [12]. This approach includes
pooling layers with a ChebNet convolution, with a K-localized
spectral Chebyshev filter for convolution in the spectral domain,
derived from [10], setting K = 6. In this work, we do not use
the pooling layers as they do not have any trainable parameters,
and thus do not provide any significant improvements.
Number of layers optimization: The models consist of multiple
stacked layers of GNN methods with ReLU activation function.
We calculate the most efficient number of GNN layers as
evaluated based on grid search. Fig. 8, shows a comparison of
the F1-score for various GNN approaches for different numbers
of layers. For enhanced readability of the figure, we only show
WIRGAT from the three RGAT methods (WIRGAT, ARGAT,
and ParaGraph).

As shown in Fig. 8, we see an improvement in results going
from a single layer to four layers; beyond this, increasing
the number of layers provides no significant improvement

9

in accuracy. The performance in node representation learning
remains the same or degrades as the graph convolutional models
become deeper. This matches the normal understanding of
GNNs, where the nearer neighbors have the most impact on a
node, and increasing the number of convolution layers results
in less distinguishable representations for nodes. Each graph
convolution layer acts as an aggregator of characteristics of
neighboring nodes, and adding too many layers over-smoothens
the output features [46]. Although some recent methods [47]
can use deeper models, they require larger training data – but
large training sets of analog circuits are not easily found in
the public domain.

of number of stacked GNN layers.png

Figure 8: Change in the validation accuracy for various GNN
architectures, on the OTA-bias dataset, as the number of stacked
layers is increased.

Table IV: Comparison of validation set F1-score and training runtime.

GNN methods OTA-bias RF-data
F1-score train-time F1-score train-time

GANA(K=6) 88.20± 0.31 203 min 87.61± 0.34 242 min
GCN 87.5± 0.29 81 min 85.36± 0.31 89 min
GraphSAGE 86.86± 0.36 62 min 86.51± 0.41 67 min
GAT 74.40± 0.23 105 min 76.46± 0.32 125 min
RGCN 89.18 ± 0.21 182 min 88.18± 0.27 198 min
GraphSAGE+ 92.31 ± 0.23 222 min 90.11± 0.28 246 min
WIRGAT 90.26 ± 0.25 224 min 88.16± 0.24 256 min
ARGAT 89.36 ± 0.24 298 min 87.26± 0.29 324 min
ParaGraph 89.24 ± 0.23 202 min 87.15± 0.28 227 min

The F1-scores corresponding to the best accuracy are listed
in Table IV. The upper box in the table corresponds to
graph-based architectures and the lower box to multigraph-
based architectures. A five-fold cross validation is used to
reduce the sensitivity to data partitioning. The mean and
variance of the scores are listed in the Table IV. The best
method in each box is highlighted in bold characters. For
graph-based architectures, we observe that the other candidate
approaches do not provide any noticeable improvement in the
F1-score over GANA. The GNN methods with edge weights
(GANA, GCN, GraphSAGE) performed better than native GAT,
which we found is due to extremely low scores for weight
initialization in GAT. For multigraph-based architectures, a
significant improvement is achieved over GANA, particularly
for GraphSAGE+. Comparing individual methods between

simple and multigraph approaches, we observe an improvement
from GCN to RGCN for the OTA-bias dataset. Between two
possible RGAT [30] accumulation mechanisms, WIRGAT and
ARGAT, we observed that WIRGAT performs better than
ARGAT, indicating that the edge relations are independent in
nature. The best results are obtained for GraphSAGE+, which
uses a concatenation of the embeddings from different relations:
therefore, we select it for final experimental evaluation in the
next section.

The improvements in accuracy can primarily be attributed
to a change from a bipartite graph representation to a bipartite
multigraph representation, which represents all connections to
a multipin element such as a transistor without weighting any
connection more highly than the others, as in GANA.

C. Experimental evaluation

To evaluate the complete annotation procedure (GraphSAGE+
with postprocessing), we apply it on multiple different analog
designs, as summarized in Table V. The five OTA test cases
(OTA1–5) and five receiver test cases (RF1–5) are different
variants of OTA and receiver circuits and are not included in
the training data. We also test our annotation scheme on, a
switched capacitor filter, a sample-and-hold circuit, a mixer-
first receiver with oscillator, and a phased array test case. These
examples are more complex systems that include OTA and RF
sub-blocks, respectively, and correspond to hand-crafted circuits
provided to us by designers. The GNN output is compared
against annotated solutions provided by human designers.

Table V: Statistics of the test dataset. For the set of five circuits
(min–max) is shown.

Datasets # Circuits # Nodes # Labels

OTA 5 22–38 2
Switched capacitor filter 1 58 2
Sample-and-hold 1 92 2

Receiver 5 64–92 3
Phased array 1 928 4
Mixer-first Rx with oscillator 1 64 3

The results on the designs from Table V are summarized in
Table VI. In the table, we compare the accuracy of our new
approach (GraphSAGE+) with GANA on specific circuits. We
also show F1-scores after postprocessing (Sec. V) in column
“F1-p” achieving close to 100% classification accuracy for
most of the designs. The OTA and receiver class designs are
separated by a double horizontal line. An analysis of our
results for annotating these complex circuits is provided in the
following paragraphs.
Switched capacitor filter (SCF): This circuit is taken from
our previous work [12]. It is similar to the sample-and-hold
circuit in Fig. 1(a) and contains 58 vertices (32 devices and
26 nets), including an OTA sub-block and switched capacitors.
The OTA sub-block used in this circuit is not seen by the
training set. The design netlist is initially flattened, and various
features such as the device type, connectivity information, and
sizing are extracted. As described in Step 1 in Section II-B,
a preprocessing step that involves ignoring (for recognition
purposes only) dummy devices and stacking of resistors,

10

Table VI: Comparison of GANA vs. our approach for subcircuit identification, mean recall (TPR), mean precision (PPV), F1-score, and
processed F1-score (F1-p) for various benchmark circuits.

Benchmark GANA This work (GraphSAGE-pool+)
Design # Devices # Nets TPR PPV F1-score F1-p Runtime TPR PPV F1-score F1-p Runtime

OTA1 12 14 0.91 0.86 0.88 1.00 3.5ms 0.87 0.90 0.88 1.00 5.7ms
OTA2 15 19 0.94 0.87 0.90 0.96 2.9ms 0.94 0.90 0.92 1.00 5.2ms
OTA3 17 22 0.93 0.78 0.84 0.94 3.0ms 0.93 0.90 0.91 1.00 5.3ms
OTA4 18 17 0.83 0.95 0.87 1.00 2.8ms 0.91 0.92 0.91 0.98 5.2ms
OTA5 24 19 0.95 0.87 0.91 0.98 3.2ms 0.97 0.88 0.92 1.00 5.4ms
SCF 32 26 0.94 0.92 0.93 1.00 4.1ms 0.92 0.98 0.94 1.00 6.1ms
Sample-and-hold 58 34 0.87 0.86 0.86 0.92 4.2ms 0.86 0.91 0.88 1.00 6.3ms

RF1 46 27 0.81 0.86 0.84 0.96 3.8ms 0.93 0.92 0.92 1.00 6.1ms
RF2 31 33 0.88 0.89 0.88 0.92 3.7ms 0.88 0.87 0.87 1.00 5.4ms
RF3 57 54 0.91 0.76 0.84 0.94 4.2ms 0.90 0.92 0.91 0.98 6.7ms
RF4 24 24 0.84 0.88 0.86 0.98 3.2ms 0.92 0.91 0.91 1.00 5.4ms
RF5 45 49 0.84 0.84 0.84 1.00 4.1ms 0.84 0.86 0.85 1.00 5.2ms
Phased array 546 382 0.78 0.76 0.77 1.00 6.8ms 0.88 0.86 0.87 0.98 12.1ms
Mixer-first Rx 64 32 0.88 0.92 0.90 0.98 4.2ms 0.98 0.89 0.94 1.00 4.3ms

capacitors, and transistors is performed. For the accuracy
calculation, we only consider device labels as nets can be
connected between different hierarchies, and thus can be a part
of multiple hierarchies.

Using our procedure, within the switched capacitor filter,
we identify the OTA sub-block and bias circuit sub-block.
We further identify primitives within the OTA and the bias
circuit. After GraphSAGE+ classification, one of the bias
nodes is misclassified as an OTA node but is rectified after
the postprocessing step, and 100% of all nodes are correctly
classified.
Sample and hold circuit: This circuit, shown in in Fig. 1(a),
contains 92 vertices (58 devices and 34 nets). The two-stage
of the OTA and the bias sub-block is identified using the
GraphSAGE+ and primitives such as CS-Amp-N, DP-P, CM-P,
CM-N, CC-[RC], CMF[SC] are identified during primitive
identification. The common-mode feedback circuit was unique
to this with no such data in the training set resulting in lower
accuracy after GNN-based recognition. After postprocessing,
based on the identification of CCCs, the CS-Amp-N transistors,
and CC-[RC] (compensation capacitors) are identified as part
of OTA signal path, while the CMF[SC] gets identified as
part of the bias-circuit thus providing us 100% classification
accuracy.
Phased array circuit: This test case consists of a phased array
system [48], with four beams is illustrated in Fig. 9, containing
a mixer (red), LNA (blue), oscillator (gray), and clock buffer
primitive (BUF) (violet) sub-blocks. The output corresponding
to each of the four beams feeds into baseband amplifiers (OTA).
The graph for the input netlist has 928 vertices (546 devices
(transistors and passives) + 382 nets), and the number of devices
in each sub-block is mentioned in the figure (two LNA devices
of size 39 each, two oscillators of size 32, two oscillators of
size 34, four clock buffers of size 14, four mixers of size 30,
and eight baseband amplifiers of size 20 (not shown)).

The GraphSAGE+-based classification identifies nodes be-
longing to LNA, mixer, baseband amplifier (OTA), and os-
cillator and passes these results through postprocessing and

primitive identification.
After postprocessing, BUF primitives are identified and a

separate hierarchy is created for them which boosts the F1-
score to 0.98. The remaining devices are the bias resistors,
which are connected to the output of mixer and are being
identified as part of the baseband amplifier. However, this
misclassification does not cause any impact on performance as
these large resistors are only used for biasing. All sub-blocks
(LNA, oscillator, baseband amplifiers, and mixer) inside the
dotted blue box of phased array system are highlighted in the
diagram. We create the next levels of hierarchy by identifying
primitives inside these sub-blocks.

In this circuit we see significant benefit of our new GNN flow
(F1-score: 0.87) compared to GANA (F1-score: 0.77) where we
were observing a misclassification of LNA and the oscillator
circuits because of similar topologies. In GANA the nodes
corresponding to these two sub-blocks were filtered during
postprocessing-II based on identifying the antenna port and
the oscillating signal at the oscillator nodes. In this approach,
we do not require the postprocessing II and these sub-blocks
are identified correctly during GNN.
Mixer-first receiver circuit: This circuit as illustrated in Fig. 10,
consists of a passive mixer [49] (dotted red), a coupled quadra-
ture local oscillator [39] (gray), and a baseband amplifier [50]
(green). The RF input directly feeds into the mixer. This circuit
consists of 64 devices (transistors and passives) and 32 nets the
number of devices in each sub-block is listed in the figure). The
GraphSAGE+-based classification identifies nodes belonging
to mixer, oscillator, and baseband amplifier (OTA). Our GNN
framework achieves a F1-score of 0.94. The resistor connected
to the input and output of the OTA is misclassifed as part of
mixer after GraphSAGE+-based classification but gets corrected
during post-processing generating correct labels for all the
devices.

Our annotation scheme is fast, and is dominated by the
runtime of the GNN (GraphSAGE+): in comparison, post-
processing time is negligible (less than 1ms for graphs with
less than a thousand nodes). We report numbers on the more

11

-1GHz 0 1GHz

-1GHz 0 1GHz

8 GHz

8 GHz 10 GHz

7GHz 9GHz 11GHz

7GHz 9GHz 11GHz

10 GHz

fLO fLO

fLO

Mixer[30]
Mixer[30]

Mixer[30]
Mixer[30]

LNA[39]

LNA[39]

LO[32] LO[34]

LO[32] LO[34]

fLO

BUF[14]BUF[14]

BUF[14]BUF[14]

Figure 9: Block diagram of a phased array system [48]. The numbers
in square brackets next to each sub-block indicate the number of
transistors+passives in it (e.g., the LNA has 39 devices/passives).

I+/-

DUTY CYCLE & CLOCK
BUFFER

fLO

CLK0

CLK180

CLK90

CLK270

CLK0 CLK90 CLK270CLK180

Q+/-

Mixer

Baseband
amplifier

Antenna

Quadrature
Local

Oscillator

OTA[8]

OTA[8]

LO[9]LO[9]

BUF[16]

Figure 10: Block diagram of a mixer-first receiver with oscillator [49].
As in Fig. 9, the numbers in square brackets refer to the number of
transistors+passives in each sub-block.

complex circuits on an Ubuntu host with a 2.6GHz Intel Core
i7 processor with 8 cores and 32GB RAM the procedure takes
6.1 ms for the switched capacitor filter circuit, 6.2 ms for the
sample-and-hold circuit, 12.1 ms for the phased array system,
and 4.3 ms for the mixer-first receiver.

VII. CONCLUSION

In this paper, a comparison of multiple GNN topologies have
been presented for the classification of analog circuits into a
multilevel hierarchy using a library-based primitive matching
and a GNN-based machine learning method. The GNN-based
approach can handle different design topologies of the same
sub-blocks and is demonstrated on a variety of testcases. The
method is more scalable than prior approaches and shows
success in classifying circuits into sub-blocks and creating
circuit hierarchy trees. This approach can be used to guide
optimization steps such as circuit layout, as demonstrated in
the case of a switched-capacitor filter. This approach can be
extended to a wide variety of circuit blocks, and the primary
effort required for this extension is the laborious task of curating
the training set for these new circuit blocks. This can be a
topic for future work.

REFERENCES

[1] J. Scheible and J. Lienig, “Automation of analog IC layout: Challenges
and solutions,” in Proceedings of the International Symposium on Physical
Design, 2015, pp. 33–40.

[2] R. A. Rutenbar, “Design automation for analog: The next generation
of tool challenges,” in Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, 2006, pp. 458–460.

[3] B. Razavi, Design of Analog CMOS Integrated Circuits, 1st ed. New
York, NY, USA: McGraw-Hill, Inc., 2001.

[4] T. Massier, H. Graeb, and U. Schlichtmann, “The sizing rules method for
CMOS and bipolar analog integrated circuit synthesis,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 27,
no. 12, pp. 2209–2222, 2008.

[5] M. Meissner and L. Hedric, “FEATS: Framework for explorative analog
topology synthesis,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 34, no. 2, pp. 213–226, 2015.

[6] R. Harjani, R. A. Rutenbar, and L. R. Carley, “A prototype framework
for knowledge-based analog circuit synthesis,” in Proceedings of the
ACM/IEEE Design Automation Conference, 1987, pp. 42–49.

[7] P.-H. Wu, M. P.-H. Lin, T.-C. Chen, C.-F. Yeh, X. Li, and T.-Y. Ho, “A
novel analog physical synthesis methodology integrating existent design
expertise,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 34, no. 2, pp. 199–212, 2015.

[8] K. Settaluri and E. Fallon, “Fully automated analog sub-circuit clustering
with graph convolutional neural networks,” in Proceedings of the Design,
Automation & Test in Europe, 2020, pp. 1714–1715.

[9] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” in IEEE Data Engineering Bulletin,
2017.

[10] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Advances in
Neural Information Processing Systems, 2016, pp. 3844–3852.

[11] T. Kipf, “Semi-supervised classification with graph convolutional net-
works,” arXiv:1609.02907, 2017.

[12] K. Kunal, T. Dhar, M. Madhusudan, J. Poojary, A. Sharma, W. Xu,
S. M. Burns, J. Hu, R. Harjani, and S. S. Sapatnekar, “GANA: Graph
convolutional network based automated netlist annotation for analog
circuits,” in Proceedings of the Design, Automation & Test in Europe,
2020, pp. 55–60.

[13] H. Wilson, “Heterogeneous GraphSAGE (HinSAGE),” https://github.com/
stellargraph/stellargraph, 2020.

[14] A. K. Sharma, M. Madhusudan, S. M. Burns, P. Mukherjee, S. Yaldiz,
R. Harjani, and S. S. Sapatnekar, “Common-centroid layouts for analog
circuits: Advantages and limitations,” in Proceedings of the Design,
Automation & Test in Europe, 2021, pp. 1224–1229.

[15] N. Karmokar, M. Madhusudan, A. K. Sharma, R. Harjani, M. P.-H.
Lin, and S. S. Sapatnekar, “Common-Centroid Layout for Active and
Passive Devices: A Review and the Road Ahead,” in Proceedings of the
Asia-South Pacific Design Automation Conference, 2022.

[16] Q. Zhang, https://github.com/USCPOSH/AMS KGD, 2019.
[17] H. Li, F. Jiao, and A. Doboli, “Analog circuit topological feature

extraction with unsupervised learning of new sub-structures,” Proceedings
of the Design, Automation & Test in Europe, pp. 1509–1512, 2016.

12

[18] G.-H. Liou, S.-h. Wang, Y.-y. Su, and M. P.-h. Lin, “Classifying analog
and digital circuits with machine learning techniques toward mixed-signal
design automation,” Proceedings of the International Conference on
Synthesis, Modeling, Analysis and Simulation Methods and Applications
to Circuit Design, vol. 15, pp. 173–176, 2018.

[19] H. Ren, G. F. Kokai, W. J. Turner, and T.-S. Ku, “ParaGraph: Layout
parasitics and device parameter prediction using graph neural networks,”
in Proceedings of the ACM/IEEE Design Automation Conference, 2020,
pp. 1–6.

[20] K. Kunal, M. Madhusudan, A. K. Sharma, W. Xu, S. M. Burns, R. Harjani,
J. Hu, D. A. Kirkpatrick, and S. S. Sapatnekar, “ALIGN: Open-source
analog layout automation from the ground up,” in Proceedings of the
ACM/IEEE Design Automation Conference, 2019, pp. 77.1–77.4.

[21] T. Dhar, K. Kunal, Y. Li, M. Madhusudan, J. Poojary, A. K. Sharma,
W. Xu, S. M. Burns, R. Harjani, J. Hu, D. A. Kirkpatrick, P. Mukherjee,
S. S. Sapatnekar, and S. Yaldiz, “ALIGN: A system for automating
analog layout,” IEEE Design & Test, pp. 8–18, 2021.

[22] B. Xu, K. Zhu, M. Liu, Y. Lin, S. Li, X. Tang, N. Sun, and D. Z. Pan,
“MAGICAL: Toward fully automated analog IC layout leveraging human
and machine intelligence,” in Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, 2019, pp. 1–8.

[23] K. Kunal, J. Poojary, T. Dhar, M. Madhusudan, R. Harjani, and S. S.
Sapatnekar, “A general approach for identifying hierarchical symmetry
constraints for analog circuit layout,” in Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, 2020, pp. 1–8.

[24] M. Liu, W. Li, K. Zhu, B. Xu, Y. Lin, L. Shen, X. Tang, N. Sun, and
D. Z. Pan, “S3DET: Detecting system symmetry constraints for analog
circuits with graph similarity,” in Proceedings of the Asia-South Pacific
Design Automation Conference, 2020, pp. 193–198.

[25] X. Gao, C. Deng, M. Liu, Z. Zhang, D. Z. Pan, and Y. Lin, “Layout
symmetry annotation for analog circuits with graph neural networks,” in
Proceedings of the Asia-South Pacific Design Automation Conference,
2021, pp. 152–157.

[26] H. Chen, K. Zhu, M. Liu, X. Tang, N. Sun, and D. Z. Pan, “Universal
symmetry constraint extraction for analog and mixed-signal circuits
with graph neural networks,” in Proceedings of the ACM/IEEE Design
Automation Conference, 2021, pp. 1243–1248.

[27] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Processing
Systems, 2017, pp. 1025–1035.

[28] P. Velikovi, G. Cucurull, A. Casanova, A. Romero, P. Li, and Y. Bengio,
“Graph attention networks,” arXiv:1710.10903, 2018.

[29] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. vanden Berg, I. Titov, and
M. Welling, “Modeling relational data with graph convolutional networks,”
in Lecture Notes in Computer Science, 2018, pp. 593–607.

[30] D. Busbridge, D. Sherburn, P. Cavallo, and N. Y. Hammerla, “Relational
graph attention networks,” arXiv:1904.05811, 2019.

[31] T. Dhar, J. Poojary, Y. Li, K. Kunal, M. Madhusudan, A. K. Sharma,
S. D. Manasi, J. Hu, R. Harjani, and S. S. Sapatnekar, “Fast and efficient
constraint evaluation of analog layout using machine learning models,”
in Proceedings of the Asia-South Pacific Design Automation Conference,
2021, pp. 158–163.

[32] M. Eick, M. Strasser, H. Graeb, and U. Schlichtmann, “Automatic
generation of hierarchical placement rules for analog integrated circuits,”
in Proceedings of the International Symposium on Physical Design, 2010,
pp. 47–54.

[33] M. P.-H. Lin, H.-Y. Chi, A. Patyal, Z.-Y. Liu, J.-J. Zhao, C.-N. J. Liu,
and H.-M. Chen, “Achieving analog layout integrity through learning and

migration invited talk,” in Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, 2020, pp. 1–8.

[34] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman
and Company, 1979.

[35] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)graph
isomorphism algorithm for matching large graphs,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 26, no. 10, pp. 1367–
1372, 2004.

[36] S. S. Sapatnekar, Timing. Boston, MA, USA: Springer, 2004.
[37] “ALIGN: Analog layout, intelligently generated from netlists,” Soft-

ware repository, accessed October 29, 2022., https://github.com/
ALIGN-analoglayout/ALIGN-public.

[38] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,
C. Ramamurthy, and G. Yeric, “ASAP7: A 7-nm FinFET predictive
process design kit,” Microelectronics Reliability, vol. 53, pp. 105–115,
2016.

[39] B. Razavi, RF Microelectronics, 2nd ed. Upper Saddle River, NJ, USA:
Prentice Hall Press, 2011.

[40] A. Bevilacqua and A. M. Niknejad, “An ultrawideband CMOS low-
noise amplifier for 3.1–10.6-GHz wireless receivers,” IEEE Journal of
Solid-State Circuits, vol. 39, no. 12, pp. 2259–2268, 2004.

[41] A. A. Abidi, “Direct-conversion radio transceivers for digital commu-
nications,” IEEE Journal of Solid-State Circuits, vol. 30, no. 12, pp.
1399–1410, 1995.

[42] M. P. Garde, A. J. Lopez-Martin, and J. Ramirez-Angulo, “Power-efficient
class-AB telescopic cascode opamp,” Electronics Letters, vol. 54, no. 10,
pp. 620–622, 2018.

[43] J. Haspeslagh and W. Sansen, “Design techniques for fully differential
amplifiers,” in Proceedings of the IEEE Custom Integrated Circuits
Conference, 1988, pp. 12.2/1–12.2/4.

[44] K. Kunal, https://github.com/kkunal1408/GANA circuit data, 2022.
[45] X. Glorot and Y. Bengio, “Understanding the difficulty of training

deep feedforward neural networks,” in Proceedings of the International
Conference on Artificial Intelligence and Statistics, vol. 9, 2010, pp.
249–256.

[46] S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph convolutional
networks: A comprehensive review,” Computational Social Networks,
vol. 6, no. 11, 2019.

[47] J. Godwin, M. Schaarschmidt, A. Gaunt, A. Sanchez-Gonzalez,
Y. Rubanova, P. Velikovi, J. Kirkpatrick, and P. Battaglia, “Simple GNN
regularisation for 3D molecular property prediction and beyond,” in
Proceedings of the International Conference on Learning Representations,
2022.

[48] Q. Meng and R. Harjani, “A 4GHz instantaneous bandwidth low
squint phased array using sub-harmonic ILO based channelization,” in
Proceedings of the European Solid State Circuits Conference, 2018, pp.
110–113.

[49] J. Poojary and R. Harjani, “A 1-to-3GHz co-channel blocker resistant,
spatially and spectrally passive MIMO receiver in 65nm CMOS with
+6dBm in-band/in-notch B1dB,” in Proceedings of the IEEE International
Solid-State Circuits Conference, vol. 64, 2021, pp. 96–98.

[50] C. Andrews and A. C. Molnar, “A passive mixer-first receiver with
digitally controlled and widely tunable RF interface,” IEEE Journal of

Solid-State Circuits, vol. 45, no. 12, pp. 2696–2708, 2010.

13

