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Abstract—Power delivery network (PDN) design is a nontrivial,
time-intensive, and iterative task. Correct PDN design must
account for considerations related to power bumps, currents,
blockages, and signal congestion distribution patterns. This work
proposes a machine learning based methodology that employs a
set of predefined PDN templates. At the floorplan stage, coarse
estimates of current, congestion, macro/blockages, and C4 bump
distributions are used to synthesize a grid for early design. At
the placement stage, the grid is incrementally refined based
on more accurate and fine-grained distributions of current and
congestion. At each stage, a convolutional neural network (CNN)
selects an appropriate PDN template for each region on the
chip, building a safe-by-construction PDN that meets IR drop
and electromigration (EM) specifications. The CNN is initially
trained using a large synthetically-created dataset, following
which transfer learning is leveraged to bridge the gap between
real-circuit data (with a limited dataset size) and synthetically-
generated data. On average, the optimization of the PDN frees
thousands of routing tracks in congestion-critical regions, when
compared to a globally uniform PDN, while staying within the
IR drop and EM limits.

I. INTRODUCTION

Power delivery network (PDN) design is a critical stage of
physical design that affects circuit functionality, performance,
and reliability. The PDN is responsible for carrying voltage
from the input-output pins (IOs) of the chip to every transistor
on the chip. The task of PDN synthesis and optimization
is nontrivial and must account for considerations related to
current patterns, C4 bump locations, redistribution layers
(RDL), IPs/macros and PDN blockage locations, estimated
signal congestion patterns, power domains, and design rule
constraints (DRCs). An optimized PDN must satisfy several
specifications: IR drop constraints that bound the allowable
voltage drop from the pads to each node; electromigration (EM)
constraints that limit the maximum current density in wires;
and congestion constraints that balance the resources used by
the PDN with those required by contending signal/clock nets.

A PDN that uses a larger fraction of the available intercon-
nect resources will have a lower equivalent resistance between
the transistor and IOs, allowing power integrity constraints
to be more easily satisfied. However, PDNs compete with
critical signal/clock nets for scarce on-chip wiring resources,
and a dense PDN may not leave sufficient resources for routing
critical signal or clock nets. Therefore, interconnect planning
is key to design closure. This work addresses the optimization
problem of constructing a PDN that uses minimal wiring
resources, incorporating signal congestion metrics to account
for the requirements of signal nets while meeting all constraints.
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Figure 1: A template-based PDN with piecewise uniform pitches.

Several optimization techniques that aim to build optimized
and electrically correct PDNs have been proposed in the
past few decades. These methods are primarily based on
heuristics or optimization formulations, e.g., the works [1], [2]
proposed linear and nonlinear programming based optimization
solutions, respectively; a heuristic for signal congestion-aware
PDN synthesis was developed in [3]; and an algorithm that
uses successive chip partitioning, together with local PDN
refinements were described in [4]. While the works mentioned
above use different optimization methods, they all involve calls
to PDN analyzers at each iteration. The analysis of a PDN
involves the solution of a large system of equations of the
form GV = J, where G is the conductance matrix for the
PDN, J is the vector of current sources, and V is the set of
voltages at each node in the PDN. Although PDN analysis has
seen significant gains in efficiency through the use of multigrid
methods [5], hierarchical techniques [6], [7], or frequency
domain approaches [8], these methods remain computationally
prohibitive for full-chip PDN analysis, especially if they are to
be invoked repeatedly within the inner loop of an optimization
scheme, as in [1]–[4]. Moreover, most of these methods work
with general power grid topologies with no specific structure,
which results in high analysis costs.

Our proposed PDN optimization scheme, OpeNPDN, is
an open-source1 neural-network-based framework for PDN
synthesis. This scheme completely bypasses the expensive
PDN analysis step in the inner loop of PDN optimization

1We open-source a version of this work that is suited to operate within
OpenROAD [9] constraints.



methods by leveraging machine learning (ML) to construct a
correct-by-construction optimal PDN for a given design. The
significant insight of this work is that by encapsulating the
PDN analysis into a one-time neural network training step,
the PDN optimization problem is reduced to a neural network
inference with a very low computational cost.

OpeNPDN uses a composition of PDN templates to enable
correct-by-construction, optimized, ML-based PDN synthesis.
The PDN templates are predefined, DRC-correct building
blocks of the PDN that vary in their metal layer utilizations as
shown in Fig. 1. We tessellate the chip into regions such that
each region can use one of the predefined templates; different
regions may use different templates, and the templates are
designed to guarantee connectivity when abutted, i.e., when
any two different templates are assigned to adjacent regions.
The concept resembles the locally regular, globally irregular
grids in [4] in the top two metal layers, but our templates span
the entire interconnect stack. Moreover, we employ a trained
ML model that decides which template must be assigned to
each region based on distributions of (i) currents, (ii) congestion,
(iii) macros, and (iv) C4 bumps. The PDN design problem
then reduces to mapping templates to regions of the chip. Not
only does the template-based approach aid the use of ML for
rapid PDN synthesis, but it also aids routing predictability due
to the structured power grid.

The work described in this paper, is the culmination of an
effort that was first described in a prior published work [10],
which had outlined this structured, yet flexible, approach to
PDN design. The contributions of this work are as follows:

1) We propose OpeNPDN, a fast ML-based, correct-by-
construction PDN synthesis methodology. We show how
ML enables (i) encapsulating the expensive PDN analysis
step into a one-time training cost, (ii) rapid construction
of a correct PDN during inference eliminating calls to
expensive PDN analyzers, and (iii) predictability in PDN
design where the synthesized PDN at the floorplan stage
is only incrementally refined at the placement stage.

2) We define PDN templates to enable the ML-based method-
ology and synthesize an irregular PDN across the chip
with piecewise regular pitches against uniform-pitch power
grids that are liable to be overdesigned, leaving inadequate
resources for signal routing.

3) We account for currents, congestion, C4 bumps, and macro
distributions as features of our ML methodology, covering
the degrees of freedom that impact correct PDN synthesis
under static IR constraints.

4) We propose a novel transfer learning-based flow to train
the CNN. This helps overcome challenges concerning the
limited number of available benchmarks in the public
domain and the lack of realism and diversity in the
synthetic training set in [10]. TL pretrains a CNN using
a large synthetically-generated dataset, and uses the small
volume of available real circuit data to refine the pretrained
CNN. The model, once fully trained, is reusable across
any design implemented in the same technology.

5) We present a scheme that can consistently be used in the
design flow, first for early PDN planning at the floorplan
stage and then for placement stage PDN refinement.

While ours is not the only effort to address ML-based
PDN synthesis, it overcomes the shortfalls of several other
methods. The work in [11] uses a multilayered perceptron to
predict the width of the power stripes based on the current
and its location as features but builds a power grid that is
congestion-unaware. Moreover, due to the unavailability of
sufficient benchmarks, this work uses testcases that are small
perturbations of the training set. Therefore, it is unclear if the
multilayered perception generalizes across a wide range of real
test designs. The work in [12] proposes an iterative method for
PDN synthesis that calls a fast under-the-hood ML-based post-
route wirelength and IR drop predictor. However, the iterative
nature of this ML-based method makes it slow. Both of these
works construct uniform grids to meet worst-case IR drop, but
such PDNs are likely to be overdesigned and may use more
wiring resources than necessary. A more optimal irregular
PDN could be customized to tune PDN density according
to variations in current and congestion demands. Moreover,
none of these techniques addresses the issue of predictable
early-stage/late-stage PDN design, as is done in this work.

The rest of the paper is organized as follows: Section II
defines the concept of a PDN template; Section III outlines
the OpeNPDN inference framework for PDN synthesis; Sec-
tion IV explains model training which includes synthetic data
generation, and the TL model; Section V shows the results
of our methodology on real circuit testcases implemented in
65LP and 12LP technologies.

II. PDN TEMPLATES

A. Template Definition

Our approach employs PDN templates, which are DRC-correct
building blocks of the PDN that place restrictions on the
optimization search space:
(i) We use unidirectional wires in every metal layer. This is
consistent with design rules for FinFET nodes, where layout
restrictions dictate gridded layout with strict directionality
requirements. The power grid in the lower layers (M1/M2)
lines up with the standard cells and is already regular. We
maintain this regularity over all utilized layers.
(ii) Rather than allowing arbitrary combinations of pitches over
all layers, we limit the choices to a few fixed templates. The
metal pitch for each template is constant in each metal layer,
but may vary across layers. The definition of templates must be
cognizant of the factors that influence PDN wiring resources:
• The design rules on each metal layer dictate the pitch

(stripe width, stripe spacing between consecutive stripes),
metal density, via densities, and the preferred direction
(horizontal/vertical).

• The spatial distribution of currents drawn from the PDN
influences the required wire density in the PDN.

• The signal/clock routing congestion in each region of the
chip constrains the resources available to the PDN.

A critical requirement in the construction of the PDN templates
is their stitchability, i.e., if two templates are placed side by
side, they should align at the edges. In each layer, if the pitches
of the PDN stripes are an integer multiple of the minimum
track spacing in that layer, the wires are well connected to
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Table I: An example PDN template in 65LP technology.

Metal layer Direction Power stripe
utilization (medium)

Width
(µm)

Pitch
(µm)

M9 H 40% w10 p10

M8 V 15% w7 p7

M7 H 10% w6 p6

M4 V 5% w5 p5

each other at the edges of each template, e.g., a template with
2× pitch connects with every other wire from one with 1×
pitch. It is important to avoid choosing template pitches that
are coprime; instead, we select pitches that have a small least
common multiple. In this work, the metal pitch in each template
is chosen using the concept of depopulation. Within each metal
layer, a template can be derived from another denser template
by depopulating wires from the denser template. For each
layer, we choose three possible pitch values, representing a
dense, medium, and sparse pitch: the medium pitch is twice the
dense pitch and half of the sparse pitch. The use of multiples
of the densest pitch enables easy power grid routability as
neighboring templates are guaranteed to connect to each other
when abutted.

We choose templates with varying pitches to provide choices
across a range of PDN utilizations for the intermediate layers
in the BEOL stack. Our templates use a constant stripe width
to help obstacle predictability during signal/clock routing [4].
Table I shows a sample template in the solution space, with
fixed metal widths and pitches for the intermediate metal layers.
The metal layer utilization value is chosen empirically for each
technology (or BEOL stack) such that (i) the densest template
(with the lowest equivalent resistance) just meets IR drop for
all designs in our testset in a specific technology and (ii) there
is a diverse set of selected templates among all designs after
optimization.

In modern designs, the top metal layers are largely reserved
for the PDN, while the supply network in the bottom two
layers corresponds to a set of fixed power rails associated with
the standard cells. By varying the pitches in the intermediate
layers, a set of |T | templates can be built. In 65LP with three
possible (sparse, medium, and dense) pitch combinations for
M4, M7, and M8 we obtain |T | = 27. Similarly, we also obtain
27 templates for three possibly combinations of M5, M8, and
M9 in 12LP. Therefore, the PDN template in 65LP consists of
M1-M4-M7-M8-M9 layers and M1-M2-M5-M8-M9-M10-M11
in 12LP and the macros act as routing blockages to the PDN
template layers M1 through M4 in both technologies.

B. Ranking and Pruning the Template Set

Two primary properties characterize each PDN template:
quality, measured by its equivalent resistance; and utilization,
measured by wire density. A denser template (with a higher
wire width and lower pitch) has a lower equivalent resistance
than a sparser template, but has greater congestion and may
create signal/clock wiring bottlenecks. Next, we rank-order the
templates to create a Pareto-optimal list.
Quality: We estimate the equivalent resistance for a case where
a uniformly distributed current is drawn at the lowest-level

nodes of the template. We assume that the pad locations are
fixed for all templates. If we simulate the injection of a unit
current to pass through the pads, the computed IR drop for
each template corresponds to its resistance. This resistance is
used to rank-order each template in terms of power integrity.
Utilization: The resource utilization of each template is a
multidimensional vector in each layer. The relative ordering of
two templates Ti and Tj in terms of utilization is not obvious
if Ti is denser than Tj in some metal layers but sparser in
others. To enable a linear comparison between templates, we
find the fraction of resources/tracks used by each template
across all layers based on the width, pitch, and track spacing
of every layer in the template for a particular technology.

Figure 2: Template ranking based on resistance and utilization for a
template set in the 65LP technology.

Fig. 2 shows the plot of utilization versus equivalent
resistance for each of the 27 templates. Despite being denser,
a few templates are of poorer quality when compared to others.
This scenario occurs when a template has a higher utilization
in a lower metal layer when compared to a higher metal layer.
In this case, the additional stripes in the lower metal layer add
to the congestion without significantly improving the quality of
that template. These templates are suboptimal and are pruned
from the set. The underlying cause for this suboptimality is that
a designer may build the template set based on purely geometric
width/pitch considerations, neglecting electrical considerations.
Proposition: Let Ri and Ui denote the equivalent resistance
and utilization of template Ti; template Ti is suboptimal if there
exists another template Tj such that Ri > Rj and Ui > Uj .
A variation on the criterion is to enforce a requirement that the
Pareto front must provide at least a minimum improvement in
resistance per unit increase in the density, and to drop points
that fail this requirement, i.e., a template whose equivalent lies
within ε of another template that has a lower utilization, is
eliminated. We eliminated three templates based on this criteria
as highlighted by the dashed veritcal lines in Fig. 2.We refer
to all dropped templates as dominated templates. As a result
of this pruning approach the original set of 27 templates is
reduced to 8 nondominated templates (i.e., template IDs 0–7)
in both 65LP and 12LP technologies, for the specific template
set we defined.

III. INFERENCE FRAMEWORK

Based on our template/region abstraction, the optimization
problem of finding a PDN that is most parsimonious in using
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routing resources, while meeting IR drop and EM constraints,
reduces to assigning a template to every region on the chip.
We map this problem to a CNN-based classification task where
we assign a template (class) to each region.

A. Input Features

In this work, as shown in Fig. 3, we consider the four features
that dictate IR drop values and thereby the selection of the
correct PDN:
• Current distribution patterns
• Congestion distribution patterns
• C4 bump locations
• Macro maps

All the input features of the circuit are extracted from a standard
design-flow environment and are represented as 2D spatial
distributions, at a 1µm×1µm granularity, as shown in Fig. 3.
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Figure 3: Input feature representation of OpeNPDN: Spatial maps
showing (a) current, (b) congestion, (c) macro locations, and (d)
effective distance from C4 bumps.

Current distributions: We extract current distributions from
the design-flow environment in an identical method as [13].
The layout database provides the locations of all standard cells
and blocks in the layout and the power database, obtained after
analyzing the design for power using a power analysis tool [14],
provides the power per instance or block in the design. As
shown in Fig. 3(a), the information from both these databases
together helps build 2D spatial power distributions which are
then converted to current maps.
Congestion distributions: The congestion information is
obtained after performing an early global route of the signal
nets using [14]. The congestion estimates are obtained from
the layout database on a per global cell (gcell) basis for
both the horizontal and vertical directions. We obtain a single
congestion value by summing the congestions in both vertical
and horizontal directions for each gcell. The layout database
also provides us with the locations of the gcells using which
we construct the 2D spatial congestion map shown in Fig. 3(b).
C4 bump locations: We account for the locations of the power
bumps by using an effective distance value from each of the
instances/blocks in the layout to all power C4 bumps in the
package. The effective distance of each instance to N power
C4 bumps on the chip is given by the harmonic sum of the
distances to the power bumps [13]:

d−1e = d−11 + d−12 + ...+ d−1N (1)
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Figure 4: Impact of varying C4 bump distributions on IR drop patterns
for BP BE in two situations. For a case with three C4 bumps in (a),
the IR drop contours with no macros are present are shown in (b),
while the contours for the scenario with macros is illustrated in (c).
When four C4 bumps are used in (d), the contours without and with
macros are shown in (e) and (f), respectively.

where di is the distance of the ith power bump from the
instance. Intuitively, the effective distance metric represents
the equivalent resistance between the instance and the power
bump. The equivalent resistance is a parallel combination of
all paths from the instance to all the power bumps. We use the
distance associated with each instance along with its location
to create a 2D spatial distribution. We use distance to each
power bump as a proxy for the resistance. Fig. 3(d) shows the
effective density map for typical checkerboard power bump
layout for flip-chip packages [15], [16].
Macro maps: The location of the macros are extracted layout
database to create binary macro map distributions. All areas
on the chip which are covered by macros are filled with ones
and the rest of the map is filled with zeros (Fig. 3(c)).

OpeNPDN differs from [10] in its choice of features.
While [10] used the spatial current distribution and the es-
timated signal routing congestion as features, its application to
more complex and realistic designs exposed several limitations
that require the addition of new features. Notably:
• The distribution of C4 bump locations on a chip signifi-

cantly impacts the voltage drop in a design.
• Macro blocks are typically treated as blockages2 to

standard cell power stripes, since they have presynthesized
power grids within the blocks, effectively splitting the
PDN stripes which impacts the equivalent resistance
between regions and C4 bumps.

We illustrate this through an example design whose spatial
maps of current, C4 bump locations, and macro distributions
are shown in Fig. 4(a). We compare the IR drop of the chip
without and with the macros in Figs. 4(b) and (c), respectively.
The worst-case IR drop in the top-right corner of the chip is
seen to be larger for the case with macros, which creates a
longer indirect path between the top-right region of the chip

2In principle, the macro grid can be connected to the PDN through the edges
of the macro. However, in practice, the regions around the macro are halos
of placement and routing blockages, to avoid abutment and DRC issues.
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(a) (b) (c)

Figure 5: Principle of locality demonstrated on a RISV V core in a
commercial 16FF technology: Worst-case IR drops after considering
currents in (a) a single region individually, (b) an immediate
neighborhood (8 regions), and (c) the full-chip.

and the C4 bumps. We show a similar comparison, when we
increase the C4 bump distributions, in Fig. 4(d) and (e). In each
case, the IR drop profile is lower as compared to its counterpart
with three C4 bumps, because the number of bumps is larger
and because the bumps are closer to the macros, creating a
more direct path to the current sources. Therefore, the positions
of the macros and C4 bumps are critical to IR drop and PDN
synthesis.

B. Selection of Region Sizes

The principle of locality [17] states that the current paths to a
node depend primarily on the density of nearby regions. We
leverage this idea to predict templates on a per-region basis
which helps us build CNNs that are independent of the chip
size, i.e., the input layer of the neural network is now of fixed
dimension irrespective of the chip size.

The use of this principle dictates the need for establishing
guidelines for defining template sizes. We suggest using region
sizes that are approximately equal to the VDD/VSS bump
pitch. This guideline provides a lower bound to the template
size ensuring the principle of locality holds, and an upper
bound to obtain compelling congestion improvements. Using
this guideline in our experiments, we found that the choice of
an optimal template for each region depends on the region and
it’s (up to) 8 nearest neighbor regions.3

For example, Fig. 5 shows the IR drop distributions of
a chip divided into 16 regions with a checkerboard power
bump pattern (Fig. 3(d)). The worst-case IR drop in the central
region when the currents from immediate neighboring regions
(8 regions) are considered (Fig. 5(b)) is identical to the worst-
case IR drop when the currents of the entire chip are considered
(Fig. 5(c)). Also, the worst-case IR drop in Fig. 5(a) is lower
when compared to the other two scenarios. Therefore, a single
region is insufficient while an immediate neighborhood (8
regions) is sufficient for the sizes of regions we consider.

Thus, it is adequate to train a model based on the features
in nine regions, enabling the tiling of power grid templates
over a chip with an arbitrary number of regions. This has the

3Regions with < 8 neighbors at the edge of the chip are zero-padded for
currents and macros, ones-padded for congestion, and are extended to create
effective distance maps similarly as Section III-A to ensure the dimensions
of all the data points match, irrespective of their location.

added benefit of faster training as it reduces the dimensionality
of CNN input data. Therefore, for each inference, our input
features are the current maps, congestion maps, macro maps,
and effective distance to power bump maps in nine regions.
The CNN predicts the template ID of the central region in
consideration. Thus, to predict the entire IR- and EM-safe PDN
we perform inference for each region on the chip.

C. PDN Synthesis and Refinement through the Design Flow

OpeNPDN targets PDN synthesis at various stages of the
design flow. Early planning of PDNs occurs at the floorplan
stage [18], [19] of physical implementation and the PDN
is refined at the placement stage. At the floorplan stage,
coarse-grained estimates of the spatial distribution of currents
are available using block-level power estimates, and signal
congestion estimates are at best approximate. This is shown
in Fig. 6(a) for a RISC-V core, and the current sources are
assumed to be uniformly distributed over the area of each block.
Detailed, fine-grained spatial current distributions, shown in
Fig. 6(b), are only available after placement [12] and may
deviate from the floorplan-level assumption.

(a) (b)

Figure 6: Current distribution at the (a) floorplan block-level
granularity and (b) detailed granularity after global placement.
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Figure 7: Two-stage inference flow of OpeNPDN.

To model the varying level of detail available at these two
stages of design, we use two different CNNs to predict the
PDN at each stage. Fig. 7 shows the inference flow of the two-
stage OpeNPDN PDN synthesizer. It consists of two CNNs,
one applicable to the early floorplanning stage of the design
and another for the later placement stage. Both CNNs are
trained to synthesize a safe-by-construction PDN. We maintain
design predictability by ensuring the synthesized PDN at the
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Figure 8: Modified LeNet-based CNN which is trained for PDN
optimization at both the floorplan and placement stage.

floorplan stage is only incrementally refined by the placement-
stage CNN. This is achieved by feeding the PDN synthesized
at the floorplan stage as an additional input feature to the
placement-stage CNN. The template IDs of the nine regions
of the datapoint in consideration are taken as input to the
placement-stage CNN of which the central region’s template is
incrementally updated if deemed required by the CNN based
on the features as listed in Section III-A. Thus, the two CNNs
are devised to operate self-consistently so that placement-stage
PDN design corresponds to an incremental refinement, i.e., a
small perturbation, of floorplan-stage design. This provides
predictability in PDN congestion, which aids design closure.

D. Neural Network Architectures

The target designs in [10] did not consider macros; moreover,
the method was not cognizant of the location of C4 bumps.
Therefore, at the floorplan stage, a multilayer perceptron was
adequate while the placement stage utilized a CNN. In this
work, OpeNPDN leverages CNNs at both stages since the
data at the floorplan stage is complex with the addition of the
features that encapsulate the macros and C4 bump locations.

At both the floorplan and placement stages, we use a standard
LeNet CNN topology with the layer parameters described in
Fig. 8. The model consists of four convolutional layers and
four max pool layers convolution layers. The combination
of convolutional and max pool layers together act as feature
extractors capturing the local and global spatial distributions
of the spatial features. The inputs to both the floorplan- and
placement-stage CNN is a 3× 3 region window of the features
listed in Section III-A. The floorplan-stage CNN takes the
features in the form of four channels while the placement-
stage CNN takes five channels, where the additional channel
represents the predicted templates from the floorplan-stage
CNN, to maintain consistency between both stages. The filter
sizes, number of trainable parameters, and number of MAC
operations for each layer listed in Table II. The filter sizes,
and number of convolutional/max pool layers are tuned to
adjust the receptive field of the CNN for maximum model
test accuracy. The final fully-connected layers feed the output
classes, corresponding to the templates.

IV. TRAINING THE CNNS

A. Overall Training Framework

In this problem, as in many others in EDA, finding adequate
training data is a significant problem. Only a few circuit
examples in a specific technology node are available for training
a PDN synthesizer. This is a problem in both academia and

Table II: CNN layer parameters at floorplan and placement stages.

Layers Filter
sizes

Padding Stride #Parameters #MAC
operations

Conv1 5x5 2 1 3,232 72M
Pool1 3x3 0 3

Conv2 3x3 1 1 18,496 5.7M
Pool2 2x2 0 2 -

Conv3 3x3 1 1 36,928 1.4M
Pool3 2x2 0 2 -

Conv4 3x3 1 1 36,928 0.36M
Pool4 2x2 0 2 -

FC1 9216 - - 9.4M 9.4M
FC2 1024 - - 8,200 8,200

industry, due to the high cost of generating labels from legacy
designs. This small volume of available data alone is inadequate
for training our CNNs as we will show in Section V. We
overcome the above problem by devising a novel training flow,
described in Fig. 9, based on transfer learning (TL) based
training. The flow, which is applied to both the floorplan- and
placement-stage CNNs, proceeds as follows:

• The first part, represented by blue boxes, uses a large
synthetically-generated training set that uses the SA
engine (dark orange box in the training data generator)
to generate labels that correspond to the optimal solution.
The synthetic data, along with its corresponding labels, is
then used to train the synthetic CNN, represented by the
blue box at the top right.

• In the second part, represented by green boxes, we leverage
TL, with knowledge transfer from the synthetic CNN, to
train the circuit CNN with data from the small population
of available design examples from a circuit database.
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Figure 9: PDN optimization scheme: The training flow produces the
“golden” data for the synthetic and real circuits. The golden real circuit
data is used to train the circuit CNN using TL. The inference flow
uses the trained circuit CNN to synthesize the PDN on the testcase.

The task of generating labels falls on an asymptotically
exact optimizer. We employ a slow, high-quality simulated
annealing (SA) based optimizer that finds an optimized template
for each region of a chip, based on a set of features that
include the current distribution, congestion, macro, and C4
bump distribution. Since training is performed offline and must
be performed once for each technology node, the computation
cost of this step is reasonable.
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Table III: Parameters used for synthetic feature set generation.

Feature Parameter 65LP 12LP
Lower bound Upper bound Lower bound Upper bound

Current

Mean scaling 0.5µA 2µm
Variance 1 3 0.5 2
Length scale 50 100 20 80
Macro currents 200µA 500µA 10µA 250µA

Macros

Number 0 6 0 10
Min channel width 14µm 4.2µm
Width 5µm 300µm 5µm 100µm

B. Synthetic Input Feature Set Generation

We create synthetic benchmarks that adhere to standard circuit
design guidelines. The synthetic benchmarks have a size of
1500µm×1500µm, and we generate maps at a 2.5µm×2.5µm
granularity for 65LP training set and 2µm×2µm for granularity
for 12LP. This level of granularity is sufficient to accurately
capture the detailed variations4 in the current distributions
while limiting the dimensions of the input feature set, ensuring
scalability of the CNN model. The synthetic dataset is generated
using randomization techniques for each feature where the
randomization is constrained between appropriate lower and
upper bounds. The technology-specific upper and lower bounds
are listed in Table III for each feature. The synthetic structures
are generated are as follows.
Current and congestion map generation We generate syn-
thetic current maps using GSTools [20], which generates 2D
random spatial fields corresponding to a Gaussian covariance
model parameterized by variance and correlation length scale.
The correlation length scale defines how smooth the spatial
fields are. We generate several current maps (2D distribu-
tions) where we randomly select a variance and length scale
constrained between an upper bound and lower bound. The
midpoint of the bounds is selected to match the variance of
the real circuit data. The bounds are tuned such that each
of the defined templates in the nondominated set has a near-
equal representation across all classes during label generation.
This enables training the synthetic CNNs with a balanced
set for higher test accuracy. The generated-fields are scaled
using an average current value per technology. This value is
extracted by taking the average current in a 2.5µm×2.5µm
granularity for 65LP training set and 2µm×2µm for granularity
for 12LP across all available testcases. The bounds for variance,
correlation length, and mean scaling values for each technology
are listed in Table III.
C4 bump model and power bump locations We generate
synthetic power bump locations by adopting modern flip-
chip/C4 technology package conventions. These packages have
C4 bumps distributed across the entire core area [21], as shown
in Fig. 10(b), which serve as an interface between the on-chip
transistors on the chip to the IOs on the periphery of the chip
and are assigned to signal or power/ground pads. The bumps
and IOs at the periphery are connected by redistribution layers
(RDLs). In this work, we assume Manhattan RDL routes with
octagonal C4 bumps, as shown in Fig. 10(a).

For a given package shown in Fig. 10(b), the power bump
assignments can be arbitrary or on a predefined set of bump

4Since the PDN node pitches itself are at a 2.5µm×2.5µm granularity, this
resolution for the current map is sufficient to capture the detailed distributions.

(b)(a)

VDDVDD VDDVDD

Via M10 RDL Octagonal C4 bump IOs

Figure 10: (a) Model of the octagonal VDD C4 bump and (b) flip-chip
package with array of C4 bumps.

sites [21]. In our synthetic dataset, we use a fixed package
and vary the power bump assignment patterns. We generate
both predefined power bump assignment patterns such as the
checkerboard pattern [15], [16] shown in Fig. 3(d) as well as
a set of arbitrary power bump assignments. For the arbitrary
assignment, to prevent obviously unrealistic assignments, we
constrain the assignment strategy to ensure that exactly one
bump in a 3×3 bump subarray is connected to VDD or GND.
Macro locations To create macro distributions in the synthetic
benchmarks, we generate binary maps as shown in Fig. 3(c),
where a macro is indicated by a “1.” The locations and size
of these macros are randomly selected, and the randomization
is constrained to be realistic, ensuring that (i) no two macros
overlap, (ii) there is sufficient gap between two macros (channel
width) to add a PDN stripe in between, ensuring that every
instance in the channel has a power supply, (iii) the macros do
not exceed more than 60% of the floorplan area, and (iv) an
aspect ratio 0.3 (the macros can be placed in any orientation).

In this work, we consider that the macros act as a blockage
to intermediate layer power stripes, but connect to the higher
PDN metal layers directly, i.e., for the designs in 12LP and
65LP technologies, the macros block layers M1–M4 and the
macros connect directly to M7 and M5 which are the immediate
non-blocked PDN layers above the macro for each technology,
respectively. The upper and lower bounds for the randomized
macro generation is listed in Table III. The lower bound on the
macros widths are constrained by the pitch of the PDN layer
immediately above the macro such that at least one PDN stripe
connects to the macro. the lower bound on the macro channel
width is constrained by the pitch of the densest template in
the highest macro-blocked PDN layer (M4) such that all the
standard cells placed in the channel receive power.

C. Labeling the Training Set

The SA-based optimizer that generates labels for the “golden”
data used to train the CNNs determines an optimal power grid
for a given chip configuration. The SA optimization scheme
is agnostic to whether its input comes from synthetic or real-
circuit data and is asymptotically optimal in either case. We
justify the use of SA due to its ability to deliver near-optimal
solutions over large discrete solution spaces. For example, for
Tr = 16 regions, with one of 8 possible templates per region,
the solution space has 816 possible configurations.
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The CNN models are parameterized by IR drop limit (dc),
EM current density limit (Jc), the template set T , the package,
and region sizes. It is sufficient to characterize a small number
of typical region sizes for a technology node: the trained CNNs
can then be used over all designs. Thus, the SA computation is a
one-time cost, and it is vital for it to be accurate; computational
efficiency is not a significant consideration.

The SA method stochastically explores the solution space
to determine a close-to-optimal solution for a given design. Its
inputs are:
• The current density map of the chip
• The locations of the C4 bumps (power pads)
• The static IR drop limit, dc
• The EM constraint (maximum wire current density, Jc)
• The congestion distribution map for signal/clock nets
• The locations of macros
• The number of regions on the chip and their size
• A pruned set of templates
To generate floorplan-stage training data, the SA solver finds

a solution that optimizes, across the full-chip, the utilization
of the PDN, the maximum IR drop for better power integrity,
and maximum current density for greater EM safety, given
awareness of bump and macro locations.

For placement-stage training, in addition to these constraints,
the SA solver must ensure proximity of the solution to the
floorplan-stage solution to ensure consistency, i.e., minimal
perturbation between the optimal floorplan-stage template set
and the corresponding placement-stage template set. This
consistency ensures that under usual floorplan-to-placement
refinements, with small perturbations in the current distribu-
tions, the optimal template obtained at the floorplan stage
is not greatly perturbed, i.e., the placement-stage solution is
an incremental refinement to the floorplan-stage PDN, while
meeting the strict IR drop, EM, and congestion constraints. We
use the following notations for region r:
• sr is signal/clock congestion
• ui,r is the PDN utilization of the template i
• dr is the maximum voltage drop
• Jr is average current density
• pF l,i,r and pl,i,r are the pitch of layer l in template
i for floorplan-stage and placement-stage optimization,
respectively.

• L is the total number of layers in the PDN
The total congestion is then cr = sr+ui,r, and the optimization
problem at the placement-stage can be formulated as:

Minimize:
∑Tr

r=1 [cr + dr,norm + Jr,norm(+∆pr,norm)]
(2)

Subject to: dr,norm = dr/dc ≤ 1

Jr,norm = Jr/Jc ≤ 1

cr ≤ 1

where ∆pr,norm = 1
L

∑L
l=1

|pF l,i,r−pl,i,r|
pF l,i,r

, which appears only
in placement-stage optimization, is the term that minimizes the
distance between the floorplan-stage and placement-stage PDNs.
The terms Jr,norm and dr,norm encourage denser templates
while cr encourages sparser templates. Together, these three

terms encourage the optimizer to seek a balance between power
integrity and PDN utilization. The normalization ensures that
the magnitudes of the terms in the objective function are
comparable so that no one term dominates the others. The
constraints represent fundamental specifications on the PDN.

The constrained optimization problem (2) is converted into
an unconstrained minimization by using the penalty function
method [22]. In the cost function, the form of the penalty
function is (αi max[0,−slacki]), where i ∈ {congestion, IR
drop, EM current density}. Here, slacki is the constraint slack;
if negative, a penalty is applied. We use αi = 100, 200, and
200, for congestion, IR drop limit, and EM current density,
respectively, penalizing hard constraint violations on IR and
EM more strongly than congestion violations, which can be
mitigated by detouring wires through less congested regions.

Each step of the SA optimization involves finding the
solution to the system of equations, GV = J globally, i.e.,
across the entire chip [23] for each chip’s voltage bump
location configuration. After every move in the SA engine,
which involves updates to the templates on the chip such that
the entire solution space is searched, the conductance matrix,
G, is incrementally updated by using the previously stored
conductance matrix for each template. While this method is
slow due to the cost of formulating and solving the PDN, it is
a one-time characterization per technology where it is crucial
to have near-optimal solutions. We find that these solutions
can be obtained using reasonable computational resources.

D. Model Training and Training Data Representation

Next, from this optimized data, we extract the training set for
the CNNs. The training set is based on power grid locality,
and the template in each region is dependent on the current,
congestion, voltage bump locations, and macro locations in a
3× 3 window around the specified region. For example, for a
chip with a 4× 4 tessellation, we can extract 16 3× 3 regions
that constitute elements of the training set for the CNNs.

To create the training set, we consider both the synthetic
and real circuit test dataset (features and labels) and tessellate
each chip into regions. Each training set element is a 3 × 3
region window size that contains:
• coarse current distributions and congestion as features to

the floorplan stage CNN
• finer-grained current, congestion distributions, and a set

of optimized template IDs from the floorplan stage as
features to the placement stage CNN

• effective distance maps to the voltage bump distributions
• binary maps of macros in the window
• a single optimized template for the region in the center

of the window as a label for each stage
Based on this information, the CNNs are each trained to
compute the correct output (optimized) template for the region,
while incentivizing the placement-stage CNN to match the
floorplan CNN, maintaining predictability.

To train the network, we divide the data from the golden
SA optimizer into training (80% of the data), validation (10%),
and test data (10%). The training data set is normalized, i.e.,
we subtract the mean of the data and divide by the standard
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Table IV: Training hyperparameters for the floorplan- and placement-
stage CNNs in the source and target domains.

Training parameters Values

Epochs 500/200
Optimizer ADAM

Loss function Cross Entropy Loss
Decay rate 9.80E-01
Regularizer L2

Dropout 0.3
Regularization rate 1.00E-04

Learning rate 1.00E-04

deviation. This ensures that both inputs are on the same
scale and neither dominates the other. The mean and standard
deviation values of the training set are stored to normalize the
test data during inference. An Adam optimizer [24] is used for
training, with an L2 regularizer with a dropout factor of 0.5,
after each fully connected layer to prevent overfitting, as listed
in Table IV. We perform a grid search for hyperparameter
tuning, which involves searching through a portion of the
solution space for various combinations of the hyperparameters
to find a solution that minimizes validation error. We use a
similar set of hyperparameters for both the floorplan- and
placement-stage CNN training since the data at each stage is
normalized and within a similar range. A smaller number of
epochs (200 when compared to 500) is sufficient to train the
models post TL, given that the convolution filters are fixed,
and the parameters of only the fully connected layers must
be updated. It is important to note that it is not necessary
to minimize the distance between the optimal PDN at the
floorplan stage and the placement output during training: this
is inherently captured during the generation of the training data
for both NNs by the ∆pr,norm term in the cost function (2)
of the SA engine.

(a) (b)

Figure 11: Example of (a) synthetically generated current map and
(b) current map of a RISC-V core in 65LP.

E. CNN Training and the Transfer Learning Model

Synthetically generating a training set that represents real
circuit current maps, congestion maps, and macro distributions
is exceptionally challenging. Although the synthetic dataset
is derived from attributes of a few sample real circuits, the
data does not represent a real-world scenario accurately. For
example, Fig. 11 shows the significant difference between a
sample current map in the synthetic dataset (source dataset)
and a sample current map of a RISC V core (target dataset). TL
helps bridge this gap while helping compensate for sufficient
circuit data unavailability to train the model in standalone

Source domain (synthetic data)

Transfer 
pretrained 

weights

Feature 
learning

Feature 
transfer

Classifier 
learning

Target domain (circuit data)

FC1 FC2

FC1 FC2

SoftMax

SoftMax

Figure 12: The network-based deep TL strategy transfers extracted
features from the convolutional filters in the source domain into the
target domain.

modes. We use a category of transfer learning termed as
supervised inductive network-based approach [25] to train both
the floorplan- and placement-stage CNN where a portion of the
CNN in the source domain is transferred to the target domain.

A network-based TL strategy is leveraged in [26] which
reuses the front layers, i.e., the convolutional and max pool
layer pairs, trained by the CNN on ImageNet dataset to compute
the intermediate representation for images in other datasets.
The trained CNN in the source domain learns low dimensional
representation (extracted features) of images that can efficiently
be transferred to another image recognition task in the target
domain with a limited target dataset. Inspired by [26], Fig. 12
describes the TL approach adopted in our work. The blue
layers are the feature extractor layers, i.e., the convolutional
and max pool layers, which are transferred between domains;
and the green layers in the target domain are the classification
layers, i.e., the fully connected layers, which are trained from
scratch to select a specific label. Intuitively, this strategy finds
success for the following reasons: (i) inherently, the synthetic
dataset and the target dataset share similar low-dimensional
representations, (ii) the tasks in both domains are classification-
based, and (iii) both the source and target domains are identical
with the same possible class/template set.

V. EVALUATING THE CNNS

A. Experimental Setup and Metrics

All experiments in the OpeNPDN framework is implemented
in Python3.6 and Pytorch 1.6 on a 2.20 GHz Intel R© Xeon R©

Silver 4114 CPU and NVIDIA GeForce RTX2080Ti GPU. We
evaluate our methodology on nine benchmarks, available on
the OpenROAD [27] GitHub repository, which is implemented
in 65LP and 12LP FinFET technologies. These testcases
have a total of 116 regions and 241 regions in the 65LP
and 12LP designs, respectively. As we will show, such a
limited dataset size is inadequate to efficiently train the CNNs,
given the required training set sizes of 9,000 points (250
600µm×600µm testcases with 36 regions each) and 12,250
points (250 600µm×600µm testcases with 49 regions each)
for 65LP and 12LP technologies in the synthetic domain.

The technology-specific parameters, which are also specific
to OpeNPDN CNN training, are enumerated in Table V across
both technologies. The region sizes (second row) for each
technology are selected such that the principle of locality
(Section III-B) holds, i.e., the IR drop in one region is not
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Table V: Technology-specific parameters adopted in OpeNPDN.

Parameters FinFET 12LP Bulk 65LP

PDN layers M1-M5-M8-M9-M10-M11 M1-M4-M7-M8-M9
Region sizes 200µm×200µm 250µm×250µm

IR drop limit: dc 8mV 12mV
Bump pitch 140µm 165µm

Current map resolution 2µm×2µm 2.5µm×2.5µm
EM limit: Jc 3MA/cm2 4.8MA/cm2

affected by the currents in a region which is two neighbors
away. The selection of the region sizes depends on the selected
values of bump pitches in each technology. Larger bump pitches
demand larger region sizes to ensure this principle holds good.
The current maps in each technology are represented at different
resolutions, as highlighted in Table V. A 2.5µm×2.5µm
resolution implies that one pixel in the current map represents
the sum of currents in a 2.5µm×2.5µm chip area. The current
map resolution is selected such that it is at a finer granularity
compared to the PDN nodes while maintaining a reasonable
input layer size for training the CNNs. With the selected current
map resolutions as listed in the table, we obtain current maps
of size 300×300 (3×3 region window). We use a finer-grained
current resolution for the 12LP designs compared to 65LP due
to their smaller PDN node pitches and more detailed placement
current distributions.

Today, it is customary to use a static IR drop limit of 1%
of Vdd [28], [29] in industry, and we set dc according to this
guideline in this work. Many older works on PDN synthesis
(e.g., [4]) place a limit of 10% on the total IR drop, and
today’s tighter static IR drop limit is driven by the increased
level of dynamic IR drop: standard industry flows first optimize
a design for static IR at this tighter VDD specification, which
helps reduce dynamic IR drop as well.

Since the SA algorithm must analyze a PDN with over a
million nodes in each iteration, it takes around 60 minutes to
converge to a near-optimal solution for each synthetic testcase
and a fixed template set. To obtain our complete training
dataset with 250 testcases that corresponds to 9,000 and 12,250
datapoints in each technology (refer to the first paragraph of
this section), we execute over 30 processes in parallel. The
CNNs take 1.5 hours to train. It is important to note that both
the training data generation and the training itself are one-
time non-recurring costs for a specific technology (i.e., the
list of parameters in Table V), and therefore their overhead is
worthwhile as it delivers fast, near-optimal, safe-by-construction
PDN synthesis for any design.

For a measure of improvement, we compare our optimization
against a baseline uniform PDN over the entire chip by
enumerating the eight template choices in each technology,
in terms of congestion improvement, i.e., we construct a
uniform PDN across the chip using the template with least
PDN utilization/wiring stripes such that it still meets IR and
EM constraints. We define a congestion improvement metric
in each region r, given by:

∆cr =
ub,r − ut,r
sr + ub,r

× 100 (3)

where ub,r is utilization of the baseline uniform PDN in the
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Figure 13: Synthetic test data confusion matrix for the (a) floorplan-
and (b) placement-stage CNN for the 900 (10% of 9,000) synthetic
testcases in 65LP.

region, ut,r is the utilization of the predicted template in the
region, and the rest of the terms are as defined before.

We measure the improvement in resource utilization based
on the widely-used ACE metric [30], which estimates the
improvement in congestion only if the region is critical. The
criticality concept corresponds to a threshold check to determine
whether a region has an average signal congestion value greater
than a certain threshold; below this threshold, the region
is considered uncongested, and congestion changes are not
penalized. When incorporated in the optimization cost function,
the metric encourages the PDN to save wiring resources in
regions with a potentially high need for signal/clock routes. In
this work, we set the threshold to 50%. Therefore, the total
percentage improvement in congestion of a design is given by:

∆ct =
∑
r

∆cr ∀ r where, sr > 0.5 (4)

B. Validation on Synthetic Testcases

As stated earlier, 10% of the generated data points in Sec-
tion IV-D is used to test the results of training. The confusion
matrix, which depicts the classification accuracy for the test set,
is shown for both the floorplan and placement stage CNNs in
Fig. 13(a) and (b), respectively for the synthetic dataset in 65LP.
In each matrix, the classes are sorted in the increasing order
of their equivalent resistance. Therefore, any misclassification
in the upper right triangle of the confusion matrix is still
IR- and EM-safe. While the figure shows the accuracy of the
model alone, after accounting for the misprediction in the upper
right of the triangle as IR- and EM-safe, we obtain a 97.6%
and 96.8% IR-safety guarantee at the floorplan and placement
stages, respectively. It is important to note that the confusion
matrix is a conservative predictor of the accuracy of our overall
PDN synthesis scheme. This matrix represents the accuracy for
the template ID for only one region of the chip, considering a
3×3 window around the region. It is likely that if one template
is optimistically chosen, the templates of the regions around
it will be conservatively chosen (as seen from the confusion
matrix, a vast majority of template choices are pessimistic).
This observation is borne out across our testcases and results in
Table VI, where the synthesized grids are IR-safe and EM-safe.
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TL

(a) (b)

Figure 14: Floorplan-stage CNN confusion matrix for 116 regions
in real circuit testcases in 65LP: (a) before TL and (b) after TL.

(a) (b)

TL

Figure 15: Placement-stage CNN confusion matrix for 116 regions
real circuit testcases in 65LP: (a) before TL and (b) after TL.

C. Justification for transfer learning

The real circuit testset (116 datapoints in 65LP and 241
datapoints in 12LP) is grossly insufficient for both training and
test. We justify using transfer learning by showing that direct
use of the synthetic CNN on real testcases is unsatisfactory.
Figs. 14(a) and (b) show the confusion matrices on the real
testcases using the synthetic CNN at the floorplan before and
after transfer learning. The figure shows that floorplan-stage
CNN’s overall accuracy is low before transfer learning (below
60%). The mispredictions can be attributed to due dissimi-
larities between the training and testset (Fig. 11). TL helps
recover the gap in the information between the synthetic dataset
to improve the classification accuracy. Similarly, Fig. 15 (a)
and (b) shows the confusion matrices of the placement-stage
CNN before and after transfer learning, where the accuracy
is improved from below 60% to above 90% on the 116 real
circuit datapoints.

D. Validation on Real Design Testcases

Next, we validate our methodology on the nine open-source
designs implemented in commercial 65LP and 12LP technolo-
gies as listed in Table VI. The designs with the BP prefix are
modules within BP RISC V core [31], SWERV is a module
within the SweRV RISC V core [32], and JPEG is an image
compression module. The designs have approximately between
40,000 – 500,000 instances and up to 50 macros. We assume
a checkerboard power bump pattern as in Fig. 3(d) for all
designs with bump pitches as listed in Table V. Each design is
evaluated using leave-one-out cross-validation, where the rest
of the designs are used for training the CNN, and the design
under consideration is used for testing.

Figure 16: Floorplan-stage PDN for BP BE (65LP) showing, for
each region, the (a) template IDs, (b) ∆cr , and (c) IR drop maps.

Figure 17: Placement-stage PDN for BP BE (65LP) showing, for
each region, the (a) template IDs, (b) ∆cr , and (c) IR drop maps.

Fig. 16(a) shows the current distribution of BP BE with
approximately 60,000 instances and 10 macros at the floorplan
stage. The back end (BE) of the Black Parrot (BP) RISC
V core [31] comprises an execution engine for RISC V
instructions. The current map at the floorplan stage is generated
using hierarchical power reports generated from Innovus [14].
The current map, along with early-route congestion estimates,
macro distribution map, and effective-distance-to-power-bump
maps, are fed into the trained post-TL floorplan-stage CNN on a
region-by-region basis. The resulting predicted PDN templates
are shown in Fig. 16(a), where the numbers represent the
template IDs.

We estimate ∆cr within each region as shown in Fig. 16(b).
While these percentages might seem small, in reality, they
correspond to thousands of freed routing tracks. For this design,
as against the uniform PDN (template ID 3), our floorplan-
stage PDN provides a total ∆ct of 0.89% (1,322 tracks) across
all congestion-critical regions, highlighted by the red boxes, in
Fig. 16(b). The IR drop contours for the synthesized template-
based PDN are shown in Fig. 16(c). With a worst-case IR drop
of 11.5mV (12mV threshold) and maximum current density of
4.74MA/cm2 (4.8MA/cm2 threshold), the synthesized PDN at
the floorplan stage is verified to be IR- and EM-safe using [23].
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Figure 18: Difference in congestion improvement (∆ct) and worst
case IR drop (dr) for different baseline templates for BP BE in 65LP.
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Table VI: Evaluation of both floorplan- and placement-stage CNN on a set of testcases across 65LP and 12LP technologies

Testcase Tech.
node

#cells #regions
Feature

extraction
time

Floorplan Placement
Total
time

Uniform grid CNN-synthesized Uniform grid CNN-synthesized
Worst
dr

Worst
Jr,norm

Worst
dr

Worst
Jr,norm

∆ct
#Tracks

saved
GPU
time

Worst
dr

Worst
Jr,norm

Worst
dr

Worst
Jr,norm

∆ct
#Tracks

saved
GPU
time

BP BE

65LP

57,900 12 110s 10.1mV 96.8% 11.5mV 98.7% 0.89% 1,322 3s 9.9mV 96.4% 11.6mV 98.6% 1.4% 1,920 3s 116s
BP FE 39,315 12 79s 10.4mV 89.8% 11.2mV 92.0% 2.32% 916 3s 10.5mV 89.3% 11.3mV 91.9% 2.11% 1,190 3s 85s
BP 159,389 36 214s 9.2mV 89.7% 9.8mV 93.1% 1.15% 884 6s 10.1mV 92.2% 10.6mV 93.8% 2.35% 1,120 6s 226s
BP mutil 99,402 24 145s 9.6mV 90.2% 10.3mV 92.6% 1.46% 842 5s 9.2mV 90.6% 10.5mV 92.7% 1.79% 1,850 5s 155s
JPEG 79,047 16 89s 8.9mV 93.3% 10.8mV 98.3% 1.41% 1,224 3s 10.4mV 96.6% 11.5mV 99.1% 2.72% 1,430 3s 95s
SWERV 103,453 16 101s 9.2mV 90.6% 10.3mV 98.1% 0.89% 880 3s 10.9mV 96.1% 11.8mV 99.4% 1.07% 1,240 3s 107s
BP single

12LP
518,808 225 267s 5.7mV 91.1% 6.7mV 93.9% 1.03% 754 6s 6.1mV 92.7% 6.9mV 94.6% 1.42% 1,062 6s 279s

JPEG 108,836 12 104s 5.9mV 90.4% 6.7mV 95.8% 1.69% 1,274 3s 6.6mV 93.8% 7.1mV 96.3% 2.59% 1,954 3s 110s
SWERV 149,958 4 126s 5.5mV 87.%2 6.2mV 95.2% 1.37% 1,108 3s 6.3mV 91.9% 6.9mV 96.5% 2.31% 1,868 3s 138s

Similarly, Fig. 17(a) shows the current map of the BP BE
design after standard cell placement. This current map is
generated based on per-instance power values from Innovus.
The placement-stage CNN takes the post-placement fine-
grained current map and congestion map, identical macro
distribution and effective distribution as the floorplan-stage
CNN, and the predicted template IDs by the floorplan-stage
CNN as input to predict a template per region. This predicted
template must be only a small perturbation of the template at
the floorplan stage. The predicted template IDs are represented
by the integer numbers in Fig. 17(a) and are found to be a
small perturbation of the floorplan-stage PDN in Fig. 16(a), i.e.,
the templates change at most to the next two denser/sparser
template. This refinement ensures the PDN meets IR and EM
constraints at placement and improves the ACE metric for
congestion by 1.4% (1,920 tracks) compared to a uniform grid
(template ID 1). (Fig. 17(b)). The predicted PDN is IR- and
EM-safe, with a maximum IR drop of 11.6mV as shown in
the IR drop distribution in Fig. 16(c).

The baseline template, i.e., template ID 3 in Fig. 16 and
template ID 1 in Fig. 17, is selected by enumerating and
evaluating all the template IDs 0–7. We evaluate the chosen
baseline template by plotting the difference in ∆ct and dr
between the predicted template ID and different baseline
templates. Fig. 18 justifies the selection of template ID 1
as the baseline template for comparison for BP BE design.
The x-axis in the figure shows the template ID sorted in the
increasing order of equivalent resistance, and the y-axes show
the difference in ∆ct and dr between the selected baseline
template ID and other template IDs. The horizontal blue and
red dotted lines highlight the ∆ct and worst dr value for the
CNN-synthesized PDN while the solid lines show the change
in ∆ct and worst dr for different baseline template IDs. It can
be seen from the plot that template ID 1 is the template that
provides the best improvement in utilization while meeting IR
drop constraints for this testcase. Therefore, for this testcase,
we select template ID 1 as the baseline template to measure the
improvement in congestion. Similarly, for all our testcases, we
select the best template, i.e., the template that when synthesized
across all regions of the chip as a uniform PDN, provides the
best improvement in congestion while meeting IR drop and
EM constraints.

The results for the rest of the eight designs are summarized
in Table VI which lists the ∆ct, worst-case IR drop, and the
worst-case normalized current density (Jr,norm), defined in (2),

at both placement and floorplan (obtained from [23], [33]5)
stages. The table also lists the total runtimes for synthesizing
a PDN, including feature extraction, data preparation, and ML
inference. The feature extraction involves running commercial
power analysis tools [33], while the data preparation creates a
2D representation of all features. The GPU time is the inference
time which includes the runtimes to load the model and perform
a single forward pass of the CNN. The runtimes show that an
optimized IR-safe PDN template can be synthesized rapidly
without performing slow IR drop analysis checks. It is worth
reiterating that a 1–3% improvement in the ACE metric for
congestion is significant for two reasons: (i) this percentage
improvement releases thousands of tracks (Table VI), and (ii) by
the nature of the ACE metric, which measures the congestion
in only regions that are critical (sr > 0.5), the released tracks
have a high potential to aid design closure.

Table VII: Comparison of SA-synthesized PDN against CNN-
synthesized PDN at the placement stage.

Testcase Tech.
node

# Optimistic
mispredictions

#Pessimistic
mispredictions

Worst dr Worst Jr,norm ∆ct Speedup
SA CNN SA CNN SA CNN

BP BE

65LP

0 of 12 1 of 12 11.9 11.6 99.1 98.6 1.4 1.4 22×
BP FE 0 of 12 1 of 12 11.4 11.3 92.8 91.9 2.34 2.11 28×
BP 1 of 36 1 of 36 11.6 10.6 98.6 93.8 2.68 2.35 66×
BP multi 1 of 24 1 of 24 11.3 10.5 96.3 92.7 2.16 1.79 87×
JPEG 1 of 16 1 of 16 11.5 11.5 99.2 99.1 2.78 2.72 76×
SWERV 1 of 16 0 of 16 11.5 11.8 97.5 99.4 1.07 1.07 63×
BP single

12LP
7 of 225 14 of 225 7.6 6.9 98.7 94.6 2.86 2.42 836×

JPEG 0 of 12 1 of 12 7.3 7.1 97.9 96.3 2.59 2.59 22×
SWERV 0 of 4 0 of 4 6.9 6.9 96.5 96.5 2.31 2.31 6×

In addition, we compare the CNN-synthesized PDN against
the SA-synthesized PDN for each testcase in Table VII. The
table highlights the number of optimistic and pessimistic
mispredictions. An optimistic prediction is when the CNN-
selected template has a higher equivalent resistance than the
true SA-selected template resulting in a higher IR drop, while
the pessimistic prediction is when the CNN-selected template
has a lower equivalent resistance than the SA-selected template.
Due to the high accuracy of the ML model there are very
few mispredictions and 100% of the circuits are found to be
IR- and EM-safe. Table VII highlights two key insights: (i)
the mispredictions are often pessimistic and (ii) an optimistic
misprediction does not imply the circuit fails (worst dr > dc)
since the pessimistic mispredictions and surrounding correctly
predicted templates compensate for it. While this pessimism
does come at the cost of a slight overdesign, this level of
overdesign is very acceptable for two reasons:

5The testcases in 12LP are verified for IR drop safety using [33], but testcases
in 65LP are verified using [23] due to the unavailability of required technology
input files.
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• The overdesign is minimal since the mispredicted template
is at most one template ID away from the true template
which implies that the mispredicted template is the closest
to the true template in terms of metal layer utilization.

• The large speedups obtained against the SA-based solution
while still saving thousands of routing resources compared
to a uniform PDN.6

Overall, the number of mispredicted regions is small compared
to the total number of regions in the design, which makes
parameters such as dr and ∆ct to be similar to the SA-based
solution.

(a) (b)

Figure 19: Confusion matrices generated for the real circuit testcases
in 65LP (post TL at the placement stage) using a trained CNN that
(a) considers macro and C4 bump locations and (b) does not consider
macro and C4 bump locations as features [10].
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Figure 20: PDN design at the placement stage for BP BE (65LP)
showing, for each region, (a) template IDs, (b) ∆cr for the PDN
synthesized by the CNN in this work (green), by the CNN in [10]
(red), and by SA (orange), and (c) IR drop distribution patters using
the PDN synthesized by CNN in [10].

E. Impact of Considering C4 Bump and Macro Locations

The work in [10] makes two assumptions: (i) a fixed VDD C4
bump location across all testcases and (ii) that the macros do
not block any PDN routing stripes during both the golden data
generation and the NN training steps. We address the above
assumptions by adding power bumps and macro locations
as features to the CNN to predict the optimized PDN. By
accounting for these features, our work supports arbitrary bump
assignment strategies and can treat macros as lower layer
blockages as per their design specifications.

To justify the importance of the macro and C4 bump location
features and perform a fair comparison against [10], we use
the generated golden data to train the CNN without these two

6Note that in a few cases ∆ct from the CNN-synthesized PDN is the same as
the ∆ct from the SA-based solution despite the misprediction because the
regions with the mispredicted template IDs did not count towards the ∆ct
calculations since those regions had sr ≤ 0.5.

additional features. We tuned the hyperparameters for the best
accuracy and found that the training could not achieve a test
accuracy greater than 47.4%. The model struggles to accurately
classify each region to a template as it is unaware of two crucial
pieces of information inherently present in the data, i.e., the
macro locations and the bump locations. Fig. 19 compares the
post-TL confusion matrices of the real circuit testcases for two
cases: (i) the placement generated using a model that considers
the macro and C4 bump as features (Fig. 19(a)) and (ii) a
model that does not [10] (Fig. 19(b)).

Fig. 20 shows a detailed comparison between the result
from [10] and this work on the BP BE (65LP) testcase.
Fig. 20(a) compares the predicted template IDs by using the
CNN presented in this paper (green numbers), SA-based golden
template (orange numbers), and the CNN trained in [10] (red
numbers) without macro and C4 bump information. It can be
seen that in the regions that contain macros, the CNN from [10]
predicts sparser grids than the SA-based solution and the CNN
in this work. Since the CNN in [10] does not consider the
macros at blockages, it treats those regions as low current
(leakage current due to the memory components) and high
signal congestion (due to the congested macro channels) and
predicts a sparse template when in reality a dense template is
required. Fig. 20(b) shows the ∆cr in each region as a result
of the template prediction by CNN trained in this work (green)
and the CNN trained in [10] (red). While the ∆ct provided by
the template synthesized by the CNN in [10] (red) is greater
than ∆ct in this work, the PDN synthesized using [10] fails
to meet the IR drop constraint of 12mV as shown by the IR
drop distribution in Fig. 19(c).

VI. CONCLUSION

This paper addresses the iterative and time-consuming nature of
a PDN synthesis and optimization by using a two-stage neural
network approach to synthesize a IR- and EM-safe optimal
PDN. Due to the insufficient availability of benchmarks, we
leverage TL to bridge the gap between the synthetic and real-
circuit dataset. The one-time cost involved in training the CNNs
is compensated for when an optimized PDN can be rapidly
be synthesized for several designs. On average we save 1,292
tracks (≈ 2.0% congestion relief) in the congestion-critical
regions across designs. These saved resources can be vital to
aid timing closure in highly-constrained designs. A version of
this work that can operate within OpenROAD [27] constraints
can be found at [9].
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