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Abstract—This work presents a framework for dynamic energy
reduction in hardware accelerators for convolutional neural
networks (CNN). The key idea is based on the early prediction
of the features that may be important, with the deactivation of
computations related to unimportant features and static bitwidth
reduction. The former is applied in late layers of the CNN, while
the latter is more effective in the early layers. The procedure
includes a methodology for automated threshold tuning to detect
feature activation. For various state-of-the-art neural networks,
the results show that energy savings of up to about 30% are
achievable, after accounting for all implementation overheads,
with a small loss in the accuracy.

Index Terms—Low-power design; CNN; deep learning; neural
network; energy optimization

I. INTRODUCTION

Deep neural network (DNN) architectures [2], [3] have multi-
ple layers consisting of artificial neurons. Each layer is trained
to recognize various features of the input, with deeper layers
uncovering more complex features. In recent years, convolu-
tional neural networks (CNNs) have emerged as a prominent
branch of DNNs, and have been shown to solve increasingly
complex problems with remarkably high accuracy [4]. As
DNNs have grown deeper, adding more layers and features [3],
their computational requirements have rapidly increased. As a
result, platforms that implement DNNs in hardware are power-
hungry and require large memory footprints.

Prior works have proposed several methods for reducing
computations and computation latency [5], including data par-
allelization using multiple cores, specialized hardware [6]–[8],
and approximate computation based on simplified architecture
and static pruning methods [9]–[15]. Typically, the deeper
layers of the network have higher error sensitivity compared to
the earlier layers [10]. Hence, the architecture approximation
becomes unprofitable in terms of accuracy and energy savings.
In this work, we identify specific DNN properties related to
how features are mapped to neurons in various layers that can
provide further improvements in computational efficiency.

We make two observations regarding the feature activation
patterns in CNNs. First, during both training and testing,
specific features tend to be activated by the recognition of
specific classes. Second, deeper layers have higher neuron acti-
vation sparsity, i.e., fewer neurons are activated per layer [16].
Some paths through the network are unlikely to be activated
because specific sets of neurons are seldom activated together.

A preliminary version of this work appeared in [1]. This work was supported
in part by the NSF under awards CCF-1525925, CCF-1763761, CCF-1525749.

These properties can be leveraged to switch off unnecessary
computations to save energy, and we propose a selective
feature activation approach, SeFAct, to develop quantitative
metrics for identifying such scenarios, which are used to drive
runtime energy-reduction optimizations. Specifically, during
training, we prepare for selective feature activation by group-
ing similarly activated classes into clusters across multiple
classes. During testing, unlike well-known static pruning meth-
ods [13]–[15], [17]–[19], we perform dynamic pruning: we use
the clusters to dynamically approximate a large section of the
CNN that does not help interpret the input. This optimization is
particularly beneficial in the later layers of a DNN. The energy
requirement of a neural network comes from two parts, data
access from various hierarchies of memory, and computation
of neuron activations. The memory access is the dominating
part of the energy consumption in a neural network. Our
proposed method achieves energy savings by reducing both
the number of memory accesses and the computations. We
couple these gains with reduced bitwidth in earlier layers of
the DNN, again without significantly affecting accuracy.

II. CNN ARCHITECTURE

A CNN consists of various combinations of layers such as
convolutional (Conv), fully connected (FC), pooling (Pool) as
well as normalization (Norm) layers [3].
Conv Layer Each of the Conv layers is composed of high-
dimensional convolutions. There are three types of data asso-
ciated with a Conv layer:
• ifmap, the input feature map, F if ∈ RK−×H−×W− ,

which comes from the computations in layer Li−1.
• filter, the filter weights, F filter ∈ RK×K−×d×d, i.e., K

3D filters with each feature dimension d× d are applied
to the ifmap, and

• ofmap, the output feature map, F of ∈ RK×H×W , which
acts as the ifmap for layer Li+1.

For a stride size U under bias F bias[u], the computation in
layer Li is given by [3]:

F of [u][x][y] = ReLU
(
F bias[u] +

K−∑
k=1

d∑
i=1

d∑
j=1

F filter[u][k][i][j]

× F if [k][Ux+ i][Uy + j]

)
(1)

where, 1 ≤ u ≤ K, 1 ≤ x ≤ H, 1 ≤ y ≤W

The kth feature of F if is represented by the 2D feature
plane, F ifk ∈ RH−×W− , 1 ≤ k ≤ K−. The rectified linear
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unit (ReLU) [20], a nonlinear activation function, introduces
nonlinearity and sparsity into the CNN using ReLU(x) =
max(0, x). It is typically applied after each Conv or FC layer.
FC Layer An FC layer also applies filters on the ifmaps as
in the Conv layers, but the filters are of the same size as the
ifmaps. Equation (1) still holds for the computation of FC
layers with additional constraints on the shape parameters:
H− = W− = d,H = W = 1, and U = 1.
Pool and Norm Layer The Pool and Norm layers are used to
realign the data for faster training as well as dimensionality
reduction process [3]. A Pool layer is typically applied to each
2D feature plane of a Conv layer to reduce the spatial size
of the feature map representation. In a normalization (Norm)
layer, the distribution of the input features are normalized
such that the data has a zero mean and a unit standard
deviation. Normalizing the input distribution across layers can
help significantly speed up training and improve accuracy.
Network in Network Layer Various state-of-the-art networks
such as GoogLeNet [21] and SqueezeNet [22] incorporated
network in network (NIN) [23] modules named inception and
fire, respectively, to improve accuracy. The NIN modules can
have multiple parallel paths unlike a conventional CNN (i.e.
LeNet [24], AlexNet [25]), where only a single convolution
path exists. The use of multiple filter sizes has the effect of
processing the input at multiple scales. In addition, intermedi-
ate layers with 1× 1 filters are applied to reduce the number
of computations as well as to increase the depth. The idea
of processing the input at multiple scales and using a higher
depth is seen to improve the CNN accuracy significantly.

III. OVERVIEW OF THE SELECTIVE FEATURE ACTIVATION

A. Motivating Example and Outline of SeFAct

We illustrate our key idea on a simplified neural network for
letter recognition with three fully connected layers, L1, L2,
and L3, shown in Fig. 1. We later implement this idea on
larger, standard CNN topologies. Each neuron represents one
feature, and the outputs map to six classes, corresponding to
the letters A through F . Two feature activation patterns are
shown in Fig. 1, where the activated neurons for classes B
and D are highlighted and the unactivated neurons are white.

Fig. 1: Activation pattern of features for (a) Class B and (b)
Class D in layers, L1 to L3 of an example neural net.

It can be seen that the activation patterns of classes B and D
are very similar. Here, class B (D) has four (three) and five
activated features in layer L1 and L2, respectively. Among

these three/four (five) activated features in L1 (L2), three
(four) i.e. 75% or more activated features are common. Based
on this high feature activation similarities, we can cluster these
two classes together in training phase. Additionally, we mark
these three (four) commonly activated features in L1(L2) as
the “stamp” of the cluster for the corresponding layer. During
the testing phase, if the feature activation pattern of an input
matches with a particular stamp, then the input is said to
belong to one of the classes from the corresponding cluster.
This clustering helps predict classes in early layers, and can be
used to reduce both computation and memory access energy
in the subsequent layers. For example, the feature activation
pattern of class B or D will match the cluster stamp prepared
in layer L2. Hence, we can early predict the input class and
narrow down the classification options from six to two in layer
L3, and skip computations and data loads for other classes.

We build a framework, SeFAct, that systematically identify
important features in each layer of the network based on four
thresholds T1, T2, T3 and T4 to selectively activate neurons.
The framework has two major steps:

1) Cluster learning phase: We augment the traditional
training phase to identify clusters. The trained weights and
training data are used in this step. The additional steps are:
(a) Class-specific important feature identification using pa-

rameters, T1 and T2. The usage of these thresholds are
discussed in Section III-B1 and III-B2 respectively.

(b) Cluster preparation based on threshold T3 that measures
the feature activation similarities (Section III-B3).

(c) Stamps and cluster data preparation for the testing phase
(Section III-B4).

2) Testing phase: The traditional testing phase is modified
to use the cluster learning results. At each CNN layer, we
(a) compare feature activation patterns with the cluster

stamps and identify the activated cluster(s) based on a
threshold parameter, T4.

(b) load and compute data only for the predicted class(es).
(c) propagate the predicted class sets to the next layer.

The cluster learning phase is a preprocessing step associated
with training. Changes to the testing phase incur overheads,
but also generate savings, and is implemented in real-time.
The overall testing phase is discussed in Section III-C.

B. Cluster Learning Phase

1) The Concept of Important Features: The input feature
map, i.e., ifmap (F if ), is used to detect important features
based on threshold T1. In this section, we explain how we
identify the important features for a single input image, using
the notation for the DNN defined in Section II. Threshold T1
can be used to modulate the important feature count and hence
tune classification accuracy and energy savings.

For the ifmap, the summation of all data in the kth feature
plane, F̃ ifk =

∑H−

h=1

∑W−

w=1 F
if
khw, is a “signature” for the

feature. We calibrate the importance of a feature in a layer
based on the relative magnitude of F̃ ifk with respect to the
average of all feature plane data, F̃ ifavg =

∑K−

k=1 F̃
if
k /K

−.
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Definition 1. The indicator function 1{·} is defined as
1{true} = 1, and 1{false} = 0.

Definition 2. Feature k is considered important if it satisfies

Ik = 1
{
F̃ ifk ≥ T1 × F̃ ifavg

}
(2)

where T1 is a tunable threshold parameter.

Computational simplification: In simple terms, Eq. (2) states
that an ifmap feature is important if it is within a multiplicative
factor T1 of the average of all feature plane data. While this
equation can be applied relatively easily to an FC layer where
H− = W− = 1 and the volume of data is moderate, Conv
layers must handle a much larger volume of data. In a realistic
hardware implementation, the 3D data processed by a Conv
layer of the CNN is fetched through a memory hierarchy. It is
computationally expensive to fetch the data and compute F̃ ifavg
for use in Eq. (2). Moreover, ifmap data is very sparse, i.e.,
numerous elements are zero.

We simplify the computation of F̃ ifavg based on mean and
sparsity information of the ifmap, pre-calculated during the
cluster learning phase using sampling. This helps to reduce
computation without hurting the effectiveness of our method.

Theorem 1. Under the above simplified assumption, feature
k in a Conv layer is important, as defined in Definition 2, if

Ik = 1
{

(1− Sifk )µifk ≥ TI
}
, (3)

where TI = T1 × (1 − Sif ) × µif . We assume, the overall
sparsity, Sif =

∑K−

k=1 S
if
k /K

−, and the average of all
nonzero data, µif , are constants for an ifmap layer.

Proof. The number of nonzero elements associated with the
kth feature plane is H−W−(1 − Sifk ). If the average of
all nonzero data in the feature plane is µifk , we can write,
F̃ ifk = H−W−(1− Sifk )µifk . The Eq. (2) for a Conv layer
then becomes:

Ik = 1

{
H−W−(1− Sifk )µifk ≥ T1 ×

∑K−

k=1H
−W−(1− Sifk )µifk
K−

}
Ik ≈ 1

{
(1− Sifk )µifk ≥ T1 × (1− Sif )× µif

}
= 1

{
(1− Sifk )µifk ≥ TI

}
(4)

The latter approximation operates under the assumption that
the average of all feature plane data, F̃ ifavg = (1 − Sif ) ×
µifH−W−, is constant, as H−, W−, Sif and µif are
considered constants for a given ifmap layer.

2) Important Feature Detection for Each Class: The rela-
tion in Eq. (2) shows how the kth element of the class-based
importance feature vector, I ∈ RK− , is used to develop the
importance criterion for the features of an individual input
image in layer, Li. However, during the cluster training phase,
we work with multiple images in multiple classes to identify
important features for the cluster. Threshold T2 is used to
determine whether a certain feature is important for all images
of an input class.

Let us say that we apply Eq. (2) in layer, Li, to determine
the importance feature vector I ′ of the qth image of one
particular class c, i.e., I ′(c, q) = I . During cluster learning,

we repeat this operation over all Nclass classes of the CNN,
based on the learned data from Nimage(c) images for each
class c. Due to the network training inaccuracies, or image
pixel pattern variations, all the images with same class may not
have the same activation pattern for a specific layer. Therefore,
we deem a feature to be important for a particular class if it is
important for a sufficiently large number of images in the class,
i.e., if it is activated for a fraction T2 of all training images.
This provides a criterion for determining the important features
through the vector Ĩc ∈ RK− , for class c of the current layer:

Ĩc = 1{
∑Nimage(c)
q=1 I ′(c, q) ≥ T2 ×Nimage(c)} (5)

3) Clustering: Classes with closely matched features are
now grouped together as clusters based on a cluster affinity
threshold, T3. The clusters are also needed to satisfy a few
additional properties. We first list the properties below and
then illustrate the idea of clustering through an example.
Property: A cluster is a set of classes, with one or more
clusters associated with each layer, satisfying these properties:

1) Clusters in the last layer are singleton sets, with each set
containing one class.

2) No cluster is a subset of another cluster in the same layer.
3) If C and C+ are the sets of clusters in layer Li and layer

Li+1, then each cluster Cx in layer Li must satisfy

C+y ⊆ Cx for some y.

We refer to this as the diverging clustering criterion.
We define a cluster graph in which each cluster forms a
vertex, and an edge is drawn from x to y if the above
criterion is satisfied. Moreover,

Cx =
⋃
x→y C+y .

Fig. 2 shows a sample clustering of the network of Fig. 1.
Clusters in the last layer are singletons, consistent with
Property 1 above, and no cluster within the same layer is a
subset of another, as stated in Property 2. Property 3 can be
illustrated by cluster CL1

3 = {B,D,E, F} of layer L1, which
diverges through its connections to clusters CL2

2 = {B,D}
and CL2

4 = {B,E, F}.

Fig. 2: Example to illustrate the properties of clusters.

The diverging clustering criterion allows the network to
reduce the number of predicted classes monotonically. For
example, if an image of the letter, E, is provided to the
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network, then the probable classes for layer L1, L2, and L3

are {B,D,E, F}, {B,E, F} and {E}, respectively.
The class-based importance vector, Ĩc, obtained in (5), lists

the set of important features in a layer. We use this information
to create diverging clusters from layer to layer. We begin by
creating singleton clusters in the last layer; the number of
clusters equals the number of classes. Then, we topologically
move backwards maintaining the diverging clustering criterion.

For each cluster C+k of layer Li+1, we prepare a cluster-
based important feature vector for layer Li, Jk, that lists the
features important to all cluster members, using the AND (

∧
)

operator:

Jk =
∧
c∈C+k

Ĩc (6)

We then combine clusters in layer Li+1 into larger clusters
in layer Li. We create a graph G(V,E) whose vertex set
V = C+, and with edge set E connecting clusters that
have high affinity, but keeping clusters with low affinity
unconnected. The affinity metric for clusters C+i and C+j is
given by Aij = 〈Ji, Jj〉, the inner product between Ji and Jj .
Since these vectors are Boolean, the inner product measures
the number of important features that these clusters have in
common. We add an unweighted edge to E if the affinity
exceeds a threshold, T3×Amax, where Amax is the maximum
of all cluster affinities:

(i, j) ∈ E iff. {Aij > T3 ×Amax} 1 ≤ i, j ≤ NC+ (7)

The goal of clustering is to group the high-affinity clusters
in layer Li+1 together. We map this problem to the maximum
independent set (MIS) problem on graphs [26]. We defined
any two vertices as independent if they have no edge between
them, i.e., they have low affinity. The MIS problem finds a
maximal set of independent vertices, which act as roots of
individual clusters. By definition, elements of the MIS have
low affinity for each other and should be in different clusters.
Each cluster is thus defined by an MIS element, and includes
its high affinity neighbors, i.e., classes, in Algorithm 1.

The algorithm finds the clusters in layer Li by first identi-
fying the vertices in G (i.e., cluster IDs) to be merged based
on finding the MIS. Since the MIS problem is NP-hard, we
employ a greedy heuristic [27]. After initialization (line 1),
the algorithm sorts the vertices in non-ascending order of their
degrees (line 2). In each iteration, the minimum degree node
in V is added to the MIS (line 5). A new cluster is formed,
combining the clusters associated with v and its neighbors
with at least equal degree of v (line 7). The neighbors with
lower degree than v are already included in previously formed
clusters that should not be combined with the current cluster,
since other elements of the other cluster may not have much
affinity with the current cluster. Hence, this additional check
helps creating more disjoint clusters as well as increasing
affinity between classes of same cluster. The iteration ends
with v and its neighbors eliminated from V (line 8). Once all
clusters have been found, the cluster IDs in D+ are used to
construct the set of classes in the cluster set C (line 11). The
complexity of the algorithm is O (NC+ log (NC+)), which is
dominated by the sorting operation of the vertices (line 2).

Algorithm 1 {D+, C} ← FindCluster(G, C+)
INPUT: Edge connectivity graph G(V,E) based on C+
Cluster set of layer Li+1: C+
OUTPUT: Diverging cluster set: D+ . IDs of clusters to be merged
Cluster set of layer Li: C . Set of classes in the cluster
METHOD:
1: Initialize Is = ∅, D+ = ∅
2: Sort the vertices in V in non-ascending order of degree
3: while V 6= ∅ do
4: Set v to be the minimum-degree vertex in V
5: Is = Is ∪ v . Add v to the independent set
6: nv ← {u}∀(u, v) ∈ E and degree(u) ≥ degree(v) . Set of

neighbors of v
7: D+ ← D+ ∪ {{v} ∪ nv} . Add v and its neighbors to D+

8: V ← V \ {{v} ∪ nv}
9: end while

10: ∀D+
k ∈ D

+, Ck ← ∪v∈D+
k
C+v . Build clusters using cluster IDs

11: C ←
⋃
Ck . Set of all clusters at layer Li

12: return {D+, C}

4) Data Preparation for Testing Phase: We now encapsu-
late clustering information to enable its efficient use during
the testing phase. At each layer Li, the set D+ shows how the
clusters in the current layer diverge to those in the next layer.

We prepare stamps for each cluster in layer Li, correspond-
ing to the features that can activate the cluster, i.e., the features
that are important to all classes in the cluster. These stamps are
used in the testing phase to determine the activated clusters,
by comparing the list of important features in the input data
with each cluster stamp. The stamp Sk for cluster k is:

Sk =
∧
c∈Ck Ĩc (8)

For each cluster Ck in layer Li, we now create a record
of the features to be computed, F+

k , to identify potentially
activated clusters in layer Li+1. During the testing phase, for
each activated cluster Ck, only these features are inspected. For
cluster Ck, we compute F+

k by combining, through a binary
OR (

∨
), the important features of layer Li+1 as:

F+
k =

∨
c∈Ck Ĩ

+
c (9)

For example, in Fig. 2, the stamps for all clusters in layer
L1 are used to check which classes are activated. In the testing
phase, for an input image B, depending on which features are
activated, the stamps for CL1

3 could trigger the identification
of this cluster.1 Next, from D+

3 , we know that the activated
clusters in layer L2 may be CL2

2 and CL2
4 . Accordingly, we

use the list of important features given by Eq. (9) to compute
the important features for classes in clusters CL2

2 and CL2
3 . If

any other cluster is activated, then a similar approach is used
to add to the list of important features to be computed.

5) Overall Algorithm for Cluster Learning Phase: Algo-
rithm 2 summarizes the cluster learning phase for layer Li.
Lines 1 and 2 prepare, respectively, the class-based and cluster-
based importance feature vectors at level Li. Based on the
clusters and their affinities, the cluster graph G is formed.
Next, Algorithm 1 is invoked to form the diverging clusters.
Finally, in preparation for the testing phase, for each cluster,
a cluster stamp and a record of important features for the next
level are computed.

1 Note that not all important features of a class are activated by each image:
therefore, an image in class B may well activate only CL1

3 and not CL1
2 .
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Algorithm 2 The Cluster Learning Phase
INPUT: Layer Li: ifmap data F if ; thresholds T1, T2, T3
Layer Li+1: importance vectors Ĩ+c ∀ classes c; cluster set C+
OUTPUT: Layer Li: importance vectors Ĩc∀ classes c; cluster set C; cluster
stamps S ∈ RNC×K− ,
Layer Li+1: divergent cluster set D+; features F+ ∈ RNC×K
METHOD:
1: Create importance vectors for layer Li, Ĩc . Use T1, T2, and (5)
2: Form cluster importance vectors in layer Li, J . Use C+ and (6)
3: Create G(V,E) . Use (7) and T3
4: {D+, C} ← FindCluster(G, C+) . Algorithm 1
5: for k = 1 : NC do
6: Prepare stamp, Sk; important features, F+

k . Use (8), (9) and Ĩ+c
7: end for
8: return

C. Testing Phase

In the cluster testing phase, the cluster activation pattern for
each layer is identified. Based on this cluster activation, the
class predictions are updated which helps to reduce computa-
tion for future layers. The identification of activated clusters
is regulated by the tunable threshold, T4.

The cluster testing phase for layer Li is described in
Algorithm 3. Note that this step is similar to the cluster
learning phase, except here we work with only one test image
at a time in real-time. Here, we will simultaneously discuss
the overhead cost associated with each step. In Algorithm 3,
first, we quantify the mismatch between important feature
pattern of input class and cluster stamps (line 1). The L1 norm
used in this computation is the sum of absolute differences of
each element of the vector. The mismatch computation is per-
formed inexpensively using summations of one-bit numbers.
Here, we identify cluster activation for only D̃ clusters. This
narrowed down cluster activation check significantly reduces
energy overhead of SeFAct implementation. Next, the activated
clusters are identified based on the following equation:

Ak = 1 {Mk ≤Mmin + T4 ‖Sk‖1}, k ∈ D̃ (10)

Here, minimum mismatch, Mmin, provides a minimum mar-
gin for cluster activation and T4 × ‖Sk‖1 provides additional
cluster specific tunability to modulate the classification accu-
racy. The implementation cost of line 2 is linear in the number
of clusters and only require a few addition and shift operations.

Algorithm 3 The Cluster Testing Phase
INPUT: Layer Li: ifmap F if ; filter F filter ; bias F bias; importance
features, I ; cluster set C; cluster stamps Sk∀ cluster k; activated clusters
D̃; features F ; threshold T4
Layer Li+1: divergent cluster set D+; threshold T+

1
OUTPUT: Layer Li: ofmap data: F of
Layer Li+1: activated clusters D̃+; important features: I+
METHOD:
1: Find cluster mismatch, Mk =

∑
k∈D̃ ‖Sk ∧ ¬I‖1

2: Obtain cluster activation vector A using (10)
3: Obtain features to compute for ofmap, F̃ = ∨Ak=1Fk
4: Compute ofmap using (1) and F̃
5: Obtain clusters to check for layer, Li+1, D̃+ =

⋃
Ak=1D

+
k

6: Detect important features for layer Li+1, I+ . Use (2) and T+
1

7: return

Next, the cluster activation information is used to update
class predictions and identify the important features of ofmap

for the predicted classes, F̃ (line 3). It is used to compute
reduced ofmap data (line 4). This is the prominent energy
savings step. Here, we only load the ifmap and filter data
based on the important features, I , which reduces the memory
access cost as well as computational cost. In Section V, we
will discuss about reduced memory access and computation
related energy savings. Line 5 prepares cluster activation flags
to limit computations at layer Li+1 which is similar as line 3.
Line 6 detects the important features of ofmap in layer Li,
and only these features of the ofmap are written into the
memory. This reduces the memory overhead and also effec-
tively further increases the inherent sparsity (due to ReLU)
for level Li+1, which uses this ofmap as its ifmap. From (2),
the energy overhead for detecting important features arises
from (i) computation of the threshold and (ii) a comparison
operation. The threshold computation and comparison can
be simplified to a few fixed bit addition and multiplication
operations. For the Conv layer, the check is simplified to (3),
where the sparsity summation involves the addition of one-bit
zero flags, an inexpensive operation. All the decision metrics
are stored as single-bit register files and used in inexpensive
decision circuitries to improve energy savings.

D. SeFAct Implemention in Various Layers

The cluster learning and testing phase of SeFAct implemen-
tation in a layer, as described in Section III-A, is a complex
process which requires the two steps listed below:
• Step 1 Cluster preparation, class prediction updating and

important feature identification
• Step 2 Computation reduction by detecting unimportant

features based on the updated class prediction
The implementation of cluster preparation and prediction
(Step 1) incurs energy overheads over the basic (non-SeFAct)
implementation, whereas Step 2 is expected to substantially
reduce energy, paying for the overhead of Step 1, by skipping
the computation of unimportant features. Algorithms 2 and 3
are used together to implement these two major steps of
SeFAct implementation. We implement SeFAct on various
types of CNN layers (described in Sections II) as follows:
Conv and FC Layers Both steps of SeFAct are implemented
in the Conv and FC layers, i.e., both layers prepare clusters
during the cluster learning phase and update the class predic-
tion to reduce computation in the cluster testing phase.
Pool and Norm Layer The Pool and Norm layers are used
to realign the Conv layer data for faster training as well as
dimensionality reduction process. Therefore, these layers are
mere representation of its immediate predecessor Conv layer
and important features of both layers are the same. Hence,
both of these layers do not incur any computational overhead,
as they receive SeFAct information from previous Conv layer:
cluster prediction and importance of various feature planes. We
skip the pooling/normalization operation for the unimportant
feature planes.
NIN Module The network-in-network (NIN) concept incorpo-
rates additional nonlinearity by introducing intermediate non-
linear layers as described in Section II. There can be multiple
intermediate layers in a NIN module [21]. To limit the energy
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overhead, we do not implement Step 1 in the intermediate
layers of an NIN modules, and only propagate the cluster
prediction from the previous layer to reduce computation
(Step 2). However, there is a difference between Pool/Norm
layers and intermediate layers of NIN module with regard to
important feature detection. The Pool and Norm layers are
mere modifiers of their previous Conv layer and they have the
same important feature pattern. On the other hand, the inter-
mediate layers of an NIN module are generally implemented
as Conv layers. Therefore, the important feature patterns of
intermediate layers may not be the same as those in their
predecessor layer. We accommodate this difference in Step 2
by implementing certain additional measures in Algorithm 2
(cluster learning algorithm) as well as Algorithm 3 (cluster
testing algorithm). Specifically:
• We compute class-based important features (Ĩc) as well

as predictive data, cluster-activation-specific important
features (F+

k ) for a specific layer in Algorithm 2 (lines 1
and 6). We also determine these two metrics, Ĩc and F+

k ,
for the additional intermediate layers.

• During the testing phase (Algorithm 3), important fea-
tures for the predictive classes (F̃) are computed to save
ofmap computations (lines 3 and 4). We additionally
compute F̃ flags for the intermediate layers to identify
their important features and reduce computations.

IV. DESIGN OPTIMIZATIONS FOR ENERGY REDUCTION

We enable energy-efficient neural computation by combining
selective feature activation, SeFAct, described in Section III,
with optimized reduced-precision approximation. Reduced
precision schemes have been explored in recent research [6],
[9] as well as commercial platforms [2], [7]. Some approaches
have used fixed bitwidths (for example, 8-bit [2]) for all the
layers. Other approaches [28] have used layerwise bitwidth
optimization for controlled error introduction and improved
power savings. The reduced precision approximation and our
SeFAct approach are two orthogonal processes that introduce
controlled levels of error in network to achieve energy savings.
We obtain optimized bitwidths for various layers with Monte-
Carlo simulations.

A. Choice of Layers for Selective Activation Implementation

The SeFAct scheme is useful in network layers where a
relatively few features are activated for each class. However, in
early layers, individual neurons do not have enough informa-
tion from the input to narrow down the set of possible classes,
and many neurons may be activated, regardless of the class.

An alternative way to explain the usefulness of SeFAct
implementation in later layers is through the concept of the re-
ceptive field [24]. The receptive field of a neuron is the region
in the input image that affects the neuron. The dimensions
of the square receptive field for different layers of LeNet,
AlexNet, and GoogLeNet are given in Tables I, respectively.
The size of input images for LeNet (AlexNet/GoogLeNet) is
28 × 28 (227 × 227). There are multiple parallel paths for
GoogLeNet with three different filters sizes (1 × 1, 3 × 3,

TABLE I: Layerwise receptive fields of various networks.

Layer Dimension Layer Dimension
LeNet

c1 5 p2 16
p1 6 fc1 28
c2 14 fc2 28

AlexNet
c1 11 c5 163
p1 19 p5 195
c2 51 fc6 355
p2 67 fc7 355
c3 99 fc8 355
c4 131

GoogLeNet
c1 7 inception4b 137
p1 11 inception4c 171

c2/reduce 11 inception4d 203
c2 19 inception4e 235
p2 27 p4 267

inception3a 43 inception5a 331
inception3b 59 inception5b 395

p3 75 p5 459
inception4a 107 fc1 459

5× 5) [21]. We use the median filter size, 3× 3, to compute
the receptive field.

To improve energy savings, SeFAct should be implemented
at the earliest possible layer. However, the neurons in a specific
layer can characterize the classes only if they see enough of
the image to identify specific objects. Neurons in layer c2
of LeNet, AlexNet and GoogLeNet process information about
(14/28)2 = 25%, (51/227)2 = 5% and (19/227)2 = 0.7% of
the input image. Empirically, we choose to implement SeFAct
from the layers whose receptive field covers about a quarter
of the image, namely, from c2, c5 and inception4b onwards
in LeNet, AlexNet and GoogLeNet, respectively.

B. Choice of Data Bitwidth for Various Layers

SeFact cannot be implemented in the early layers of a CNN as
they are unable to process enough data to correlate to specific
classes due to limited receptive field. However, these early
layers are highly error resilient. This provides an opportunity
to implement error sensitivity based circuit approximations for
early layers. The reasons are as follows:
• The number of resilient neurons is significantly higher

in initial layers of the network [10] in comparison to
later layers. The reason is, neurons in the initial layers
typically process features local to a certain region of the
image, while the later layer neurons infer global features
from the previously extracted local features.

• Errors in neurons near the inputs are more likely to be
compensated/filtered out later in the network.

Therefore, we have achieved power savings through reduced
precision in early layers along with our selective activation
approach for deeper layers.

V. HARDWARE IMPLEMENTATION

We implement our SeFAct scheme in combination with op-
timized reduced precision bitwidths in the testing phase. The
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baseline implementation of the testing phase is performed in
three steps in each layer, Li. First, the ifmap and the filter are
loaded from the memory. Next, multiply-accumulate (MAC)
operations are performed to compute the ofmap of layer Li
based on (1), and data is written back to the memory. The
ofmap computation leverages the ifmap data sparsity.

Memory hierarchies are used in neural network accelerators
to reduce the cost of data movement [3], [7], [8]. Similar to [7],
we assume that the hierarchy consists of a DRAM, then a 108
kB global SRAM buffer that services 12 × 14 = 168 neural
processing elements (PE). Each PE has a total of 0.5 kB local
register file (RF) storage. Each MAC computation requires
four RF accesses: three read operations for the operands, and
one write operation for the result.

This hardware architecture can work with large batch size
based on the on-chip memory size. The sliding window oper-
ation during a convolution allows the same filter plane to be
shared across multiple sub regions of an ifmap plane during the
computation. The impact of a larger batch size is in enabling
greater degrees of filter reuse: the same filter data can be
convolved with the ifmap of other images in the batch without
having to fetch the filter weights again. Since cluster activation
is dynamic and image-specific, SeFAct can be used for each
specific image by performing separate selective activation of
a different set of clusters for each image. In other words, the
decision algorithm for SeFAct framework remains the same
for single image or multiple image processing, and different
decisions can be made for different images in a batch using
the simple control circuitry that chooses selective activation.

The total computation energy is calculated as the product
of the number of operations at each of the DRAM, SRAM,
and RF levels, multiplied by the energy per unit operation
(eDRAM , eSRAM , and eRF ) at each of these levels, incorpo-
rating the reduction in operation count from (1) due to sparsity.

Using Eyx , x ∈ {r, w}, y ∈ {I, F,O} to represent the energy
for operation x and computation y, the energy requirement, E,
for layer Li of the baseline testing phase is:

E = EIr + EFr + EOw + ERF + EMAC (11)

where the first three memory access terms are a weighted sum
of DRAM and SRAM energies. The weights correspond to
the number of memory access to each level, which depends
on the data movement and reuse pattern in the DRAM and
SRAM. For both the baseline and our enhancement, all data
communication with the DRAM (i.e., ifmap read or ofmap
write) is performed in run-length compressed (RLC) format,
incorporating data sparsity, which is decoded in the SRAM.

Our energy savings appear due to two factors, outlined
in Section IV. The first contribution is due to the use of
reduced bitwidths, which is a static optimization performed
during the training phase, primarily in early layers of the
network. The other contribution is obtained from the SeFAct
implementation on later layers of the network and it supports
dynamic adaptation of computations during the testing phase,
as described in Algorithm 3.

The algorithm performs reduced ofmap computation based
on updated class prediction which contributes towards the
majority of the energy savings. We only load the ifmap and

filter data based on the important features, I , and compute
reduced number of ofmap data, F̃ . Compared to the baseline,
energy savings are achieved from (i) bitwidth reduction, (ii)
fewer memory fetches, and (iii) a reduction in the number
of MAC operations as only F̃ features are computed. The
change in bitwidth affects memory access energy linearly and
computation energy quadratically, since the dominant compo-
nent of MAC operations is multiplication, whose complexity is
quadratic in the number of bits. All the flags, such as I , F̃ , are
stored in single-bit register files which are used in inexpensive
decision circuitries to reduce memory access operations. The
size of the single-bit register files are in the order of 1–2 kB
which is proportional to the number of features in all the layers
where we implemented SeFAct. This memory overhead is less
than 1% of the total memory requirement.

Additional energy savings is obtained by writing only
important ofmap features to the memory. Only the identified
important features of ofmap are written into the memory (note
that due to the large volume of data at each level, the data
within a level cannot be completely stored within the SRAM,
and DRAM writes are essential). This reduces the memory
overhead and also effectively further increases the inherent
sparsity (due to ReLU) for level Li+1. The energy savings,
∆E for layer Li can be formulated using (11) as:

∆E = ∆EIr +∆EFr +∆EOw +∆ERF +∆EMAC−Eov (12)

where Eov includes the energy associated with additional
hardware required for real-time decision circuitry mentioned
in lines 1 through 3 and lines 5 through 6 in Algorithm 3.
The percentage energy savings, PES, is computed based on
the summation of required energy, E, and associated saved
energy, ∆E of all layers of the network. This metric is used
to estimate the effectiveness of the SeFAct framework.

Fig. 3 shows the modified architecture with the overhead
decision circuitries for SeFAct implantation which requires
three additional components: important feature detection, clus-
ter activation check and predictive data calculation. The energy
overhead for detecting important features arises from: (i)
computation of the threshold, and (ii) a comparison opera-
tion. The threshold computation can be modeled as several
multiplication and addition operations. Empirically, there are
less than five such arithmetic operations for standard CNN
topologies. For the Conv layer, the check is simplified to
inexpensive summation of sparsity identifying one-bit flags.
Similarly, we have implemented the other decision circuitries
based on simple logic gates such as AND, OR, single adder.

DRAM Local
Memory

Local
Memory DRAM

AL
U

Memory Read MAC Memory Write

Important 
Feature 

Detection

Cluster 
Activation 

Check

Predictive Data 
Preparation

Fig. 3: Neural network hardware with overhead circuitry of
SeFAct implementation.
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VI. THRESHOLD FORMULATION

The SeFAct implementation process in each layer of a neu-
ral network depends on four thresholds, T1, T2, T3 and T4 as
described in equations (2), (5), (7) and (10), respectively. We
update these threshold notations as T1,D, T2,D, T3,D and T4,D
where depth, D, is a parameter that identifies the location of a
layer from the input layer in a network. For example, D = 0
and D = NL−1 are the input and output layers for a network,
respectively, where NL is the total number of layers in the
network. The SeFAct implementation prepares predictive data
to save computation in the subsequent layers. Hence, we do
not implement SeFAct in the last layer, NL − 1, and start from
the penultimate layer of the network, D = NL−2. We observe
in Section IV-A, the earliest layer where SeFAct is beneficial,
Dmin, depends on the receptive field of the network. Hence,
the total number of layers where SeFAct is implemented is
NSeFAct = NL −Dmin − 1.

The SeFAct implementation leverages a trade-off relation
between accuracy and energy savings. We need many ob-
servations under various operating conditions of SeFAct to
estimate the trend of this trade-off. However, to observe only
one trade-off point, 4NSeFAct parameters are required to be
tuned. Additionally, there exists a complicated relationship
between accuracy, energy savings, and thresholds of various
layers of the network. This complexity makes the entire design
space exploration very difficult.

We have developed a threshold tuning knob, τ , to modulate
thresholds T1,D−T4,D of NSeFAct layers through a set of an-
alytical equations with the help of eight additional parameters,
α0−α7. We systematically explore Nτ trade-off observations
by varying the parameter τ for a specific ensemble of α0−α7.

For each value of τ , we sample Nα ensembles of α
parameters to attune the relationship among τ and thresholds
T1,D, T2,D, T3,D and T4,D. The exploration requires minimum
and maximum limits for τ and the α parameters. Hence, the
number of tunable parameters becomes 18. However, based on
the interdependencies of the analytical equations, we will show
that the number of tunable parameters can be reduced from 18
to 5. Finally, we choose optimal operating conditions based
on two additional parameters, βNτ and βAPCα . Therefore,
the designer specifies a total of 7 parameters that enable the
exploration of the trade-off space. Note that the total number
of tuning parameters does not change even if we seek a larger
number of trade-off points: these points can be obtained by
increasing the number of parameter samples.

TABLE II: Number of parameters for SeFAct implementation
in NSeFAct layers with and without analytical equations.

# Ensembles # Data points
# Tunable parameters

Without analytical With analytical
equations equations

1 1 4NSeFAct 7
1 Nτ 4NSeFActNτ 7
Nα Nτ 4NSeFActNτNα 7

A naı̈ve alternative to our approach would be to explore the
design space by tuning all 4NSeFAct parameters. To find Nτ
trade-off points with Nα sampled ensembles of parameters,

exploring the same volume of the design space would require
the empirical tuning of 4NSeFActNτNα parameters. The pro-
hibitively large number of tunable parameters can make it hard
to explore the design space to find optimal solution. Table II
summarizes the required number of tunable parameters for Nα
ensembles of α parameters and Nτ tuning parameters with and
without the analytical equations.

Next, we describe the formulation of analytical equations
modeling the relationship between τ and the thresholds of
various layers and the algorithm that systematically analyze
the trade-off between accuracy and energy savings. During
this discussion, we will use the following notation:
• T

max/min
x,D denotes the max/min value of threshold Tx,D

over all layer depths D, ∀ τ ∈ {τmin, τmax}
• T

max/min
x,y denotes the max/min value of threshold Tx,y

for a specific layer at depth y, ∀ τ ∈ {τmin, τmax}.

A. Formulation of Thresholds T1,D − T4,D
T1,D: The first step of the cluster learning phase of the SeFAct
implementation is important feature identification, which is
dependent on the threshold T1,D as described in Eq. (2). The
earlier layers have smaller receptive fields, and they detect
simpler and basic features. This threshold must be kept low to
avoid discarding any essential features in the earlier layers.
On the other hand, the later layers have larger receptive
fields, and increasing T1,D can help reduce the number of
predicted classes. Hence, for two layers with depth D1 and
D2, where D2 > D1, we prefer T1,D2

> T1,D1
. We model

the threshold T1,D in layers D = {Dmin, · · · , NL− 2} based
on a geometric progression of the threshold tuning knob, τ .
The energy savings can be increased by tuning τ to increase
T1,D. The empirical equation for T1,D is as follows:

T1,D = τ ×
[

D
NL−2

]α0

, Dmin ≤ D ≤ NL − 2, α0 > 0 (13)

where, α0 is a fitting parameter.
T2,D: According to Eq. (5), threshold T2,D is used to deter-
mine whether a certain feature is important for all images of
an input class in layer D. We model T2,D using a network-
depth-independent parameter α1.

T2,D = α1, 0 ≤ α1 ≤ 1 (14)

T3,D and T3,D: There are two additional thresholds that we
use for cluster preparation and identification. Threshold T3,D
of layer D quantifies the affinity between two clusters and con-
verts this affinity into a graph edge using Eq. (7). According to
Eq. (6), the measure of cluster affinity is obtained based on the
cluster-based important features, Jk, which evidently relies on
the number of class-based important features, Ĩc. We compute
Ĩc using threshold T1,D as shown in equations (2)-(5).

The cluster activation operation for the cluster testing phase
is regulated by the threshold T4,D as shown in (10). This
threshold provides a cluster-specific margin for the activation
of a cluster. For aggressive approximation to achieve higher
energy savings, a smaller margin for the activation, i.e., lower
T4,D, is required. On the other hand, higher T4,D results in
higher cluster activation, which leads to increased accuracy
and reduced energy savings.
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The values of both T3,D and T4,D depend on T1,D. These
dependencies are twofold:

1) Same layer Higher T1,D in a specific layer corresponds
to reduced class-specific important features, Ĩc, which
corresponds to more aggressive approximation. Hence,
to achieve a more rigid clustering criteria, higher (lower)
T3,D (T4,D) is required. We empirically model the pos-
itive (negative) nonlinear correlation between T1,D and
T3,D (T4,D) using exponential (power-law) equation.

2) Across layers For any two layers at depth D1 and D2,
where D2 > D1, the input classes will produce more
similar feature patterns in the shallower layer at depth
D1 due to its smaller receptive field. Hence, for the
same threshold T1,D1

= T1,D2
, the clusters in D1 will

have higher affinity than the clusters in layer D2. Hence,
we prefer to set the cluster threshold T3,D1 > T3,D2

as a shallower layer would need a higher threshold to
distinguish between classes. We model this observation
using a product term of deeper layer of T1,D threshold.
Moreover, the deeper layer thresholds affect the clustering
preferences in shallow layers. Similar trend is observed
for the threshold T4,D.

The analytical equations for T3,D and T4,D that address both
of these effects are as follows:

T3,D = α2 × exp{α3

(
T1,D − Tmax1,NL−2

)
}
NL−2∏
d=D+1

T−α4

1,d (15)

T4,D = α5 ×

[
T1,D

Tmin1,NL−2

]−α6

×
NL−2∏
d=D+1

T−α7

1,d (16)

Here α2(α5) ∈ [0, 1] scales T3,D(T4,D), α3(α6) > 0 attunes
the same-layer positive (negative) nonlinear correlation be-
tween T1,D and T3,D(T4,D), and the product term incorporates
the across-layer effect of network depth. The exponential
(power-law) term lies within the range (0, 1].

B. Choice of SeFAct Parameters

The proposed analytical equations (13)-(16) facilitate signif-
icant reduction of tunable parameters: from 4NSeFActNτNα
to nine, τ and α0 − α7. We sample these nine parameters
within an acceptable ranges for energy savings vs. accu-
racy trade-off trend exploration. The minimum (maximum)
of τ and α parameters are τmin (τmax), and αmin =
{α0,min, · · · , α7,min} (αmax = {α0,max, · · · , α7,max}), re-
spectively. The initial constraints on the ranges of the parame-
ters are discussed earlier. With the help of network-dependent
criteria and heuristics, as explained in Appendix A, the tunable
parameters are further reduced down from 18 to 5. Some of
the remaining parameters are network-independent constants
whereas others can be derived from the tunable parameters
using analytical equations (17)-(21).

Once the ranges of the SeFAct parameter are determined,
we observe the trade-off between accuracy and energy by
sampling Nα combinations of α vectors from the updated
range. We have developed two additional tunable thresholds,
βNτ and βAPCα to discard suboptimal α choices from the
design space based on the following criteria:

Number of Acceptable Data Points We implement our SeFAct
scheme for Nτ accuracy and energy savings trade-off points
for each α vector. We discard the trade-off data points for
which the network accuracies are smaller than minimum
acceptable accuracy, Accmin. Hence, the number of remaining
observations are N ′τ ≤ Nτ and if N ′τ is very small, the
particular α vector is suboptimal. We use tunable parameter,
βNτ , to discard the α set if N ′τ ≤ βNτ ×Nτ .
Number of Average Probable Classes During the testing
phase, an input image activates the clusters that have
similar feature patterns to reduce computations. We define
average probable classes, APCατD, as the average number
of predicted classes for all the input test images in layer
D for a specific combination of parameters, {α, τ}.
We compute average probable class, APCα, over all
D ← {Dmin, · · · , NL − 2} and τ for each α vector.
The APCα acts as a metric for computation reduction
for the α vector. A smaller value of APCα indicates
narrower class prediction for the given α which contributes
to higher energy savings. The α vectors with very large
APCα are suboptimal for SeFAct implementation. The
maximum number of probable classes in a layer can be the
total number of classes in a network, Nclass. Hence, the
maximum average probable class over all NSeFAct layers
is: APCmaxα = NclassNSeFAct. We discard the suboptimal
α vectors that produce APCα > βAPCα ×APCmaxα , where
βAPCα is a tunable parameter.

C. Algorithm for Obtaining the Optimal SeFAct Parameters
Algorithm 4 summarizes the process to obtain optimal

operating parameters for the SeFAct implementation process.
The inputs for the algorithm can be divided as follows:
User input: The user will choose a neural network and the
minimum acceptable accuracy, Accmin, for the network.
Network parameters: The basic network properties such as
total number of layers in the network, NL, the total number
of classes, Nclass, and the baseline accuracy, Accorig, are
included in the network parameters. Additionally, NSeFAct =
NL−Dmin−1, the total number of SeFAct layers, is obtained
based on the receptive field criteria described in Section IV-A.
Empirical parameters: In Appendix A, we have determined
the values for some network-independent parameters based
on empirical observations. For example, we prefer relatively
small τmin to attain the baseline accuracy. Additionally, we
set the range of α0 to obtain both convex and concave trends
of Eq. (13) to observe how the accuracy and energy savings
trade-off is affected. On the other hand, the ranges for α1

is chosen within a moderate interval to balance the energy
savings and accuracy.
Designer choice: Based on the user-provided network in-
formation, the designer will tune the following network-
dependent operating parameters:

1) τmax is chosen based on the network complexity and
classification task. According to the discussion of Ap-
pendix A, we have chosen larger τmax for LeNet com-
pared to AlexNet. As GoogLeNet is better trained for
complex classification task of ImageNet data than that of
AlexNet, τmax is larger.
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2) The minimum and maximum values of α2 (α5) are
selected while maintaining positive (negative) correlation
with τmax, as mentioned in Appendix A.

3) The parameters, βNτ and βAPCα are used to discard
suboptimal α vectors. The designer may choose to impose
less/more aggressive check for suboptimal points.

Algorithm 4 Algorithm to obtain optimal α parameters
INPUT: User Input: Minimum acceptable accuracy: Accmin;
Network Parameters: Number of layers in the network: NL; Total number of
classes, Nclass; Total number of SeFAct layer: NSeFAct; Original accuracy:
Accorig ;
Network Indendent Empirical Parameters: Number of α samples:
Nα; Number of tunable threshold points: Nτ ; SeFAct parameters:
τmin, {α0,min, α0,max} and {α1,min, α1,max};
Designer Choice: SeFAct parameters: τmax, {α2,min, α2,max} and
{α5,min, α5,max}; Data point threshold: βNτ ; Average probable class
threshold: βAPCα
OUTPUT: Optimal parameters: αopt ∈ RNτ×8

METHOD:
1: SD = {Dmin, · · · , NL − 2}
. Prepare α parameters using (17)-(21), τmin, τmax and Dmin

2: Obtain αmin = {α0,min, · · · , α7,min} and αmax =
{α0,max, · · · , α7,max}
. Generate Latin hypercube samples

3: α = LHS(αmin, αmax, Nα) ∈ RNα×8

4: for each α[i] ∈ R8 i← {0, 1, · · · , Nα − 1} do
5: Initialize Sα ← ∅
6: Generate data points τ = linspace(τmin, τmax, Nτ )
7: for each τ [j] j ← {0, 1, · · · , Nτ − 1} do

. Compute thresholds using (13)-(16) and α[i], τ [j]
8: Compute T1,D, T2,D, T3,D, T4,D , ∀D ∈ SD
9: Learn clusters for layer D using Algorithm 2, ∀D ∈ SD

10: Test SeFAct for layer D using Algorithm 3, ∀D ∈ SD
11: Compute network accuracy, Accατ
12: if Accατ > Accmin then
13: Compute percentage energy savings, PESατ using (11)-(12)

14: Obtain average probable classes, APCατD , ∀D ∈ SD
15: Sα ← Sα ∪ {{Accατ , PESατ}}
16: APCα+ =

(∑
D APCατD/NSeFAct −APCα

)
/|Sα|

17: end if
18: end for
19: if N ′τ = |Sα| > βNτNτ and APCα < βAPCαAPC

max
α then

20: Compute Slopeα, Interceptα = curvefit(Sα)
21: Slope = map 〈key = α[i], value = Slopeα〉
22: Intercept = map 〈key = α[i], value = Interceptα〉
23: end if
24: end for
25: Generate Acc = linspace(Accmin, Accorig , Nτ )
26: for x← {0, 1, · · · , Nτ − 1} do

. Obtain optimal parameters, αopt[x] for each Acc[x] points
27: Assign αopt[x] = key for maxkey{Slope[key] × Acc[x] +

Intercept[key]}
28: end for

Algorithm 4 starts with creating a set, SD, to store the
depths of all the SeFAct layers (line 1). Line 2 prepares the
acceptable minimum and maximum range of each α parameter
based on the network-dependent input parameters. Next, Nα
samples of the α parameters are generated in line 3 using latin
hypercube sampling algorithm (LHS) [29]. For each α sample
vector, an empty set, Sα, is initialized to store the accuracy and
energy savings (line 5). Simultaneously, Nτ tunable thresholds
are generated in the interval {τmin, τmax} (line 6). Next,
for each τ , all the necessary thresholds are obtained for the
SeFAct implemented layers based on the analytical equations
(line 8). The algorithm uses these thresholds to learn important
features and clusters in NSeFAct layers using Algorithm 2.

Line 10 tests the SeFAct implementation in real time. It
checkes the cluster activation and reduces the computations
accordingly based on Algorithm 3. The network accuracy,
Accατ is later computed in line 11. The Accατ and percentage
energy savings, PESατ , are stored in the set Sα if Accατ ≥
Accmin (line 15). The algorithm also computes the average
probable class of each layer, APCατD. Simultaneously, a
moving average of APCαRD over all SeFAct layers of all the
selected data points, APCα is also computed. As described
in Section VI-B, APCα indicates the extent of probable class
reduction for a given α.

After performing necessary computations for all Nτ points,
the algorithm decides whether the current α[i] sample vector
is suboptimal. The check of suboptimal α vector in line 19
depends on two parameters, βAPCα and βNτ , based on the
discussion of Section VI-B. The remaining α vectors are
the candidates for optimal combination. Later, the algorithm
models the trend of the accuracy and PES for the candidate
combinations to predict PES for an acceptable accuracy
interval. We use a linear fitting model for simplicity. The slope
and intercept of the linear fit are stored in a map format with
each candidate α vector as the key (lines 20 and 21). The final
step of the algorithm is to choose optimal α combinations
based on the maximum achievable energy savings for Nτ
points in the accuracy interval {Accmin, Accorig}.

VII. RESULTS

In this section, we first report the simulation parameters and
models. Next, we discuss the optimization of two orthogonal
approximation processes implemented in this work: reduced
bitwidth and selective feature activation. Finally, we present
the effect of both approximation approaches on accuracy and
energy savings for optimal operating points.

A. Simulation Parameters/Models

We demonstrate our energy-efficient CNN framework on
three well-studied networks, LeNet [24] applied to the
MNIST handwritten digit recognition dataset, AlexNet [25]
and GoogLeNet [21] both applied to the ImageNet dataset
using Caffe platform.

We assume the baseline network (defined at the begin-
ning of Section V), uses 8-bit words for ifmaps, filters,
and ofmaps [2], [6]. We use 5,000 (10,000) images for the
cluster learning phase and 2,000 images for testing phase
for LeNet (GoogLeNet/AlexNet). The top-1 (top-5) accuracy
of LeNet (GoogLeNet/AlexNet) for the baseline is 99.06%
(89.00%/77.95%). We use CNNergy, an open-sourced sim-
ulator [30], to determine the number of DRAM, SRAM,
and RF memory accesses and computations as well as the
batch size for GoogLeNet, AlexNet and LeNet. CNNergy
estimates the energy consumption based on the analytical
model provided by [31]. The batch size used for LeNet,
AlexNet and GoogLeNet are 16 or higher [30]. Per unit energy
for DRAM, SRAM, and RF memory accesses are obtained
from [3].
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B. Reduced Bitwidths

We implement reduced precision bitwidths from the input
layer to the c1, c4 and inception4a layer in LeNet, AlexNet
and GoogLeNet, respectively. For later layers, the bitwidths
are the same as the baseline.

The reduced precision bitwidths in various layers of the
CNN trade-off classification accuracy and energy savings.
We used latin hypercube sampling [29] based Monte-Carlo
simulations for 500 prospective bitwidth combinations in early
layers and checked the classification accuracy on 5,000 test
images. The optimal bitwidth is chosen based on the criteria
of maximum energy savings for the minimum accuracy drop.
The modified bitwidths in LeNet, AlexNet and GoogLeNet are
listed in Tables III. The Pool and Norm layers use the same
bitwidths as their immediately preceding Conv layers.

TABLE III: Modified bitwidths of early layers.

Network Layer ifmap/ofmap filter

LeNet input 4 3
c1 3 4

AlexNet

input 6 8
c1 7 7
c2 5 7
c3 6 6
c4 5 7

GoogLeNet

input 7 7
c1 7 7

c2/reduce 6 8
c2 7 7

inception3a 6 8
inception3b 7 7
inception4a 7 7

C. Selective Feature Activation

We use our clustering based method for selective feature
activation, as explained in Section III-B, for all layers from
c2, c5 and inception4b for LeNet, AlexNet and GoogLeNet,
respectively. During the testing phase, the input image acti-
vates the clusters similar to its feature pattern to reduce class
prediction. For example, we find that the images of various
non-shedding dogs (e.g., shih-tzus, spaniels, and terriers) ac-
tivate the same cluster in layer fc7 of AlexNet.

Early prediction of a reduced number of classes reduces
the computations and the energy, as compared to the baseline.
The amount of reduction in the number of classes based on
the SeFAct prediction depends on thresholds T1,D, T2,D, T3,D
and T4,D, which rely on the α parameters and threshold tuning
knob, τ , as detailed in Section VI. For each α parameter
combination, the tuning knob τ can be varied to achieve
various trade-off data points. Next, we will show the effect of
parameters α and τ on accuracy and energy savings, as well
as simulation setups to find optimal operating parameters.
Effect of Parameters α and τ The trade-off between the per-
centage energy savings, PES, and the accuracy (all normal-
ized to the baseline) for various combinations of α (repre-
sented with various colors) and τ parameters are shown in
Fig. 4(a) for LeNet, GoogLeNet, and AlexNet networks. The
red vertical lines show the accuracy of the baseline. The accu-
racy gap between the red vertical line and the rightmost points
in the scatter plots can be attributed to the loss in accuracy
due to reduced bitwidth approximation in the early layers. The

reduced bitwidth contributes towards a fixed energy savings for
all operating conditions as shown in green horizontal lines. The
figure shows that, depending on the choice of the α parameters,
different trade-offs between the energy savings and accuracy
can be obtained for the same τ .
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Fig. 4: (a) PES vs. accuracy for various combinations of the α
parameters and (b) optimal PES vs. accuracy envelope using
Algorithm 4 for LeNet, GoogLeNet and AlexNet.

Finding Optimal Operating Parameters Algorithm 4 auto-
mates the search for optimal α combination. It first discards
the suboptimal α combinations and outputs the optimal α set
based on the detection of envelope for the linearly modelled
trade-off trends of various α parameter sets. Fig. 4(b) shows
the linearly fitted trade-off curves of various α parameters
using dashed lines. The envelope of all trade-off curves is
shown using the black solid line. It can be seen that the
envelope is piecewise linear i.e. for different accuracy interval,
the α set is different.

From these plots, we observe that significant energy savings
are achievable using our systematic analysis: for small (5–
10%) degradations in accuracy, 15–25% energy savings are
possible. The inexpensive overhead circuitries, described in
Section V, consume less than 1% of the total energy. For
scenarios where low accuracy is acceptable (e.g., in mobile
embedded systems or edge devices, where battery limitations
are the paramount consideration, and a best-effort accuracy is
good enough), improvements of almost 30-40% are visible.
Simulation Setups for Optimal Operating Parameters The in-
puts for Algorithm 4 for various networks are provided in
Table IV. We chose the number of α samples, Nα = 50, and
the number of threshold tuning parameters, Nτ = 16.

D. Comparison of Static and Dynamic Pruning Approaches
Static pruning methods such as [17]–[19] avoid multiplica-
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TABLE IV: Parameters used for SeFAct implementation.

Network LeNet GoogLeNet AlexNet
Network parameters

Nclass 10 1000 1000
NL 5 14 9

NSeFAct 2 6 3
Accorig 98.35% * 89.00% ** 74.95% **

User input
Accmin 90.00% * 70.00% ** 60.00% **

Designer choice
βNτ 0.50
βAPCα 0.95
τmax 1.50 1.20 0.80

{α2,min, α2,max} {0.30,0.80} {0.25,0.75} {0.10,0.40}
{α5,min, α5,max} {0.10,0.50} {0.15,0.60} {0.20,0.70}

Network independent empirical parameters
τmin 0.10

{α0,min, α0,max} {0.60,1.60}
{α1,min, α1,max} {0.55,0.65}

* Top-1 accuracy, ** Top-5 accuracy

tions by zero. Another degree of freedom exploited by these
works is in pruning filter values and retraining the network
to reduce these computations. It should be noted that all such
optimizations are static approximations, in that they must be
valid for at least a vast majority of input images and classes.

SeFact, implemented in Eyeriss architecture, skips com-
putations when the input activation is zero and stores the
data in compressed format, thus naturally incorporating data
sparsity in the evaluation of both the baseline method and
SeFAct. Additionally, SeFAct is a dynamic, image specific
approximation made at run-time. A specific image dynamically
classifies some clusters as important and others as unimportant.
As a result, a particular computation could be pruned for one
image but not for another: something that static pruning cannot
achieve. This implies that the gains of SeFAct are over and
above any gains from static pruning, and these gains are largely
orthogonal to static pruning.

A pruning approach removes features based on specific
feature importance criteria. There are two metrics to consider
for a feature to be deemed important:
1. Image sensitivity: A feature is considered important, if a
large number of images activate that feature. However, if a
feature is activated for a vast majority of the images, then it
does not hold any special information and can be pruned out.
2. Feature sensitivity: When a small (large) number of features
are activated in a layer for a specific image, then it suggests
that the importance of each of the activated features is high
(low): each of the activated features is highly (less) error-
sensitive, i.e., discarding these features will (will not) prevent
us from correctly identifying the image.

Fig. 5 illustrates the scope of static and dynamic pruning for
AlexNet in three layers, conv5, fc6 and fc7. Each scatter data
point suggests a feature in the layer, the x-axis indicates the
image sensitivity and y-axis indicates the feature sensitivity.
The scatter plot data are divided into four quadrants centered
on the average of the image and feature sensitivities. The
features activated for a small number of images with large
number of simultaneously activated features (Quadrant II) are
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Fig. 5: Scope of static and dynamic pruning in AlexNet.

not distinguishing features and can be a good and safe choice
for static pruning. On the other hand, the features that reside
in Quadrants I and III have contrasting image and feature
sensitivities. Aggressive static pruning techniques may remove
many features from these two quadrants leading up to 70%
feature reduction. However, not all networks can achieve this
level of pruning as it depends on the dataset complexity.
Finally, the features in the Quadrant IV have higher image
sensitivity with lower feature sensitivity. These features cannot
not be removed without careful consideration. The dynamic
pruning approach such as our SeFAct increases energy savings
by leveraging image specific information of all four quadrants,
including Quadrant IV, where static pruning is less effective.

E. Accuracy and Energy Trade-off for Optimal Parameters

In this section, we show the combined effect of reduced
bitwdith and SeFAct approximations for the optimal parame-
ters. The average number of probable classes, APCατD of
each layer, D, and the layer-wise energy for the baseline
and our enhancement, are shown for GoogLeNet in Fig. 6.
Here, the results are shown using the optimal α combinations
obtained from Algorithm 4 for various tunable thresholds, τ .

Fig. 6: (a) Average probable classes in layers with SeFAct. (b)
layer-wise energy in GoogLeNet.

Fig. 6(a) shows the number of average probable classes,
APCατD for each layer on which SeFAct is applied, whereas
Fig. 6(b) reports the energy requirement for individual layers
of the network. It can be seen that the number of average
probably classes is reduced monotonically, resulting in a
significant reduction in energy requirement with respect to the
baseline, at the cost of a loss in accuracy. For example, the total
number of classes in GoogLeNet is 1000 and the number of
average probable classes is reduced to 445 in the inception5b
layer for a classification accuracy of 78.2%. Similar trends are
seen for LeNet and AlexNet networks.
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For these CNNs, the energy savings in the early layers are
attributable to the optimized bitwidth, while those in later
layers are attributed to the selective feature activation. For
the same energy savings, the relative percentage contributions
between reduced bitwidth approximation and SeFAct are about
60% and 40%, respectively.
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Fig. 7: Energy contribution breakdown for baseline energy and
energy savings for (a) LeNet (b) GoogLeNet (c) AlexNet.

The total energy and the contributions from DRAM, SRAM,
and RF memory accesses, and MAC computations for various
networks are shown in Fig. 7. The results for both the baseline
implementation and the energy savings for our approach
indicate that the memory access operations are dominant.

VIII. CONCLUSION

This work has proposed an effective and automated way
to dynamically reduce the energy of a CNN accelerator,
using bitwidth reduction in early layers, and selective feature
activation in later layers. Significant energy savings are seen,
with small accuracy losses, for three well-known networks.

APPENDIX A
CHOICE OF SEFACT PARAMETERS: DETAILS

The criteria to select the suitable ranges for the nine SeFAct
parameters, τ and α0 − α7, are discussed here.
Choice of τ : The tuning parameter τ in Eq. (13) can be
used to modulate T1,D to change the number of features
deemed important, and hence alter energy savings. To get the
baseline accuracy as the starting point, we choose τmin ≈ 0
(constant for all networks). On the other hand, the value of
τmax is strongly dependent on the properties of the network
and the input data. When relatively larger (smaller) networks
are tasked with working with simpler (complex) input data
sets, we can use a large (small) threshold margin, Tmax1,D =
Tmax1,NL−2 = τmax > 1 (0 < τmax < 1).

Choice of α0: From Eq. (13), ∂2T1,D

∂α0
2 = Constant × α0 ×

(α0 − 1), where Constant > 0, hence T1,D follows a convex
(concave) trend for variable τ when α0 > 1 (0 < α0 < 1). A
convex (concave) trend will assign lower (higher) thresholds to
the shallower layers and more (less) aggressive thresholds in
the later layers and save less (more) computations i.e. energy.
Therefore, depending on the target accuracy, the value of α0

that reflects the convex or concave trend can be chosen. We
sample various α0 and choose the optimal one based on the
accuracy and energy savings trade-offs.
Choice of α1: According to Section VI-A, α1 is a network-
independent parameter. We prefer α1 to be assigned some

moderate mid-range value within the interval [0, 1] to balance
the energy savings and accuracy.
Choice of α2: The threshold T3,D is used to prepare clusters
by quantifying the affinity between classes. According to
Section VI-A, a network-dependent parameter, α2, is used to
scale the threshold T3,D. Additionally, T1,D and T3,D have a
positive correlation. Hence, if τmax, the parameter controlling
T1,D, is set high value then α2 must also be increased.
Choice of α3: The exponential relation between T3,D and
T1,D in Eq. (15) is regulated via the parameter, α3. For
efficient design space exploration, we want to keep Tmin3,NL−2 is
within some factor, k1, of Tmax3,NL−2. The equation that ensures
the condition is as follows:

Tmin3,NL−2 = k1 × Tmax3,NL−2, 0.2 ≤ k1 ≤ 0.6

α3 = − loge k1
Tmax1,NL−2 − T

min
1,NL−2

(17)

where the range of k1 is empirically chosen.
Choice of α4: The parameter α4 in Eq. (15) is used to
modulate the inter-layer relationship of cluster preparation
threshold, T3,D. It is observed that the product term of T3,D
in Eq. (15) increases faster as we move to more shallower
layers and the growth rate of the term depends on the pa-
rameter As described to Section VI-A, the exponential term
α2 × exp

{
α3

(
T1,Dmin − Tmax1,NL−2

)}
is normalized to lie in

the interval (0, 1]. Therefore, we can assume:∏NL−2
d=Dmin+1 τ

−α4 ×
[

d
NL−2

]−α0α4

= C, from (13) (18)

−α4

[
(NSeFAct − 1) log τ +

∑NL−2
d=Dmin+1 log

[
d

NL−2

]α0
]
= logC

where C =
[
α2 × exp

{
α3

(
T1,Dmin − Tmax1,NL−2

)}]−1 ≥ 1 and
NSeFAct is the total SeFAct layers. Based on some heuristics,
the simplified equation becomes:

α4 =
k2

(NSeFAct − 1)
, k2 = − logC

log τmin
(19)

Empirically, we set 1.25 ≤ C ≤ 2.5 which results in 0.05 ≤
k2 ≤ 0.40 for τmin = 0.10.
Choice of α5: The threshold T4,D in Eq. (10) is used as a
cluster activation margin for layer D in the cluster testing
phase. Networks with complex identification tasks should have
higher T4,D for higher cluster activation to avoid significant
accuracy degradation. According to (16), T1,D and T4,D have
a negative correlation. The thresholds T1,D and T4,D are
controlled by τ and α5, respectively. Hence, the choice of
α5 should follow an opposite trend of τ , i.e., τmax.
Choice of α6: The criteria to choose α6 is similar to α3.
The parameter α6 is used to modulate the nonlinear relation
between T4,D and T1,D as described in (16). We ensure that
the minimum of T4,NL−2 stays within a factor, k3, from the
maximum value, Tmax4,NL−2. For simplicity, we choose k3 = k1
as they have similar ranges. The equation that ensures the
condition is as follows:

Tmin4,NL−2 = k1 × Tmax4,NL−2, 0.2 ≤ k1 ≤ 0.6

α6 = − log k1
log Tmax1,NL−2 − log Tmin1,NL−2

(20)
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Choice of α7: The parameter α7 is used to modulate the
inter-layer relationship between thresholds T1,D and T4,D as
described in (16). The conditions to choose α7 is similar to
that of α4. Hence, for simplicity we use same equation for
both of these parameters. The equation for α7 is as follows:

α7 = α4 =
k2

NSeFAct − 1
(21)

In summary,

• There are only five network-dependent parameters:
τmax, α2,min, α2,max, α5,min, and α5,max.

• The parameters τmin, α0,min, α0,max, α1,min and α1,max

are network-independent constants.
• Min/max values of remaining parameters, α3, α4, α6 and
α7 are obtained using the analytical equations (17)-(21).
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