
1

Dynamic Approximation of JPEG Hardware
Farhana Sharmin Snigdha, Deepashree Sengupta, Jiang Hu, and Sachin S. Sapatnekar

Abstract—JPEG compression based on the discrete cosine
transform (DCT) is a key building block in low-power multimedia
applications. Approximate computation techniques are used to
exploit the error tolerance of JPEG. An image-dependent frame-
work is proposed in this work to design optimized approximate
hardware with variable approximate bit-widths for a user-
specified error budget. The proposed method can dynamically
adjust the extent of approximation in the system depending
on the pixel values of the input image, thus leveraging the
inherent sparsity of certain images. This novel technique not only
improves the power-delay product by 3.4× over the base case,
i.e., where the JPEG hardware is accurate, but also significantly
outperforms the image-independent approximation case, which
is solely based on the error tolerance of the JPEG algorithm.

Index Terms—Approximate computing; Low-power design;
JPEG; Image compression; Image contrast level; Image-
dependent approximation; Image-independent approximation;
Nonlinear optimization

I. INTRODUCTION

Energy-efficiency demands have driven interest in designs that
leverage the inherent error resilience of multimedia applica-
tions [1]–[4]. In this context, approximate computing uses
simplified, lower power hardware operations with controlled
errors, using logic or architecture modification, voltage over-
scaling, or time starvation. A typical target for this opti-
mization is in the domain of digital signal processing (DSP)
for multimedia. Typical DSP operations used in image and
video processing units include image compression, filtering,
and reconstruction. We develop an optimized approximate
computing solution for JPEG-based image compression.

A core building block for JPEG compression is the discrete
cosine transform (DCT). Several algorithms for implementing
the DCT have been proposed to reduce the number of com-
putations without approximations by altering the architecture
or/and logic simplifications [5]–[7] by exploiting the periodic
symmetries of cosine terms in the DCT flow graph. However,
even for a moderate-size image, the number of computations is
large [8]. A few prior methods have explored approximations
in JPEG compression, but perform ad hoc optimizations. Some
approaches use dynamic bit width [9] and dynamic range
reduction [3], while others uniformly approximate all adders
in the DCT [1]. Other approaches [10], [11] target general
RTL structures and do not exploit the structure of JPEG.

We address the problem of optimizing JPEG compression
hardware by approximating the arithmetic units within the
JPEG block to reduce the power consumption under a user-
specified error budget. This is a worthwhile target for opti-
mization for two reasons. First, JPEG compression is used
widely enough for the results to be useful, and second, the
concepts developed here could potentially be extended to
optimize other structures such as FFTs, MPEGs.

We propose two approaches to implement approximations
in the JPEG hardware. The first approach, presented in [12], is
an image-independent static approximation that considers the
sensitivity of the error at the output for the approximations
at the arithmetic units within the block. An optimization
problem is solved to maximize power savings while ensuring
that the output error lies within a user-specified budget.
An analytical formulation to select the approximate bits for
the arithmetic units is proposed in [13]. However, such a
scheme is necessarily conservative since it provides a single
approximation scheme that is safe for all input images. The
differences in the pixel patterns of images imply that the
distributions of input values differ from image to image, and
the level of approximation can be modified to be image-
specific. Our second approach reduces the conservatism of
the first approach by tailoring the level of approximation to
the input image. We propose an input dependent dynamic
approximation scheme that is implemented over the static ap-
proximation process. A few prior works have explored input-
dependent approximations without characterizing the input
pixel variations [14], [15]. In our work, the input distributions
of different images are estimated in real time to determine the
level of approximations. Run-time dynamic approximation is
enabled by the addition of decision circuitry.

In Sections II and III, we discuss the principles of JPEG
compression and its approximate hardware framework, re-
spectively. The ideas of static and dynamic approximation
scheme are explained, respectively, in Section IV and V.
Next, Section VI contains the more detailed explanations of
dynamic approximation process and heuristics to simplify the
architecture. Section VII compares the power, area, delay
and quality for various error targets and images using our
framework and we conclude in Section VIII.

Fig. 1: (a) Block diagram of a JPEG encoder and decoder
and (b) decomposing a 2D DCT block into 1D DCTs.

2

II. JPEG DECOMPOSITION

As illustrated in Fig. 1(a), the JPEG architecture is divided into
the encoding and decoding phases. The JPEG compression
scheme in the encoder block is based on a 2-dimensional
(2D) frequency-domain DCT, followed by quantization. The
subscript F of the quantization matrix, QF , is a quality factor
ranging from 1 to 100, where 1 corresponds to the lowest
quality. Commonly-used values of F are 50 and 90; a lower
quality factor, F , achieves a higher compression ratio [16].
The method operates by dividing an image, Iimage, into 8×8
pixel blocks and compressing each block separately. Each such
block constitutes the 8 × 8 initial matrix, I , which will be
referred to as one frame, f . For example, a typical image of
size 512 × 512 pixel consists of Nf = 4096 frames. Each
element of the matrix, I , has a value in the range of 0 to 255,
but the DCT operation is performed on a translated matrix, M ,
obtained from I by subtracting 128 from each entry in I . The
result of compressing M is an 8× 8 matrix, C. The matrix C
is used to create a reconstructed image matrix, R, through the
JPEG decoder block. Decoding is analogous to compression,
except that the inverse DCT (IDCT) replaces the DCT.

The separable property of the DCT allows the 2D operation
to be decomposed in two sequential 1D DCT operations along
the rows and columns of M , as shown in Fig. 1(b). We denote
the first and second sets of 1D DCT blocks as Layer 1 and
Layer 2, respectively, where each layer contains eight individ-
ual 1D DCT blocks. A number of fast 1D DCT algorithms
have been proposed [5]–[7] to exploit the periodic nature of
cosine terms in 2D DCT equations [12]. We have chosen
Loeffler 1D DCT algorithm [7] as the basis for our work, as it
achieves the theoretical lower bound for multiplications. The
Loeffler 1D DCT can be represented as the directed acyclic
graph (DAG) structure shown in Fig. 2. Each node in the
DAG represents arithmetic operations such as add/subtract or
multiply. There are total of eight stages, s(i), i = 1, · · · , 8,
between the input and output. There are 11 multiplications
and 29 additions in each 1D DCT block. The net computation
over the 16 1D DCT blocks in the 2D DCT block requires
176 multiplications and 464 additions per frame.

Fig. 2: A DAG model of the Loeffler DCT.

The DCT architecture varies the computations bit-widths
with the dynamic range of the node. All calculations are
performed using variable bit-width signed arithmetic. It is
important to note that all multipliers perform constant mul-

tiplications, where the fractional constant inputs are stored as
fixed-bit integers by multiplying them by 27; this scaling is
reversed at the output through shift operations.

III. APPROXIMATE COMPUTING IN JPEG

The amount of computation and power dissipation in a DCT is
significant: for a moderate-sized 512×512 (256K) image with
4096 frames, the fast DCT requires nearly 106 multiplications
and 2× 106 additions. This, along with the error resilience of
JPEG, motivates us to explore approximate computing.

We explore the use of approximation in the DCT block.
We evaluate the quality of the solution by uncompressing
the approximate JPEG image using exact computations in
the IDCT block (the same ideas could be applied to the
IDCT block). The adders and multipliers are implemented as
arrays of full adders (FAs). Let us assume that Nax and Nmy
are the number of bits corresponding to the dynamic range
of data computed in the adder node, ax, and the multiplier
node, my , respectively. In our study, we implement addition
using Nax -bit ripple carry adders and multiplication using a
4 : 2 compressed carry save array (CSA) based Nmy -bit lower
triangle multiplier.

6 8 10 12 14 16
0.75

0.8

0.85

0.9

0.95

1

N
o
rm

al
iz

ed
 P

o
w

er

6 8 10 12 14 16

Approximate LSBs

10
-1

10
2

10
5

10
8

E
rr

o
r

V
ar

ia
n
ce

appx1 appx2 appx3 appx4 appx5

Fig. 3: Power and error variance comparison for various
approximate multipliers.

To build approximate implementations, some of the exact
FAs that implement each arithmetic operation can be replaced
by their approximate counterparts. In particular, for each
operation, a certain number of the least significant bits (LSB)
can be approximated for each node in the DAG. The approx-
imate FA could correspond to, for example, one of the five
transistor-level FA designs proposed in [1]. In our work, we
narrow this down further by evaluating the power dissipation
and error variance for these five FA designs. The evaluation
proceeds by performing 5000 Monte Carlo simulations on a
32-bit multiplier for two independent Gaussian inputs with
various approximate LSBs utilizing the FAs from [1]. For
various numbers of approximated bits, the power requirements
and corresponding error variance for the five FA designs, as
compared to the accurate multiplier, are shown in Fig. 3. The
area and delay improvements show the same trends as power
and are not shown. For all levels of approximations, it can be
seen that the appx5 design provides the lowest error levels and
power relative to the other options.

3

The JPEG compression error depends on the approximation
used at each node. We explore two classes of approximations:
(1) Static approximation chooses the degree of approximation
for the nodes once during system optimization, and maintains
the same approximation for all input images. The choice must
be conservative to function correctly for any input image.
(2) Dynamic approximation depends on the data in a specific
image, and generates image-dependent approximations chosen
on the fly, depending of the error-resilience of the image.

IV. STATIC APPROXIMATION

We now develop a static optimization framework to optimize
the approximation level for each computational unit in the
Loeffler network, based on models that relate the introduced
error to the level of approximation. The optimization is carried
out over the two layers in Fig. 1(b), each containing eight
1D Loeffler DCT structures, each of which processes one
column of the M matrix. The full set of optimization variables
corresponds to the approximation levels in the 29 adders and
11 multipliers in each of the 8 blocks and in both levels of
the 2D DCT. We denote the full list of adder and multiplier
optimization variables by the sets θa and θm, respectively.
This leads to a total of (29 + 11) × 8 × 2 = 640 variables.
However, such an optimization could imply that each 1D DCT
block could have a different structure since it may be opti-
mized differently. Since this surrenders the major advantage
of regularity that is exploited in layout optimization of DSP
blocks, we choose to restrict the optimization so that within
each layer, all eight 1D DCT blocks are identical, allowing
for easier design and layout. This leads to a reduced number
of variables, θ′a and θ′m, so that the total number of variables
is now (29 + 11)× 2 = 80, thus also reducing the size of the
optimization problem.

We consider the impact of using approximate multipliers on
the accumulated error at the output of the JPEG compression
engine, and its effect on the quality of the resultant image. The
error at each node within the DAG has a different contribution
to the total error at the final output. We propose a scheme
based on the output error sensitivity of each node to optimize
the hardware, subject to a user-specified error budget that is
typically application-dependent. We proceed in three steps:
• Computing the error statistics of each unit module: We

characterize the error mean and variance for arithmetic units
(adders and multipliers) under static approximation criteria.
We assume that the input patterns are uniformly distributed,
and this is reasonable over a large number of frames.

• Sensitivity analysis of the DCT block: We calculate the
sensitivity of each node in a 1D DCT block to the error at
the output stage, as an input to the optimization engine.

• Nonlinear optimization: We formulate a nonlinear op-
timization problem that is solved to obtain the optimal
number of approximated bits for each adder and multiplier.

A. Computing Error Statistics

Errors in Adders: For the approximate FA design appx5, the
error x from approximating α LSBs can take on 2α different
values from the set {0,±1,±2, · · · ,±

(
2α−1 − 1

)
,−2α−1}.

The approximation scheme in the adder is concentrated in the
lower LSBs. Over the large number of frames processed by an
adder, the lower LSBs of the input have equal probability of
ones and zeros. Using this uniform distribution of error values,
i.e., px = 1/2α, we find the error mean and variance:

µa (α) = −0.5; σ2
a (α) = (4α − 1) /12 (1)

The mean is independent of number of approximated bits.
Even for a 1 LSB approximation, 3σ is 0.75 units and exceeds
the mean. The variance is larger for more approximated bits,
and the mean can be reasonably approximated as zero.
Errors in Multipliers: In the JPEG computation, each multi-
plier has one constant and one variable node, as described
in Section II. Assuming a uniform input distribution, the
error statistics of multipliers are analytically modeled using
the MATLAB curve fitting toolbox as a function of the α
approximated LSBs as:

σ2
m (α) = 0.6135(4α) (2)

As before, the error mean is essentially zero.

B. Sensitivity Analysis of the DCT Block

The computation at each node of a 1D DCT block is a linear
combination of the results of its immediate predecessor stage
node. If we denote the result at node n of stage s, as Tn,s,

Tn,s =
∑8
k=1Wk,n,(s−1) × Tk,(s−1), 1 ≤ n, s ≤ 8 (3)

where Wk,n,(s−1) is the weight of node k of the previous
stage, (s− 1) for node n of stage s. The value of Wk,n,(s−1)

can be obtained from the structure of the network, shown in
Fig. 2. We use ζn,s,k to denote the sensitivity of node k of
stage (s− 1), at node n of stage s. From (3),

ζn,s,k =
∂Tn,s

∂Tk,(s−1)
= Wk,n,(s−1) ∀n, s, k ∈ {1, · · · , 8} (4)

The error variance at a node can be obtained by weighting the
variances of predecessor nodes by the sensitivity, and adding
the error generated due to an approximation at the node. The
error variance, σ2

n,s,b,l, for node n, stage s, block b, layer l is:

σ2
n,s,b,l =

∑8
k=1 ζ

2
n,s,k × σ2

k,(s−1),b,l + σ2
op,nsl (5)

where
σ2
op,nsl = Generated variance, node n, stage s, layer l

σ2
n,0,b,l = Input variance for block, b, of layer, l

The values of σ2
op,nsl can be obtained from (1) or (2). We prop-

agate the error variance up to the D′ node of Fig. 1(b) using (5)
and match it with the error variance budget, σ2

budget,D′ . For a
quality factor, F , and a maximum user-specified error budget,
δR, an empirical relation between σ2

budget,D′ and σ2
budget,R at

node R in Fig. 1(a), is as follows:

σ2
budget,D′ = τ × σ2

budget,R (6)

where τ =
F

100
×
[
−2.94× 105δ−2.25

R + 250
]

This formula captures the factors that contribute to the differ-
ence between σ2

budget,D′ and σ2
budget,R, namely, (a) a lower

4

F incurs a larger quality degradation in quantization, and (b)
the inputs to the DCT nodes in Fig. 2 are not independent, as
assumed, due to correlations.

To obtain σ2
budget,R, we begin with the maximum error δR,

specified by the user at the 3σ point of the error at R, based
on the application requirement. This can be written as

δR = µbudget,R + 3σbudget,R ≈ 3σbudget,R (7)

where µbudget,R ≈ 0 and σbudget,R are the mean and standard
deviation of the maximum error budget, respectively. Thus,

σ2
budget,R = (δR/3)

2 (8)

C. The Nonlinear Optimization Formulation

For a reasonable k approximate output LSBs in an array
multiplier, the number of FAs is quadratic in k. For an adder,
each approximate output bit translates to one approximate FA.
Thus, the number of approximate FAs in an adder, fa(k), and
and multiplier, fm(k), are given by

fa(k) = k ; fm(k) = k(k − 1)/2 (9)

Therefore, the total number of FAs that are approximated can
be represented as a function of the number of approximated
bits associated with each adder or multiplier, given by:

λappx = 8×
(∑

ax∈θ′a
fa(αax) +

∑
my∈θ′m

fm(αmy)
)

(10)

Here, θ′a and θ′m correspond to the reduced sets of adders,
ax, and multipliers, my , for the 2D DCT block. As discussed
earlier, the same approximation is used within each of the 8
1D DCT blocks in layer, l = 1, 2, to preserve layout regularity.
The multiplicative factor of 8 captures this notion.

Based on the relations in Sections IV-A and IV-B, we
formulate an optimization problem that maximizes the savings
due to approximation, subject to a specified bound on the error
introduced at D′ node for Fig. 1(b). The precise formulation
of the optimization problem is:

max
∑
ax∈θ′a

αax +
∑
my∈θ′m

αmy (αmy−1)
2 (11)

s. t. (a) ∀n, s, b ∈ {1, · · · , 8}, l ∈ {1, 2},

σ2
n,s,b,l =

8∑
k=1

ζ2
n,s,k × σ2

k,(s−1),b,1 + σ2
op,nsl

(b) σ2
n,0,b,1 = 0 ∀n, b ∈ {1, · · · , 8}

(c) σ2
n,0,b,2 = σ2

n,8,b,1 ∀n, b ∈ {1, · · · , 8}
(d) σ2

n,8,b,2 ≤ σ2
budget,D′ ∀n, b ∈ {1, · · · , 8}

The objective function maximizes λappx, representing the total
hardware savings. The constraints represent limits on the error
variances at every stage. Constraint (a) is the relationship (5)
between the error variance from one stage to the next in each
layer of the network. Constraints (b) and (c), respectively, state
that there is no error at the input of layer 1 of the DCT on the
compression side when M is presented, and that the error of
stage 8 of layer 1 is passed on to layer 2. The variance budget
constraint (d) is obtained from (7) and (8).

Since the error variance equations of adder and multiplier
are nonlinear, as shown in (1) and (2), both the objective and

constraint functions are nonlinear. The decision variables, αax
and αmy , for this optimization are integer-valued. Although a
mixed integer linear programming problem can be computa-
tionally expensive, (a) the number of variables is small enough
that a solution is realistic, and (b) since this is an one-time
solution at design time, computation time is not critical. In
practice, we find that the problem is solved in about 1 hour.

V. DYNAMIC APPROXIMATION

Under static optimization, the level of approximation is chosen
to be safe for any input image. The error variance equations
(1) and (2) assume uniform input probabilities for all adders
and multipliers, respectively, but in practice, this approxi-
mation provides pessimistic error estimates. Using image-
specific input statistics, dynamic approximation can increase
the approximation level significantly. We present a real-time
image-dependent computation process that dynamically finds
the approximation at each node. Our starting point is the static
approximation, which works for all images, and we extract
additional gains through selective dynamic approximation.

A. Selecting Nodes for Dynamic Approximation

The DCT block has two node types: adders (or subtractors)
and multipliers. Considerations for approximation include:
• Number of image-dependent inputs at the node: The

adder nodes have two image-dependent inputs, while multi-
plier nodes have one constant and one image-dependent in-
put. Therefore, the data-dependent approximation circuitry
is required on both adder inputs, but only one multiplier
input, resulting in lower hardware overhead for multipliers.

• Node error sensitivity to the outputs: In the DCT DAG,
adder nodes are followed by constant multiplier nodes.
Thus, an error introduced at the adder node is amplified. No
such amplification occurs for approximations in multiplier
nodes. As a result, the error sensitivities of the multiplier
nodes are always smaller than those of the adder nodes.

• Number of dynamic FA blocks at the node: To achieve
the maximum dynamic savings within the limited error
budget, the number of approximated FA bits must be max-
imized. According to (9), incrementing the approximation
level by one bit for an adder and a multiplier implies ap-
proximating fa(k+1)−fa(k) = 1, fm(k+1)−fm(k) = k
FAs, respectively. Therefore, more FAs are available, per bit
of approximation, for multipliers than adders.

All of these factors imply that the dynamic approximation of
multiplier nodes is more effective than adder nodes.

We now choose an approximate FA design for dynamic
approximation, choosing from appx1–appx5 [1]. We find that
appx5 is the best choice for dynamic approximation because:
• From Fig. 3, appx5 is the most power-efficient option.
• The outputs of appx5 only depend on the inputs a and b,

not on the carry-in bit, cin [1]. Therefore, the scope of
propagated errors is limited since an error generated at the
carry-out at a node is not sent to the next bit.

• The appx5 design provides accurate results for two crucial
combinations, (a, b, cin) = (000) and (111). This is partic-
ularly important because many inputs do not use the entire

5

bit width, but use sign-extension for their most significant
bits (MSBs). The correct computation of these two combi-
nations ensures that no errors are generated in processing
sign-extension MSBs. The computation of multiplication
involves taking the summation of the partial products after
proper shift operation. If we only take summations of non-
zero partial products, the sign extensions of all non-zero
partial products are the same and thus according to the
property of appx5, no error will be generated. If Booth’s
multiplication is used (which is not the case in this paper),
then the signs will be mixed and this property will not hold.

Let us consider two n-bit multiplier inputs where the lower
x and y bits, respectively, contain useful data, and the MSBs
are sign-extension bits. If we approximate α ≥ x + y bits
using appx5, the error in the multiplier output is limited to an
(x+y)-bit approximation, rather than an α-bit approximation,
since the MSBs are correctly computed. For α < x + y, the
maximum error corresponds to α bits. In contrast, for appx1–
appx4, the correctness of sign-extension does not hold, either
because an error is generated for these combinations and/or
because an error in an input carry can create an error in the
sign-extension MSBs, so that the maximum error corresponds
to α bits regardless of x+ y. This is summarized in Table I.

TABLE I: Error characteristics of approximate multipliers

Number of potentially erroneous bits
appx5 based appx1–appx4 based

multiplier multiplier
α ≥ x+ y x+ y α
α < x+ y α α

B. Modification of Multiplier Error Variance Formulation

For a multiplier node, mi, in Fig. 4, let yi be its output, ci and
vfi its constant input and its variable input in frame f , respec-
tively, αmi the number of bits used for static approximation,
and σ2

m(αmi) its error variance, obtained from (2). When the
variable input of the appx5 based multiplier satisfies

αmi ≥ log2(|vfi |) + log2(ci), (12)

its error characteristics, shown in Table I, reveal two insights:
• Full approximation of all bits of the multiplier keeps the

error unchanged, while saving considerable power.
• The true error variance, σ2

m,true(αmi), due to the
static approximation is smaller than σ2

m(αmi), and,
for both the static and dynamic cases, is given by
σ2
m(dlog2(|vfi |) + log2(ci)e).

We relax the criterion of (12) to define the bound Ni:

αmi ≥ dlog2(|vfi |)e+ dlog2(ci)e (13)

i.e., dlog2(|vfi |)e ≤ Ni = (αmi − dlog2(ci)e) (14)

to obtain a criterion based purely on vfi .
Let us assume, αmi and zi ∈ Z≥0 are the static and

additional dynamic approximate bits, respectively, for the
multiplier node mi. We can model the true introduced error
variance, σ2

m,true(αmi + zi), as the weighted sum of the error

Fig. 4: A typical multiplier processing data in frame f .

variances of various approximate bits, where the weights are
the probabilities of various input ranges:

σ2
m,true(αmi + zi) = γ1(zi) + γ2(zi) (15)

where γ1(zi) =
∑Ni+zi−1
k=1 Pkσ

2
m(k + dlog2(ci)e)

γ2(zi) =
[
1−

∑Ni+zi−1
k=0 Pk

]
σ2
m(αmi + zi)

Pk =

{
Probability of |vfi | = 0, k = 0

Probability of 2k−1 ≤ |vfi | < 2k, k ∈ N

The exact evaluation of these probabilities is computationally
prohibitive since it requires the entire image data to be
processed. However, good estimates of the probability can
be obtained by sampling the frames at a rate, 1 : Rsample,
that provides an appropriate balance between accuracy and
computation. We compared the original probability distribu-
tion of the multiplier without sampling with the distribution
achieved from various sample rates. We empirically find
that Rsample = 16 provides a good match between the
original and sampled distributions, while also providing a
significant reduction in computation. The sampling framework
is implemented by randomizing all Nf image frames and
the probabilities are computed using first Nf/Rsample frames
that act as representative of remaining frames. To obtain Pk
probability values, we have designed a probability calculation
block, which we will discuss shortly.

C. Dynamic Approximation Hardware

The dynamic approximate architecture for each multiplier
node, mi, consists of following three blocks:

1) the dynamic multiplier block
2) the probability calculation block
3) the optimization block

We will discuss about the hardware description of the dy-
namic multiplier block and the probability calculation block
in this section. The optimization block will be discussed in
Section VI.

The multiplier mi is designed based on a CSA-based
configuration, as mentioned in Section III, and we use only
the lower triangle of this architecture. If the bit width of the
multiplier is Nmi , then it has Nmi columns of FAs, and the
xth of these columns contains x FAs. The total number of FAs
in the multiplier is:

λmi =
∑Nmi−1
x=0 x (16)

In static approximation, the lower αmi columns use approx-
imate FA blocks and rest of the columns employ accurate

6

TABLE II: A list of notations for various power terms

Notation Explanation Notation Explanation

Px
ai

x = {1, 2}

Power of an adder at node ai, operating under the following modes
x = 1 : Accurate Nai -bit adder
x = 2 : Static approximate αai -bit adder

∆Px
DCT

x = {2, 3}

Power savings for various approximation modes
for 2D DCT block over all frames
x = 2 : Static approximation
x = 3 : Dynamic approximation

Px
mi

x = {1, 2, 3}

Power of a multiplier at node mi, operating under the following modes
x = 1 : Accurate Nmi -bit multiplier
x = 2 : Static approximate αmi -bit multiplier
x = 3 : Dynamic approximate (Nmi − αmi)-bit multiplier

∆Px
mi

x = {2, 3}

Power savings for various approximation modes
implementations at multiplier node mi

x = 2 : Static approximation
x = 3 : Dynamic approximation

px
x = {1, 2, 3, 4}

Power of an FA operating under the following modes Pabscomp Power of the absolute comparator block
x = 1 : Accurate-mode FA
x = 2 : Approximate-mode FA

x = 3 : Accurate-mode DSFA
x = 4 : Approximate-mode DSFA

φfi Power of the DSFA in multiplier mi for frame f Popt Power of the optimization block
∆Pai Total power savings for adder node, ai Pprob Power of probability calculation block
∆Pmi Total power savings for multiplier node, mi

FAs. For dynamic approximation, the accurate FA columns
are replaced with the columns of dynamic select FA (DSFA)
blocks. An additional absolute comparator block is added to
each dynamic multiplier to compare vfi and 2Ni .

Based on sampled image-specific data obtained from the
probability calculation block, the optimization block chooses
an appropriate zi. The absolute comparator block checks
whether for the specific image, |vfi | ≤ 2Ni+zi . If so, it
asserts the signal, Sfi (zi) and triggers dynamic full bit-width
approximation. This full bit-width approximation increases the
error variance to σ2

m,true(αmi +zi) as mentioned in (12). The
formulation to obtain selector signal per frame, Sfi (zi), is

Sfi (zi) =

{
1, if |vfi | < 2(Ni+zi)

0, otherwise
(17)

The capability of dynamically changing the level of approxi-
mation is enabled through the use of the DSFA block, shown
in Fig. 5(a), consisting of an accurate FA, an approximate
FA, and a MUX that chooses between the two, based on the
selector signal, Sfi (zi) [15]. When the approximate FA is in
operation, the accurate FA block is power-gated to reduce the
power. An optimized DSFA design has been proposed, shown
in Fig. 5(b), that skips the MUX delay of the accurate mode
signals and thus reduces the critical delay as well as the total
power of the DSFA design.

Fig. 5: (a) Preliminary and (b) optimized structure of a
dynamic select FA (DSFA).

During dynamic approximation, the selector signal, Sfi (zi),
decides between two operating modes: static approximation

and full bit-width approximation. If λmi,s and λmi,d are the
number of FAs selected for static and dynamic approximation
alone, respectively, then for an αmi -bit approximation,

λmi,s =
∑αmi−1
x=0 x , λmi,d =

∑Nmi−1
x=αmi

x (18)

For each Nmi -bit dynamic multiplier node, mi, we have
designed a probability calculation block. The block has total
Nmi counters with the bitwidth log2(Nf/Rsample). Each kth

counter is enabled by a logic circuit that detects whether the
input signal lies in the range 2k−1 ≤ |vfi | < 2k.

D. Power Modeling

A list of variables used to model the power dissipation of
various blocks under a set of static and dynamic approximation
schemes is provided in Table II. For the accurate and statically
approximated multiplier, the power expressions are:

P1
mi =

∑
f p1 · λmi =

∑
f p1[λmi,s + λmi,d] (19)

P2
mi =

∑
f p2 · λmi,s (20)

To compute the multiplier power for the dynamic approxi-
mation case, we begin with modeling the DFSA. The DFSA
operates in the accurate mode except when the selector signal,
Sfi (zi), is asserted. The power dissipation in the f th frame,
φfmi(zi), for the DSFA is given by:

φfmi =
(

1− Sfi (zi)
)
· p3 + Sfi (zi) · p4 (21)

The larger the time Sfi = 1, the lower is the power for DSFA
block, which depends on larger zi, according to (17). The
power for a dynamically approximated multiplier is:

P3
mi =

∑
f

[
φfmi(zi) · λmi,d + Pabscomp

]
+ Poverhead (22)

where Pabscomp is the power dissipation of the absolute com-
parator. The last term is the overhead of dynamic optimization:

Poverhead =

(
Nf

Rsample

)
· Pprob + Popt (23)

where Pprob and Popt are, respectively, the power dissipation
of the probability calculation block and the optimization block,
discussed in Section VI. In (22) and (23), note that the dynamic
multiplier block operates in all Nf frames of the image, the
probability calculation block on (Nf/Rsample) frames, and
the optimization block only once on the entire image.

7

We launch dynamic approximation from the static approx-
imation case. The power savings over the accurate case are:

∆Pmi = P1
mi − [P2

mi + P3
mi] = ∆P2

mi + ∆P3
mi (24)

where ∆P2
mi =

∑
f λmi,s · (p1 − p2)

∆P3
mi =

∑
f

[
λmi,d ·

(
p1 − φfmi(zi)

)
− Pabscomp

]
− Poverhead

The terms ∆P2
mi and ∆P3

mi indicate, respectively, the power
savings of static and dynamic approximation. The former is
constant over all frames, but the latter varies with each frame.

The total dynamic power savings in the DCT block is the
sum of power savings over all dynamic multiplier blocks:

∆P3
DCT =

∑
mi∈θm ∆P3

mi (25)

where θm is the set of all multipliers in the 2D DCT block.

VI. OPTIMIZED DYNAMIC APPROXIMATION

A. Formulation of the Optimization Problem

The goal of optimized dynamic approximation is to perform
a set of inexpensive optimizations in real time. As a result, it
is important for the optimizations to be simple. We achieve
this by locally maximizing the power savings, ∆P3

mi(zi), at
each node of the DCT operation. The optimization operates
the dynamic multiplier nodes with the highest power savings
subject to error constraints that guarantee output quality. At
each multiplier node mi, we solve the problem:

maxzi ∆P3
mi(zi) (26)

subject to σ2
m,true(αmi + zi) ≤ σ2

m(αmi)

From (24), the power savings, ∆P3
mi(zi), are maximized when

φfmi(zi) is as small as possible, and from (17) and (21), this
occurs when zi is maximized. However, the value of zi is
limited by the error variance budget, σ2

m(αmi). Here, the
true error variance, σ2

m,true(αmi + zi), is defined by (15).
Therefore, we simplify the optimization problem to:

max zi, s.t. σ2
mi,true(αmi + zi) ≤ σ2

mi(αmi) (27)

B. Design Space Reduction for the Optimization Problem

1) A Motivating Example: A key question relates to the
choice of the error budget, σ2

m(αmi), at each multiplier in
(27). One way to set the budget is to choose the value from
static optimization, allowing each node to be dynamically
configurable, but this requires substantial overhead circuitry
at each node. Instead, we limit configurability to nodes with
the largest potential for power savings, and increase their error
budgets to utilize the unused error budget from the other nodes.

To understand the relation between error at multiple nodes
in a DAG, consider the example DAG where two multiplier
nodes, A and B, converge at an exact adder node D. We define
the error slack variance, σ2

mi,slack
, as:

σ2
mi,slack = σ2

m(αmi)− σ2
m,true(αmi) (28)

= (1− ηmi)σ2
m(αmi) (29)

where ηmi = σ2
m,true (αmi) /σ

2
m (αmi). The error slack vari-

ance at nodes A and B from the static approximation budget

Fig. 6: The output error variance slack (a) without and (b)
with the benefit of error variance stacking.

(Fig. 6(a)) could be insufficient to allow an extra approximate
bit at either node. However, the total error variance at the
output is the sum of the error variances at all nodes in the
DAG, and we could stack the error variances by allocating the
entire slack budget to node A, as in Fig. 6(b), i.e., A would be
the only dynamically configurable node, and the error slack
of B would be transferred to A. This has following benefits:

• It may allow A to further approximate one or more bits,
saving power while remaining within the slack budget.

• The hardware overhead incurred of dynamic reconfigura-
bility is halved if only A is made reconfigurable, since
B can be approximated statically without this overhead.

2) A Framework for Redistributing Slack Budgets: We have
implemented this slack redistribution idea for the DAG model
of the 1D DCT structure shown in Fig. 2. There are 11
multiplier nodes, m1 through m11, and eight outputs, x0

through x7, in the 1D DCT structure. The candidates for
dynamic approximation are all the multiplier nodes. We denote
the sensitivity of the error at node xj for the error at mi as
Sij and the corresponding sensitivity of the variance of the
error as S2

ij . For each (multiplier, output) pair, (mi, xj), of
the DCT structure, the error variance sensitivity, S2

ij , is shown
in Table III. A blank entry at (mi, xj) implies no connection
between mi and xj . Outputs x0 and x4 have no multipliers
in their fan-in cone and are not shown. The three distinct
sensitivity values, s1, s2 and s3, are listed below the table.

TABLE III: Variance sensitivities for
multipliers in 1D DCT block

S2
i,j x1 x2 x3 x5 x6 x7
m1 s1 s2 s1
m2 s1 s2 s1
m3 s1 s2 s1
m4 s1 s2 s1
m5 2s1 s2 s2 2s1
m6 2s1 s2 s2 2s1
m7 s1
m8 s1
m9 s1 s1
m10 s3
m11 s3

s1 = 1
214

, s2 = 1812

228
and s3 = 1

228

Let us use Mj to denote the set of multiplier nodes that
are on a path to output xj The total error variance introduced

8

by the static approximation process at xj is:

σ2
xj ,stat =

∑
i∈Mj

S2
i,j · σ2

m(αmi)

=
∑
i∈Mj

S2
i,j ·

[
σ2
m,true(αmi) + σ2

mi,slack

]
(30)

where the second equality follows from (28). As indicated in
the example above, we may use more approximation and also
save on the overhead of dynamic reconfiguration by making
only a few nodes dynamically reconfigurable and stacking the
slacks of the other nodes on to these nodes. We therefore
partition the elements of Mj into a set of nodes that are
selected for dynamically approximation, Mj,d, and a set of
nodes, Mj,s, that are left at their static approximation levels.

As we redistribute the slacks of the static nodes to the
dynamic nodes, we associate each dynamic node, mi ∈Mj,d,
with a set of static nodes, Ymi . As we stack the slack from
the static nodes to the dynamic nodes, the variance at output
xj becomes:

σ2
xj ,dyn =

∑
i∈Mj,d

S2
i,j · σ2

m(αmi) +
∑

mk∈Ymi

S2
k,j · σ2

mk,slack

+
∑

i∈Mj,s

S2
i,j · σ2

m,true(αmi)

=
∑

i∈Mj,d

S2
i,j ·

σ2
m(αmi) +

∑
mk∈Ymi

χmi [mk] · σ2
mk,slack

+
∑

i∈Mj,s

S2
i,j · σ2

m,true(αmi) (31)

where the weights χmi [mk] = S2
k,j/S

2
i,j .

The above equation provides a new error budget, σ2
mi,NB

,
for nodes mi ∈ Mj,d, which can be simplified using the
approach provided in Appendix A:

σ2
mi,NB = C̃mi − D̃mi × σ2

m,true(αmi) (32)

Here, C̃mi and D̃mi are error budget dependent constants for
node, mi. The new budget, σ2

mi,NB
, is used to update the

optimization problem from (27) to:

max zi, s.t. σ2
m,true(αmi + zi) ≤ σ2

mi,NB (33)

We propose two following algorithms to reduce the design
space of the optimization problem:
• A heuristic described in Algorithm 1 selects a set of

dynamically approximated nodes, Λ.
• For each multiplier mi ∈ Λ, Algorithm 2 identifies

the set of non-dynamic nodes, Ymi , whose slacks are
stacked on to dynamic node mi, and the set of weights,
χmi , associated with stacking, as described in (43) of
Appendix A.

3) An Algorithm for Selecting Dynamic Multiplier Nodes:
The criteria for selecting a set of dynamic nodes ensure that:

1) the chosen nodes cover all outputs, i.e., the propagated
errors reach all outputs (with the exception of x0 and x4,
which cannot be reached by any multiplier).

2) a goodness metric, ωPB , explained in Appendix B,
ensures high approximation levels with low error, is
minimized.

3) the error at the outputs of the 1D DCT block is within the
total error budget, thus ensuring that dynamic approxima-
tion saves power while staying within error specifications.

Algorithm 1 Selection of Dynamic Multiplier Nodes, Λ

INPUT: Multiplier nodes in the 1D DCT network,
{m1, m2, · · · , m11} and the corresponding dynamic error
variance sensitivities: {ω1, ω2, · · · , ω11}.
OUTPUT: A set, Λ, of dynamically approximated nodes.

1: Λ = ∅
2: Sm = {m1, m2, · · · , m11}
3: if mi,mj ∈ Sm, i 6= j have identical rows in Table III

then
4: Sm = Sm \mj

5: end if
6: Sort Sm, arranging mis in non-ascending order of ωi.
7: for each multiplier node mi ∈ Sm do
8: if Discarding mi loses control on any output then
9: Λ = Λ ∪mi

10: end if
11: end for
12: ωmin ←∞
13: for ν = |Sm| to 1 do
14: Calculate ωPB =

(∑ν
k=1 ωSm(k)

)
/ν

15: if ωPB < (1 + ε)× ωmin then
16: ωmin = ωPB , Λ = Λ ∪ Sm(ν)
17: end if
18: end for
19: return

The inputs to Algorithm 1 are all the multiplier nodes in
the 1D DCT network and their corresponding dynamic error
variance sensitivities defined in Appendix B. If two nodes have
identical row entries in Table III, we discard one of them from
consideration for Λ, as shown in Line 3–5 of Algorithm 1.
For example, since the rows corresponding to m1 and m3

nodes are identical, m1 could be pruned out. The rationale
for this is based on the large overhead of creating a DSFA
to allow reconfigurability: even though the error increases
exponentially with zi, for real test cases, the break-even point
where the benefits of approximating more multipliers under
an error budget overcomes this overhead is well beyond the
range of the eventually selected values of zi.

Line 6 sorts the elements mi of set Sm in non-ascending
order of ωi. Next, in Lines 7–11, we identify any nodes that
can uniquely influence some output xj , i.e., if these nodes are
not included in Λ, xj cannot be reached. Based on Criterion 1)
above, such nodes are added to Λ. After this step, we greedily
select from the remaining nodes in non-decreasing order of ωi.
In Lines 13–17, we add a node to Λ if it reduces ωPB , using
a factor of ε to allow temporary cost increases that permit
a level of hill-climbing during optimization. The dominating
operation of this algorithm is to check the influence of each
candidate multiplier node to all the output nodes. Hence, the
complexity of this algorithm is O(Tx · Tm). Here, Tx and Tm
are the total number of output and multiplier nodes in a DAG,
respectively.

9

4) An Algorithm for Redistributing Error Slacks: Algo-
rithm 1 yields Λ = {m3,m4,m7,m8,m10,m11}, i.e., 6 of
11 multiplier nodes are chosen for dynamic approximation.

Further practical considerations are used to prune the
number of candidate multiplier nodes over the entire JPEG
hardware. As shown in Fig. 1(b), there are two layers of 1D
DCT blocks in the 2D DCT, and the constant multiplications in
the second layer amplify any error introduced by the first layer
of 1D DCT block. This implies that there is limited advantage
in implementing dynamic approximation for the multiplier
nodes of Layer 1, and therefore, we only choose multiplier
nodes from Layer 2 for dynamic approximation. In summary,
we choose a total of 6 × 8 = 48 multiplier nodes, listed in
a set, θ′′m, for dynamic approximation out of 11 × 16 = 176
available multiplier nodes.

Algorithm 2 Algorithm to obtain Ymi and χmi
INPUT: Λ = Set of selected multiplier nodes,
Mj,d = Set of nodes mi ∈ Λ that have a path to output xj
Mj,s = Set of nodes mi 6∈ Λ with a path to output xj
Omi = Set of outputs x such that mi ∈ Λ has a path to x
OUTPUT: Ymi= Nodes whose error slacks are stacked to
mi ∈ Λ

χmi = map
〈

key = mk, value =
S2
k,j

S2
i,j

〉
,mk ∈ Ymi ,mi ∈ Λ

1: Initialize Ymi ← ∅, χmi ← ∅, V ← ∅ ∀mi ∈ Λ
2: Create Imi =

⋂
xj∈Omi

Mj,s, ∀mi ∈ Λ

3: for each xj j ← {0, 1, · · · , Tx − 1} do
4: Calculate σ2

xj ,dyn
using (31)

5: if σ2
xj ,dyn

> σ2
xj ,stat then

6: χmi [mk] = min
(
χmi [mk] ,

S2
k,j

S2
i,j

)
,

7: ∀mk ∈ Ymi ,mi ∈Mj,d ∩ V
8: end if
9: M =Mj,d \ V

10: Imi = Imi \ ∪mi∈MYmi , ∀mi ∈M
11: Calculate Qj =

⋂
mi∈M Imi

12: Assign Ymi ← Imi \ Qj , ∀mi ∈M
13: Y [mi] = Ymi , ∀mi ∈M
14: Y = NodeDist(Y,Qj ,M)
15: Ymi = Y [mi], ∀mi ∈M
16: χmi [mk] = S2

k,j/S
2
i,j ,∀mk ∈ Ymi ,∀mi ∈M

17: V ← V ∪M
18: end for
19: return

The inputs to the Algorithm 2, Mj,d, Mj,s, and Omi , and
the dynamic node set, Λ, can be obtained from Table III and
Algorithm 1. After the initialization in Line 1, Line 2 creates
Imi , the set of nodes that are candidates for stacking on mi:
these are nodes that lie on every output path, Omi , that mi can
reach. The rationale for this choice can be illustrated by an
example: node m3 ∈ Λ reaches Om3

= {x1, x3, x7}, and the
non-dynamic nodes that lie on every path to nodes in this set
are Im3

= {m1,m5,m6}. Hence, stacking the error slacks of
m1,m5, or m6 to m3 is merely a redistribution of slacks that
will not result any error constraint violation. Now consider
node m2 6∈ Im3

, which lies on the path to x1 and x7, but not
x3. Therefore, stacking the error slacks of m2 to m3 will add

Algorithm 3 Y =NodeDist(Y,Qj ,M)

1: if Qj 6= ∅ then
2: Find σ2

xj ,mk
, mk ∈ (∪mi∈MY [mi])∪Qj , using (45)

3: TS[mi] =
∑
mk∈Y [mi]

σ2
xj ,mk

,∀mi ∈M
4: Sort Qj in descending order of σ2

xj ,mk
,mk ∈ Qj

5: for mk ∈ Qj do
6: ml ← argmin(TS)
7: Y [ml]← Y [ml] ∪ {mk}
8: TS[ml] += σ2

xj ,mk
9: end for

10: end if
11: return Y

a new error on the path to x3, potentially violating the error
budget at x3. Hence, m2 is not a stacking candidate for m3.

Next, we consider paths to each output xj in an iterative
loop. The present value of the dynamic budget for output xj ,
σ2
xj ,dyn

, is first computed in Line 4. If this value exceeds the
variance budget from static optimization, then the slacks are
adjusted to ensure adherence to the budget by updating the
χmi values of the visited node set V in accordance with (43).

We then consider the set M of dynamic nodes that have
not been visited so far on Line 9. The nodes in the set Ymi
are removed from further stacking consideration on Line 10
as they have already been stacked to mi. These nodes can
no longer share their slacks, and we update a narrower set
of candidates, Imi . We then compute the set Qj in Line 11,
which contains non-dynamic nodes on every path from every
element of M to an output. This set, Qj , helps to identify
the unique terms in Imi that are directly assigned to Ymi
in Line 12. For example, for output x1, M1,s = {m3,m4},
and Im3 = {m1,m5,m6}, Im4 = {m2,m5,m6}, so that
Q1 = {m5,m6}. The unique elements of Im3 and Im4 , m1

and m2, are directly assigned to Ym3
and Ym4

, respectively.
On Line 13, we assemble Y , a set of all sets Ymi , which

is updated in the function call to NodeDist on Line 14, where
the slacks of the nodes in Qj are distributed among Y [mi]
(i.e., Ymi). After the function returns the updated value of Y ,
the values are written back into the Ymi variables. Finally,
Line 16 updates the list χmi for nodes mi ∈M, and Line 17
marks the nodes in M as visited.

The NodeDist routine is described in Algorithm 3. It first
computes the slacks of all nodes belongs to the Y and Qj
sets on Line 2. The total slacks of the stacked nodes in Y [mi]
for all mi ∈ M are calculated in Line 3. The sorted nodes
in Qj are then greedily stacked to the dynamic nodes in
Lines 5–9. The complexity of this algorithm is O (|M| · |Qj |).
Since the cardinality of both M and Qj can be in the order
of total number of multiplier nodes, Tm, of a DAG, the
complexity becomes: O

(
T 2
m

)
. The complexity of Algorithm 2

is dominated by the operation of NodeDist routine for all
outputs, Tx. Hence, the overall complexity of this algorithm
is O

(
Tx · T 2

m

)
.

The results of Algorithm 2 are shown in Table IV, which
lists the stacked nodes, mk ∈ Ymi , and the corresponding
weights, χmi [mk], for each mi ∈ Λ. The blank entries of
Ymi and χmi in the table imply that no stacking is possible

10

for the corresponding node, and the budget, σ2
mi,NB

, for such
a node is unchanged from its static budget, σ2

m(αmi).

TABLE IV: The set of stacked nodes, Ymi , and the
corresponding weights χmi for all selected nodes mi ∈ Λ

mi ∈ Λ m3 m4 m7 m8 m10 m11

mk ∈ Ymi m1,m5 m2,m6 m9 m9 – –
χmi [mk] 1, 2 1, 2 1 1 – –

C. Real-Time Optimization of Dynamic Approximation

The optimization problem (33) must be solved in real time to
obtain the result of dynamic approximation level, zi. To control
the area and power overhead associated with dynamic approx-
imation, it is essential to simplify the framework described
above, addressing both hardware and runtime overheads.

1) Reducing the Number of Iterations during Optimization:
The number of dynamic approximate bits, zi, is a non-negative
integer valued number and could be increased in steps of one.
The use of a coarser resolution, κ > 1, can reduce the number
of iterations, potentially at the cost of optimality. Practically,
κ = 2 provides a good balance between the two.

2) Approximating Algorithm and Hardware: We introduce
several heuristics to reduce the computation.

a) Approximation of the Error Variance Formula: The
computations in the optimization problem involve several ad-
ditions and multiplications, which would consume significant
power if implemented as precise floating point additions and
multiplications. To mitigate this, we have approximated the
multiplier error variance equation (2) as:

σ̂2
m(α) = 0.5× 4α = 2(2α−1) (34)

This approximation converts the multiplication operation to
a shift, thus saving a notable amount of power. We show
in Section VII-B2 that under this approximation, we obtain
significant area and power savings at the system level.

b) Approximation of the Hardware: As stated in Sec-
tion V-C, an absolute comparator is required in the dynamic
multiplier block. The calculation of the absolute value of an
n-bit number requires n XOR gates that XOR the sign bit with
the data bits, and an n-bit adder that adds the sign bit to the
result to obtain the two’s complement of a negative number.
To reduce the hardware cost, we omit the adder block: as a
result, the absolute value of a negative number is off by one,
which causes no significant error in our estimation.

c) Formulating the Iterations Incrementally: In the op-
timization problem (33), the left hand side of the constraint
is given by (15) and involves the computation of γ1(zi) and
γ2(zi), The optimization procedure iteratively increments the
values of some zis, and we devise recursive expressions that
update these values between iterations incrementally as:

γ1(zi) = γ1(zi − κ) + F1(κ, zi) (35)
γ2(zi) = 4κ · [γ2(zi − κ)−F2(κ, zi)] (36)

F1(κ, zi) =
∑Ni+zi−1
v=Ni+zi−κ Pv · σ̂

2
m(v + dlog2(ci)e) (37)

F2(κ, zi) = σ̂2
m(αmi + zi − κ) ·

∑Ni+zi−1
v=Ni+zi−κ Pv (38)

where the base cases, γ1(0) and γ2(0) are obtained from (15).
Note that the updated formula uses the simplification in (34).

The operations for updating γ1 and γ2 are implemented
in hardware as a combinational block. From (34), the σ̂2

m

term is a power of 2, and therefore F1 and hence γ1 can
be implemented using adders and shifters, without expensive
multiplications. Similarly, F2 and γ2 can also be implemented
using adders and shifters, and therefore the hardware overhead
associated with implementing these updates is low.

The overall dynamic multiplier architecture for multiplier
node, mi, is shown in Fig. 7. For an input image, the proba-
bility values, Pk, are calculated in the probability calculation
block using reduced number of frames. Using these Pk values,
the optimization block first calculates the base case values
of γ1 and γ2 using (15) and later computes the new budget,
σ2
mi,NB

from (32). For each zi, in steps of κ, the error variance
is calculated using (35)-(38) and compared against the new
budget, σ2

mi,NB
, in parallel. The encoder block detects the

maximum feasible value of zi and passes the value to the
dynamic multiplier block.

The percentage power savings for the DCT block under
static and dynamic approximation condition incorporating all
the heuristics is given by:

∆PDCT
PDCT

=
∆P2

DCT + ∆P3
DCT∑

mi∈θm P
1
mi +

∑
ai∈θa P

1
ai

(39)

where ∆P2
DCT =

∑
mi∈θm P

2
mi +

∑
ai∈θa ∆Pai

∆P3
DCT =

∑
mi∈θ′′m

P3
mi

P1
ai =

∑
f Nai × p1, ∆Pai =

∑
f αai × (p1 − p2)

where θa and θm are the sets of all adders and multipliers,
respectively, and θ′′m is the set of all dynamic nodes in the 2D
DCT block. Using (19) and (24), the power savings of static
approximation can be reduced to

∆P2
DCT

PDCT = (p1−p2p1
) ·
[∑

mi∈θm
λmi,s+

∑
ai∈θa

αai∑
mi∈θm

λmi+
∑
ai∈θa

Nai

]
(40)

The first term, (p1−p2p1
), is the power savings for the ap-

proximate FA w.r.t. the accurate FA, and the second term
is the number of approximate FAs compared to the total
number of FAs in the 2D DCT block. The power savings for
static approximation is constant for all images for a specified
δR. The required area, power, and delay of the dynamic
approximation process including the overheads are studied in
details in Section VII.

VII. RESULTS

We have implemented our approximate DCT framework using
the 45nm NanGate Open Cell Library. The absolute compara-
tor, probability calculation, and optimization block have each
been synthesized from an RTL description using Synopsys
Design Vision to obtain the power, delay, and area associated
with these blocks. The FA blocks (accurate, approximate,
DSFA) were designed using Cadence Virtuoso and simulated
with HSPICE to obtain their power and delay, and the areas
were estimated by drawing the layouts of these FA blocks. All
simulations have been performed at the typical process corner
with VDD = 1.1V and temperature, T = 25◦C. Table V lists the

11

Fig. 7: Dynamic multiplier architecture for node, mi.

power requirements for the building blocks. The JPEG circuit
was exercised on the benchmark images from [17], [18].

A. Static optimization

We first present the results of static optimization, employing
the mixed integer nonlinear problem solver, KNITRO [19],
to solve the static nonlinear optimization problem (11). The
CPU times for optimization were around 1 hour on a 2.6
GHz Intel Core i5 CPU with 8Gb RAM and running the
64-bit OS X. This computation time is reasonable since this
is a one-time optimization. The optimized values of αai and
αmi obtained from KNITRO were used in (40) to calculate
total power savings using the statically optimized approximate
DCT hardware. The area of the circuitry was obtained by
synthesizing the blocks using the design flow described above.

The first two columns of Table VI show power savings
from static approximation for various values of user-specified
maximum pixel error, δR (defined in (7)), at node, R, of
Fig. 1(a). As expected, the magnitude of savings increases
when the error specification is relaxed. It is also worth noting
that the magnitude of power savings is image-independent,
motivating our work on dynamic approximation.

B. Dynamic optimization

Next, we consider the case of dynamic approximation, where
the 48 multipliers identified in Section VI-B4 may be dynami-
caly approximated beyond their static approximation solution,
in an image-specific manner. We have used the granularity
level, κ = 2 with all proposed heuristics described in Sec-
tion VI-C for this work. The probability distributions at the
multiplier inputs, the switching rates of various blocks as well
as the static approximate solution were used in (39) to find
the total static and dynamic power savings.

1) Power savings for a set of input images: For five
representative images, Columns 3–7 of Table VI show the
overall power savings, incorporating the cost of the overhead
circuitry. The last column shows a theoretical limit on the best
achievable power savings, corresponding to the case where all
bits of the 48 dynamic multiplier nodes are approximated. The

Gray21 image achieves this limit in all cases, and the other
images require a certain number of precise bits and deliver
power savings that are below the limit.
The dynamic approximation level variations for an error bud-
get, δR = 30, are shown in Fig. 8 for image (a) Lena and
(b) Baboon. Each plot depicts the level of introduced error at
the 64 outputs under static and dynamic approximation. We
analyze the results for each image below.
Lena: Moving from static to dynamic approximation increases
the error but keeps it within specifications.
Baboon: Static approximation alone brings the error to the
constrained limit, and no further gains are achieved through
dynamic approximation. In fact, as shown in Table VI, the
power gains from static approximation are somewhat lost
due to the overhead of the dynamic approximation circuitry.
At higher error specifications (e.g., δR = 60), dynamic
approximation provides gains over static approximation.

Fig. 8: The pixel error at each output for (a) Lena and
(b) Baboon (δR = 30, F = 90).

The dynamic power savings varies with different images
which can be attributed to various pixel contrasts of the
images. The pixel contrast can be defined as the difference in
pixel values among the adjacent image coordinates. As shown
in Fig. 2, the inputs to the multipliers of 1D DCT block
come from subtractor outputs, and we focus on differences
of pairwise pixel inputs to stage, s(1) of 1D DCT for each
column of matrix, M , as defined in Section II. We take the
cumulative distribution function, CDF, of 10 bins of the pixel

12

TABLE V: Power dissipation of various blocks

Blocks Delay (ns) Power (µW)
Accurate FA 0.16 5.49
Approximate FA 0.00 0.00
DSFA (Accurate) 0.20 6.94
DSFA (Approximate) 0.08 1.13
Absolute (XOR)
comparator 1.28 49.09

Probability
calculation block 0.10 129.04

Optimization block 6.15 5.6× 103

TABLE VI: Power savings for a set of input images

Max.
pixel

error, δR

%Power savings

Static Dynamic Theoretical
limitBaboon Peppers Lena Arctichare Gray21

30 34.8 32.5 38.0 46.0 46.0 50.3 50.3
40 38.8 37.5 45.7 49.5 50.5 53.5 53.5
50 41.2 41.6 49.0 52.8 52.9 55.8 55.8
60 43.3 45.3 52.7 55.8 55.1 57.2 57.2
70 44.7 47.4 55.4 57.4 56.8 58.2 58.2
80 45.8 49.4 56.7 58.6 58.2 59.3 59.3
90 46.8 51.0 57.8 58.7 58.7 59.8 59.8

difference values, and define the contrast for an image as the
index of the bin which contains the 95 percentile data. For
example, the image contrast level for Arctichare image is 2
as the second bin contains the 95 percentile data as shown in
Fig. 9(a). On the other hand, Baboon image has larger contrast
level (shown in Fig. 9(b)) than Arctichare as more bins are
required to reach 95 percentile data.

Fig. 9: Distribution of pairwise pixel differences and image
contrast level calculation of (a) Arctichare and (b) Baboon.

If Mf and Rf are the f th frame of the original and
reconstructed image matrices, respectively, as shown in Fig. 1,
and Nf is the total number of frames for the image, we define
the mean square error, MSE = 1

Nf

∑
f

(
Mf −Rf

)2
. We

quantify the quality degradation of an image using the peak
signal-to-noise ratio (PSNR) metric, defined as:

PSNR = 10 log
(

2552

MSE

)
(41)

We use MATLAB to compute the image PSNR values.
The heatmaps in Fig. 10 show average of percentage dy-

namic power savings, ∆P3
DCT /PDCT , and average of image

quality degradation from the base case, ∆PSNR, for 30 stan-
dard images [17], [18] with different contrast levels and error
budgets, δR. The base case corresponds to a quality factor,
F = 90 with no approximation, and the PSNR values are
computed using (41). For δR = 0, the dynamic approximation
process was implemented without any static approximation.
Hence, the power savings are negative due to the overhead of
additional circuitry. For the same image contrast level, as the
level of static approximation increases, the overhead becomes
progressively easier to overcome which improves the dynamic
power savings but degrades PSNR.

On the other hand, increased image contrast level translates
to higher probabilities of higher input ranges to multipliers

and introduces larger error as described in (15). As a result,
for the same error budget, increased image contrast degrades
both dynamic power savings and PSNR. We can create a
lookup table using this heatmap. For a known maximum image
contrast level of a particular application, the required minimum
error budget for dynamic approximation to outperform static
approximation can be found. If the average PSNR degradation
for the minimum error budget is acceptable for the target
application, then the JPEG hardware can be designed with
dynamic approximation capabilities.

Fig. 10: Heatmap of average (a) percentage dynamic power
savings, ∆P3

DCT /PDCT , and (b) PSNR degradation for
various image contrast levels and error budgets, δR.

2) Impact of hardware choices: We evaluate the effec-
tiveness of our heuristics in Section VI-C that simplify the
hardware implementations of the absolute comparator, the
error variance formula in (34), and the choice of the granularity
level, κ, of the number of dynamic approximate bits, zi
in Table VII. For several choices of κ and under various
heuristics, we compare the power and area savings and the
PSNR. We evaluate these on the Baboon image, which
shows the lowest power savings, i.e., the highest overhead,
in Table VI. Comparing the second row with the first, for the
same value of κ, the introduction of heuristics show significant
area savings and some power savings, with negligible change
in the PSNR. The use of coarser granularity of zi, shown
in the third row, cuts into the power savings and PSNR
slightly, but uses noticeably less area. due to the reduction
in the optimization circuitry.

3) Impact of approximation choices: To quantify the gains
of specific approaches, we focus on the image Gray21, which
is seen to achieve the maximum theoretical savings. We
compare the following three approaches to achieve iso-quality
degradation (δR = 30) for a specific image, Gray21:

13

TABLE VII: Comparison of power and area savings, and
PSNR for various hardware choices (Baboon and δR = 70)

Hardware choice % Power
savings

% Area
overhead PSNR (dB)Heuristics κ

No 1 46.69% 27.96% 22.01
Yes 1 47.81% 5.42% 22.02
Yes 2 47.41% 1.73% 22.12

1) No approximation with a small quality factor, F = 50
2) Static approximation with a large quality factor, F = 90
3) Dynamic approximation with F = 90

We assume the base case to be the no-approximation JPEG
computation with the quality factor, F = 90. For a maximum
pixel error, δR = 30, the compression ratio, power, delay and
area comparison for various approaches, with respect to the
base case, are listed in Table VIII. The compression ratio is
inversely related to F , and is calculated from the image storage
sizes of the original image and JPEG compressed image. The
base case uses a 9 : 1 compression ratio.

TABLE VIII: Comparison of memory requirement, power,
delay, area savings and normalized power-delay product w.r.

to dynamic approximation (Gray and δR = 30)

Reduced
Quality

Static
approximation

Dynamic
approximation
(a) (b)

Quality factor, F 50 90 90 90
Relative
compression ratio 15:9 1:1 1:1 1:1

% power savings 0.0% 34.8% 50.1% 50.3%
% delay savings 0.0% 46.1% 41.1% 41.0%
% area savings 0.0% 34.8% –91.3% –12.2%
Normalized
power-delay product 3.4× 1.2× 1.0× 1.0×

Approach 1) uses a small quality factor, F = 50 to achieve
the target δR. The storage requirement is reduced by (15/9)×
compared to the baseline. However, this approach does not
yield any area, power, and delay savings as there is no
approximation. On the other hand, Approach 2) employs static
approximation with F = 90 and reduces the power and area
by 34.8% and delay by 46.1% over the base case.

Approach 3) uses F = 90, as in Approach 2), but imple-
ments dynamic approximation. A simple implementation of
this scheme requires a large amount of overhead circuitry, and
therefore we explore tradeoffs that will reduce this overhead.
We consider the structure of the dynamic multiplier node, as
shown in Fig. 7. The optimization block has the largest area
overhead, and we consider two choices:
(a) Each dynamic multiplier node is provided with its own

optimization block.
(b) The dynamic aproximation was implemented in each of

the eight 1D DCT blocks in Layer 2 of the 2D DCT
block of Fig. 1(b). Since the multiplier nodes of these
eight blocks use the same constant multiplier values and
the same static approximation levels, we use a single
optimization block for all 1D DCT blocks.

The results for both cases are shown in the last two columns of
Table VIII. Case (a) incurs a large area overhead of over 91%
over the base case, but Case (b) reduces this area requirement

significantly to 12%. The optimization block computes the
dynamic approximation level, zi, for all the dynamic multi-
pliers. For case (a), all calculations are performed in parallel
and requires only one additional clock cycle, but for case
(b), the shared optimization block finds the optimal zi values
for each of the eight blocks serially and thus requires eight
additional clock cycles. This incurs a small delay penalty,
but this additional overhead is negligible in comparison with
the delay and power of the DCT block computations. The
power gain for this approach is 50.3% over the baseline,
which translates to

(
65.2−49.7

65.2

)
× 100% = 23.8% lower power

requirement than the static approximation alone. However,
dynamic approximation process requires additional overhead
circuitry and hence the delay requirement for this approach
is increased by

(
59.0−53.9

53.9

)
× 100% = 9.5% than the static

approximation. As the power improvement is more dominating
than the delay increment, the static approximation process
requires

(
65.2×53.9
49.7×59.0

)
= 1.2× larger power-delay product

compared to the dynamic approximation process. Whereas,
the power-delay product for approach 1) is significantly larger
than both static and dynamic approximation process.

VIII. CONCLUSION

We have proposed an optimized JPEG compression unit
framework for a user-specified error budget, consisting of
both static design-time optimization and dynamic run-time
approximation. Depending on the input image characteristics,
the approximation level changes to meet the user specified
error budget, translating into overall power savings.

APPENDIX A
FORMULATION OF NEW ERROR BUDGET

A new error budget, σ2
mi,NB

, for nodes mi ∈ Mj,d,
obtained from (31) is combined with (29) to get:

σ2
mi,NB = σ2

m(αmi) +
∑

mk∈Ymi

χmi [mk] · (1− ηmk) · σ2
m(αmk)

(42)
The value of σ2

mi,NB
can be different for each output

xj . Since the error variance constraint at each output must
be satisfied, σ2

mi,NB
must be chosen in such a way that

σ2
xj ,dyn

≤ σ2
xj ,stat,∀xj . In other words, the value of χmi [mk]

must be chosen so that the redistributed slack on a path to any
output xj does not exceed σ2

xj ,stat. This is achieved by setting

χmi [mk] = min
all outputs j

[
S2
k,j/S

2
i,j

]
(43)

In addition, the computation of (42) can be further simpli-
fied. In practice, for all mk ∈ Ymi , ηmk have very similar
values. Approximating each such term as ηmi , we have:

σ2
mi,NB ≈ σ

2
m(αmi) + (1− ηmi)×

∑
mk∈Ymi

χmi [mk] · σ2
m(αmk)

= C̃mi − D̃mi × σ2
m,true(αmi) (44)

where C̃mi = σ2
m(αmi) +

∑
mk∈Ymi

χmi [mk] · σ2
m(αmk),

D̃mi =
∑

mk∈Ymi

χmi [mk] · σ2
m(αmk)/σ2

m(αmi)

14

The evaluation of (44) requires the computation of
σ2
m,true(αmi), C̃mi , and D̃mi . The true error variance,
σ2
m,true(αmi), is image-dependent and is obtained using a

sampling procedure using (15). On the other hand, both C̃mi
and D̃mi are constant for node mi for a specific error budget,
and are determined using σ2

m(αmi) (obtained from (2) using
the αmi value from the solution of the static optimization
problem, (11)), Ymi , and χmi .

APPENDIX B
A GOODNESS METRIC FOR DYNAMIC NODE SELECTION

As a stepping stone to defining ωPB , we introduce a
total error variance metric, σ2

mi,T
, for multiplier mi. If a

dynamic node mi uses zi more approximate bits beyond static
approximation, the error variance at output xj is:

σ2
xj ,mi =S2

ij × σ2
m(αmi + zi) (45)

The total error variance over all eight outputs due to mi is:

σ2
mi,T

=
∑7
j=0 σ

2
xj ,mi = σ2

m(αmi + zi)
∑7
j=0 S

2
ij (46)

The dynamic error variance sensitivity, ωi, is the sensitivity of
σ2
mi,T

to zi for a unit increase in approximation as:

ωi =
dσ2
mi,T

dzi

∣∣∣∣
zi=1

= ln(4)× σ2
m(αi + 1)×

∑7
j=0 S

2
ij (47)

where the last expression follows from (2) and (46). To
determine whether a node is a good candidate for dynamic
reconfiguration, its value of ωi should be sufficiently small.

We define per-bit error, ωPB , as the average value of ωi
over the elements of Λ. This serves as a goodness metric for
selecting dynamic nodes for inclusion in Λ.

ACKNOWLEDGMENT

This work was supported in part by the NSF under awards
CCF-1162267, CCF-1525925, and CCF-1525749.

REFERENCES

[1] V. Gupta, et al., “Low-Power Digital Signal Processing Using Approx-
imate Adders,” IEEE T. Comput. Aid. D., vol. 32, no. 1, pp. 124–137,
2013.

[2] G. Varatkar et al., “Energy-Efficient Motion Estimation using Error-
Tolerance,” in Proc. ISLPED, pp. 113–118, 2006.

[3] Y. Emre et al., “Energy and Quality-Aware Multimedia Signal Process-
ing,” IEEE T. Multimedia, vol. 15, no. 7, pp. 1579–1593, 2013.

[4] L. N. Chakrapani, et al., “Highly Energy and Performance Efficient
Embedded Computing Through Approximately Correct Arithmetic: A
Mathematical Foundation and Preliminary Experimental Validation,” in
Proc. CASES, pp. 187–196, 2008.

[5] W. Chen, et al., “A Fast Computational Algorithm for the Discrete
Cosine Transform,” IEEE T. Commun., vol. 25, no. 9, pp. 1004–1009,
1977.

[6] B. Lee, “A New Algorithm to Compute the Discrete Cosine Transform,”
IEEE T. Acoust. Speech, vol. 32, no. 6, pp. 1243–12457, 1984.

[7] C. Loeffler, et al., “Practical Fast 1-D DCT Algorithms with 11
Multiplications,” in Proc. ICASSP, vol. 2, pp. 988–991, 1989.

[8] A. Mammeri, et al., “Modeling and Adapting JPEG to the Energy
Requirements of VSN,” in Proc. ICCCN, pp. 1–6, 2008.

[9] J. Park, et al., “Dynamic Bit-Width Adaptation in DCT: An Approach
to Trade Off Image Quality and Computation Energy,” IEEE T. VLSI
Syst, vol. 18, no. 5, pp. 787–793, 2010.

[10] K. Nepal, et al., “ABACUS: A Technique for Automated Behav-
ioral Synthesis of Approximate Computing Circuits,” in Proc. DATE,
pp. 361:1–361:6, 2014.

[11] C. Li, et al., “Joint Precision Optimization and High Level Synthesis
for Approximate Computing,” in Proc. DAC, pp. 1–6, 2015.

[12] F. S. Snigdha, et al., “Optimal Design of JPEG Hardware Under the
Approximate Computing Paradigm,” in Proc. DAC, pp. 1–6, 2016.

[13] D. Sengupta, et al., “SABER: Selection of Approximate Bits for the
Design of Error Tolerant Circuits,” in Proc. DAC, 2017.

[14] Z.-L. He, et al., “Low-Power VLSI Design for Motion Estimation
Using Adaptive Pixel Truncation,” IEEE T. Circuits Syst. Video Technol.,
vol. 10, no. 5, pp. 669–678, 2000.

[15] A. Raha, et al., “Input-Based Dynamic Reconfiguration of Approximate
Arithmetic Units for Video Encoding,” IEEE T. VLSI Syst, vol. 24, no. 3,
pp. 846–857, 2016.

[16] V. Bhaskaran et al., Image and Video Compression Standards: Algo-
rithms and Architectures. Kluwer Academic Publishers, 1997.

[17] “Standard Image Database.” http://sipi.usc.edu/database/. Accessed
February 22, 2018.

[18] N. Asuni et al., “TESTIMAGES: A Large Data Archive For Display and
Algorithm Testing,” Journal of Graphics Tools, vol. 17, no. 4, pp. 113–
125, 2013.

[19] “KNITRO User Manual.” https://www.artelys.com/tools/knitro doc/.
Accessed February 22, 2018.

Farhana S. Snigdha received the B.Sc. degree from
Bangladesh University of Engineering and Technol-
ogy, Dhaka and is currently pursuing Ph.D. degree
in Electrical Engineering at the University of Min-
nesota. She has interned at Cadence Design Systems,
Austin, TX, USA. Her research interests include
design and optimization of low power system and
architecture, and is currently working on real-time
approximate low-power image processing as well as
various Neural Network architectures.

Deepashree Sengupta received the B. Tech. and
M.Tech degrees from the Indian Institute of Tech-
nology, Kharagpur, and the PhD degree from the
University of Minnesota. She has interned at Tai-
wan Semiconductor Manufacturing Company Lim-
ited and Intel Corporation, Santa Clara, USA. Her
research interests include circuit reliability issues in
nanometer scale regime, and low power design of
CMOS circuits. She is a recipient of the Doctoral
Dissertation Fellowship from the University of Min-
nesota, and is currently a Senior R&D Engineer at

Synopsys Inc.

Jiang Hu (F’16) received the B.S. degree from
Zhejiang University (China), the M.S. and the Ph.D.
degrees from the University of Minnesota. He has
worked with IBM Microelectronics from 2001 to
2002, and has been a faculty at the Texas A&M
University, thereafter. His research interests include
VLSI circuit optimization, adaptive design, hardware
security, and power management for large scale
computing systems. He has received two conference
Best Paper awards, the IBM Invention Achievement
Award, and the Humboldt Research Fellowship. He

was an associate editor of IEEE TCAD from 2006 to 2011, and is currently an
associate editor for the ACM Transactions on Design Automation of Electronic
Systems.

Sachin S. Sapatnekar (S’86, M’93, F’03) received
the B. Tech. degree from the Indian Institute of Tech-
nology, Bombay, the M.S. degree from Syracuse
University, and the Ph.D. degree from the University
of Illinois. He taught at Iowa State University from
1992 to 1997 and has been at the University of Min-
nesota since 1997, where he holds the Distinguished
McKnight University Professorship and the Robert
and Marjorie Henle Chair in the Department of Elec-
trical and Computer Engineering. He has received
seven conference Best Paper awards, a Best Poster

Award, two ICCAD 10-year Retrospective Most Influential Paper Awards, the
SRC Technical Excellence award and the SIA University Researcher Award.
He is a Fellow of the ACM and the IEEE.

