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Capturing Post-Silicon Variations using a
Representative Critical Path

Qunzeng Liu and Sachin S. Sapatnekar

Abstract— In nanoscale technologies that experience large
levels of process variation, post-silicon adaptation is animportant
step in circuit design. These adaptation techniques are often
based on measurements on a replica of the nominal critical path,
whose variations are intended to reflect those of the entire circuit
after manufacturing. For realistic circuits, where the number of
critical paths can be large, the notion of using a single critical
path is too simplistic. This paper overcomes this problem by
introducing the idea of synthesizing a representative critical path
(RCP), which captures these complexities of the variations. We
first prove that the requirement on the RCP is that it should
be highly correlated with the circuit delay. Next, we present
three novel algorithms to automatically build the RCP. Our
experimental results demonstrate that over a number of samples
of manufactured circuits, the delay of the RCP captures the worst
case delay of the manufactured circuit. The average prediction
error of all circuits is shown to be below 2.8% for all three
approaches. For both our approach and the critical path replica
method, it is essential to guard-band the prediction to ensure
pessimism: on average our approach requires a guard band 31%
smaller than for the critical path replica method.

Index Terms— Algorithms, circuit analysis, design automation,
timing.

I. I NTRODUCTION

In nanoscale technologies, performance variations in man-
ufactured die are seen to span a large range, and post-silicon
diagnosis is becoming especially important. For feature sizes
in the tens of nanometers, it is widely accepted that design
tools must take into account parameter variations during man-
ufacturing. These considerations have gained a great deal of
attention for design during the presilicon phase, with variation-
tolerant algorithms and tools being developed for circuit
analysis and optimization to ensure adequate manufacturing
yield. However, even circuits optimized using these techniques
can show a significant performance spread, and it is important
to diagnose manufactured parts in an inexpensive way in the
post-silicon phase.

Among the root causes of these performance drifts over
a population of manufactured parts is the phenomenon of
process parameter variation. The values of the process param-
eters in each part fluctuate from the values that are assumed
in design, even under corner-based paradigms. These varia-
tions can be classified into two categories: die-to-die (D2D)
variations and within-die (WID) variations. D2D variations
correspond to parameter fluctuations from one chip to another,
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while WID variations are defined as the variations among
different locations within a single die. WID variations of some
parameters have been observed to be spatially correlated, i.e.,
the parameters of transistors or wires that are placed close
to each other on a die are more likely to vary in a similar
way than those of transistors or wires that are far away from
each other. For example, among the process parameters for
a transistor, the variations of channel lengthL and transistor
width W are seen to have such a spatial correlation structure.
However, not all parameter variations are spatially correlated
[1], [2], parameter variations such as the dopant concentration
NA and the oxide thicknessTox are generally considered not
to be spatially correlated.

The presilicon design phase has seen substantial research
in response to these challenges, and significant changes to the
conventional deterministic corner-based paradigm have been
proposed and implemented. For circuit timing, the notion of
statistical static timing analysis (SSTA) has been proposed
as an alternative [3]–[8]. The idea of SSTA is that instead
of computing the delay of the circuit as a specific number,
a probability density function (PDF) of the circuit delay is
determined. Designers may use the full distribution, or the3σ
point of the PDF, to estimate and optimize timing. Efficient
statistical timing analysis tools have been developed based on
parameterized block-based statistical timing analysis [3], [4],
taking into consideration spatial and structural correlations of
the parameter variations in the circuit to be analyzed. The
computational efficiency of these methods is made practical
through a preprocessing step, proposed in [3], which has
shown that Gaussian-distributed correlated variations can be
orthogonalized using principal component analysis (PCA).

The abovementioned statistical timing analysis tools are
useful for presilicon analysis over an entire population of
die, and are intended to maximize the yield over the popu-
lation. The post-silicon analysis and optimization problem is
complementary to any such presilicon analysis. The diagnosis
problem addresses the issue of estimating the performance
of a manufactured die, or determining the critical path (or
paths) on the manufactured die. While this information may
be gathered using time-intensive delay testing schemes, there
are many instances where faster diagnosis is necessary, e.g.,
in post-silicon tuning methods.

In the previous literature, the interaction between presilicon
analysis and post-silicon measurements has been addressed
in several ways. In [9], post-silicon measurements are used
to learn a more accurate spatial correlation model to refine
the SSTA framework. A path-based methodology is proposed
in [10] to correlate post-silicon test data to presilicon timing
analysis. In [11], a statistical gate sizing approach is presented
to optimize the binning yield. The work is extended to



simultaneously consider the presence of post-silicon-tunable
clock tree and statistical gate sizing in [12]. Post-silicon debug
methods and their interaction with circuit design are discussed
in [13]. A joint design-time and post-silicon tuning procedure
is described in [14]. In [15], a critical path monitor is built to
monitor the critical path of the circuit as well as measuring
process variations. A path selection methodology is proposed
in [16] to monitor unexpected post-silicon systematic timing
effects.

In this paper, we focus on post-silicon tuning methods
that require replicating the critical path of a circuit. Such
techniques include adaptive body bias (ABB) or adaptive
supply voltage (ASV) optimizations [17]–[19]. The approach
that is used in [17]–[19] employs a replica of the critical path
at nominal parameter values (we call this thecritical path
replica), whose delay can easily be measured to determine the
optimal adaptation. However, this has obvious problems: first,
it is likely that a large circuit will have more than a single
critical path, and second, a nominal critical path may have
different sensitivities to the parameters than other near-critical
paths, and thus may not be representative. An alternative
approach in [20] uses a number of on-chip ring oscillators
to capture the parameter variations of the original circuit.
However, this approach requires measurements for hundreds
of ring oscillators for a circuit with reasonable size and does
not address issues related to how these should be placed or
how the data can be interpreted online.

Another post-silicon optimization technique uses dynamic
voltage scaling [21], [22]. In [21], a delay synthesizer, com-
posed of three delay elements, is used to synthesize a critical
path as part of a dynamic voltage and frequency management
system. However, the control signals of the synthesizer is
chosen arbitrarily and therefore it is not able to adapt to the
fact that the critical path may change as a result of process
variations. In [22], the authors compensate this problem using
a precharacterized look up table (LUT) to store logic speed
and interconnect speed inside different process bins. A logic
and interconnect speed monitor is then used as an input to
select through the LUT control signals to program a critical
path. However, the authors use simplified circuitry for the
speed monitor, consisting of only one logic-dominated element
and one interconnect-dominated element, and assume that the
results are generally applicable to all parts of the circuit. In
the presence of significant within-die (WID) variations, this
assumption becomes invalid. Moreover, the approach requires
substantial memory components even for process bins of a
very coarse resolution, and is not scalable to fine grids. The
same problem exists in [15], which relies on a 12-inverter
delay line to be representative of the variations of the circuit
in order to monitor the critical path in question.

We propose a new way of thinking about the problem. We
automatically build an on-chip test structure that captures the
effects of parameter variations on all critical paths, so that
a measurement on this test structure provides us a reliable
prediction of the actual delay of the circuit, with minimal
error, for all manufactured die. The key idea is to synthesize
a test structure whose delay can reliably predict the maximum
delay of the circuit, under die-to-die (D2D) as well as within-
die (WID) variations. In doing so, we take advantage of the

property of spatial correlation between parameter variations to
build this structure and determine the physical locations of its
elements.

The test structure that we create, which we refer to as the
representative critical path(RCP), is typically different from
the critical path at nominal values of the process parameters.
In particular, a measurement on the RCP provides the worst-
case delay of the whole circuit, while the nominal critical
path is only valid under no parameter variations, or very small
variations. Since the RCP is an on-chip test structure, it can
easily be used within existing post-silicon tuning schemes,
e.g., by replacing the nominal critical path in the schemes in
[17]–[19]. While our method accurately captures any corre-
lated variations, it suffers from one limitation that is common
to any on-chip test structure: it cannot capture the effectsof
spatially uncorrelated variations, because by definition,there
is no relationship between those parameter variations of a test
structure and those in the rest of the circuit. To the best of
our knowledge, this work is the first effort that synthesizes
a critical path in the statistical sense. The physical size of
the RCP is small enough that it is safe to assume that it
can be incorporated into the circuit (using reserved space that
may be left for buffer insertion, decap insertion, etc.) without
significantly perturbing the layout.

The remainder of the paper is organized as follows. Sec-
tion II introduces the background of the problem and formu-
lates the problem mathematically. Next, Section III illustrates
the detailed algorithms of our approach. Experimental results
are provided in Section IV, and Section V concludes the paper.

II. PROBLEM FORMULATION

The impact of spatial correlations of parameter variations
have been studied in the previous literature on SSTA. In this
paper, such correlations are captured using the grid-based
model from [3]. In this model, the chip is divided into a
number of grids tailored for the size of the circuit. Variations
of the same process parameter inside each grid are taken
to be fully correlated, meaning the correlation coefficientis
considered to be one, and the correlation follows a decreasing
function with respect to distance: specifically, variations inside
nearby grids show higher correlation than variations within
grids that are far away. For different process parameters, it is
assumed that there are no correlations.

In principle, to find the maximum delay in the circuit, it is
necessary to measure the delay of each potentially criticalpath
in every manufactured part: the cost of this can be prohibitive,
particularly in a timing-optimized circuit, where numerous
paths may have to be potentially critical. The basic idea of this
work is to conceive a way to infer the value of an unknown
variable by sampling the value of a variable related to it.
In other words, given that the variations are correlated, one
could build inferences on the circuit delay using a small setof
measurements. As pointed out in [20], no single test structure
can capture the variations if they are uncorrelated.

An obvious way to achieve this is to use the nominal
critical path for this prediction: this is essentially the critical
path replica method [17]–[19]. However, the delay sensitivities
of this nominal path may not be very representative. For
instance, under a specific variation in the value of a process
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parameter, the nominal critical path delay may not be affected
significantly, but the delay of a different path may be affected
enough that it becomes critical. Therefore, we introduce the
notion of building an RCP, and demonstrate that the use of
this structure yields better results than the use of the nominal
critical path.

The overall approach is summarized as follows. For the
circuit under consideration, let the maximum delay be rep-
resented as a random variable,dc. We build an RCP in such
a way that its delay is closely related to that of the original
circuit, and varies in a similar manner. The delay of this path
can be symbolically represented by another random variable,
dp. Clearly, the ordered pair (dc, dp) takes on a distinct value
in each manufactured part, and we refer to this value as (dcr,
dpr). In other words, (dcr, dpr) corresponds to one sample of
(dc, dp), which is a particular set of parameter values in the
manufactured part. Since the RCP is a single path, measuring
dpr involves considerably less overhead than measuring the
delay of each potentially critical path. From the measured
value ofdpr, we will infer the value,dcr, of dc for this sample,
i.e., corresponding to this particular set of parameter values.

To mathematically simplify the situation and explore the
relationship between the variablesdc anddp, we assume that
all parameter variations are Gaussian-distributed, and the delay
of both the circuit and the critical path can be approximated
by an affine function of those parameter variations. These
functions can be obtained by performing SSTA using existing
techniques [3], and the end results ofdc and dp can be
represented by Gaussian-distributed PDFs.

Let dc ∼ N (µc, σc), dp ∼ N (µp, σp), and let the corre-
lation coefficient ofdc and dp be ρ. Then we know that the
joint PDF of dc anddp is

f (dc = dcr, dp = dpr) =
1

2πσcσp

√

1 − ρ2
eC1 , (1)

where
C1 = − 1

2(1−ρ2)

(

(dcr−µc)
2

σ2
c

+
(dpr−µp)2

σ2
p

− 2ρ(dcr−µc)(dpr−µp)
σcσp

)

.
Using basic statistical theory, the conditional PDF ofdc = dcr,
given the conditiondp = dpr, can be derived to have the
following expression.

f (dc = dcr|dp = dpr) =
f (dcr, dpr)

f (dpr)
=

1

2πσc

√

1 − ρ2
eC2 ,

(2)
where
C2 = − 1

2σ2
c (1−ρ2)

(

dcr −
(

µc + ρσc

σp
(dpr − µp)

))2

.
Therefore the conditional distribution ofdcr is a Gaussian with
meanµc + ρσc

σp
(dpr − µp) and varianceσ2

c

(

1 − ρ2
)

.
The result of this conditional distribution can be used

in various ways. For example, we can provide the entire
conditional distribution as the output of this procedure, as in
[20]. On the other hand, if the conditional variance can be
made sufficiently small, we can be more specific and directly
use the mean of the conditional distribution as the predicted
value of the delay of the circuit, and the variance may be
interpreted as the mean square error of infinite samples.

An alternative view, from a least squares perspective, is that
it is desirable to minimize the variance, so that the mean is
an estimate of the circuit delay with the smallest mean square

error. For the term representing the variance of the conditional
distribution,σ2

c

(

1 − ρ2
)

, σc is fixed since the original circuit
must remain undisturbed, implying that the variance of the
conditional distribution is dependent only onρ.

In other words, minimizing the variance is therefore equiv-
alent to maximizingρ. This formal result is also an intuitive
one: the RCP should satisfy the property that the correlation of
its delay with that of the original circuit is maximized. Hence,
our focus is on developing an efficient algorithm to build
such an RCP, with the objective of maximizing the correlation
coefficient.

III. G ENERATION OF THECRITICAL PATH

A. Overview of the SSTA Framework

As mentioned in Section II, it is important to represent
the variablesdc and dp as affine functions with respect to
the parameter variations. To achieve this, we will employ
previously developed SSTA techniques. By way of background
for our main algorithmic contribution, in this section, we will
briefly introduce the SSTA technique used in this work.

Available techniques for SSTA can broadly be divided
into path-based and block-based methods. Block-based pa-
rameterized statistical timing analysis procedures propagate
the PDF of the arrival time, using a canonical form, at the
output of each gate during a topological traversal of the
circuit. This canonical form typically consists of a mean
(i.e., the nominal value) and a set of normalized independent
sources of variations. Spatial and structural correlations of the
parameter variations can be taken care of by applying PCA
to the covariance matrix of the correlated process parameters
[3]. PCA is a linear transformation and converts correlated
Gaussian variables into a set of independent ones. Spatially
uncorrelated variations can be lumped into one variable [4]as
a placeholder to provide information about the variance that
these variables add to the delay of the circuit.

We use parameterized SSTA illustrated above to obtaindc as
an affine function in the canonical form. This canonical form
shows the delay having a linear relationship with them PCs,
plus an independent parameter. As shown below, this form
makes the calculation of the correlation coefficientρ defined
in Section II much easier.

The canonical expression fordc is shown as:

dc = µc +

m
∑

i=1

aipi = µc + aT p + Rc, (3)

where µc, the mean ofdc obtained from SSTA, represents
the nominal value ofdc. The random variableRc is an
independent term whose variance is recorded as SSTA is
performed. The random variablepi corresponds to theith PC,
and is Gaussian-distributed asN(0, 1); note thatpi and pj

for i 6= j are uncorrelated by definition, due to the property
of principal components. The parameterai is the first order
coefficient ofdc with respect topi. All ai variables are stacked
together to form the vectora, andp is the vector containing
all pi.

Performing SSTA on the RCP yields another delay expres-
sion in canonical form:

dp = µp +

m
∑

i=1

bipi = µp + bTp + Rp (4)
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wheredp, µp are defined in Section II, andpi, bi,b,p, Rp are
all inherited from Equation (3).

B. Finding the Correlation Coefficient: Computation and In-
tuition

Since the original circuit and RCP are on the same chip, the
values of the principal components for a given manufactured
part are identical for both, and therefore their delays are
correlated. In the manufactured part, any alteration in thePCs
affects both the original circuit and the RCP, and if the RCP
can be constructed to be highly correlated with the original
circuit, the circuit delay can be estimated to a good degree of
accuracy. In the extreme case where the correlation coefficient
ρ = 1, the circuit delay,dc, can be exactly recovered from
dp; however, as we will show later, this is not a realistic
expectation.

The correlation coefficient,ρ, can easily be computed as

ρ =
aT b

σcσp

(5)

whereσc =
√

aT a + σ2
Rc

and σp =
√

bTb + σ2
Rp

. An im-
portant point to note is thatρ depends only on the coefficients
of the PCs for both the circuit and the critical path and their
independent terms, and not on their means.

As discussed in Section II, the mean of the conditional
distribution f (dc = dcr|dp = dpr), which can be used as an
estimate of the original circuit delay, is:

µ̄ = µc +
ρσc

σp

(dpr − µp) = µc +
aT b

σ2
p

(dpr − µp) . (6)

The variance, which is also the mean square error of the
circuit delay estimated using the above expression, for infinite
samples, isσ2

c

(

1 − ρ2
)

. Our goal is to build a critical path
with the largest possibleρ.

Our theory assumes that the effects of systematic variations
can be ignored, and we will show, at the end of Section IV, that
this is a reasonable assumption. However, it is also possible to
extend the theory to handle systematic variations in parameters
that can be controlled through design: for a fully characterized
type of systematic variation, we can compensate for it by
choosing a shifted nominal value for the parameter.

It is also useful to provide an intuitive understanding of the
ideas above. If we were to achieve our goal of settingρ = 1,
this would imply that

ρ =
aT b

σcσp

= 1

This means that
m

∑

i=1

āib̄i = 1

where āi = ai/σc, and b̄i = bi/σp. Note that āi and b̄i

correspond to the entries of the normalizeda andb vectors,
respectively.

This may be achieved if̄ai = αb̄i, i.e., bi = ai/α ∀ 1 ≤
i ≤ m, whereα = σp/σc. In other words, all of the PCA
parameters for the original circuit and the RCP are identical,
within a scaling factor ofα. This could be achieved if the

sensitivities of the delays ofdc anddp to all process parameter
variations are identical, within a fixed scaling factor.

The key issue here is that it is not essential for the delays
dc and dp to be identical. In fact, the circuit delay and the
RCP delay may have very different nominal values, since the
nominal delays,µc or µp, never enter into Equation (5). All
that matters is that the variations in the RCP should closely
track those of the original circuit. This observation provides
us with a significant amount of flexibility with respect to the
critical path replica method, which attempts to exactly mimic
all properties of the maximum delay of the original circuit,
including the nominal delay.

C. Generating the Representative Critical Path

Next, we propose three methods for generating the RCP.
The first is based on sizing gates on an arbitrarily chosen
nominal critical path, while the second synthesizes the RCP
from scratch using cells from the standard cell library, while
the third is a combination of the two methods.

1) Method I: Critical Path Generation Based on Nominal
Critical Path Sizing: As described in Section I, the nominal
critical path is usually not a good candidate to capture the
worst case delay of the circuit over all reasonable parameter
variations. However, there is intuitive appeal to the argument
that variations along the nominal critical path have some
relationship to the variations in the circuit. Based on thisidea,
our first approach begins with setting the RCP to a replica of
the nominal critical path, and then modifies transistor sizes on
this path so that the sized replica reflects, as far as possible,
the variation of the delay of the manufactured circuit. The
objective of this modification is to meet the criteria described
in Section II, in order to ensure that the RCP closely tracks
the delay of the critical path in the manufactured circuit.

For an optimized circuit, it is very likely that there are
multiple nominal critical (or near-critical) paths with similar
worst-case delays at nominal parameter values. To make our
approach as general as possible, we pick the one nominal
critical path that has the maximum worst-case delay at nominal
process parameter values, even if its delay is only larger than
a few other paths by a small margin. If there are multiple
such paths, we arbitrarily pick one of them. We show in
Section IV that even with this relaxed initial choice, after
the optimizations presented in this section, our method can
produce very good results.

The problem can be formulated as a nonlinear programming
problem as listed below:

maximize ρ = a
T
b(w)√

aT a+σ2

Rc

q

b(w)T b(w)+σ2

Rp
(w)

(7)

s.t. w ∈ Zn

wmin ≤ w ≤ wmax (8)

The objective function above is the correlation coefficient, ρ,
betweendp anddc, as defined by Equation (5), which depends
on a, b, andσ2

Rp
. The values of the latter two quantities are

both influenced by the transistor widths, which are allowed to
take on any values between some user-specified minimum and
maximum values.

Algorithm 1 illustrates our procedure for building the RCP
under this approach. We begin with the nominal critical path
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Algorithm 1 Variation-aware critical path generation based on
sizing.

1: Perform deterministic STA on the original circuit and find
the maximum delay path as the initial RCP. If there is
more than one such path, arbitrarily pick any one.

2: Perform SSTA on the original circuit to find the PC
coefficients corresponding to the vectora and the variance
of the independent term.

3: Perform SSTA on the initial RCP to find its PC coefficients
and the variance of its independent term. Calculate the
correlation coefficientρ0 between the delay variables of
the original circuit and the initial RCP.

4: k = 1
5: while (1) do
6: for each gatei on the critical pathdo
7: If not violating the maximum size constraint, bump

up the size by multiplying it by a factorF > 1,
keeping all other gate sizes unchanged from iteration
k − 1

8: Compute ρk
u,i, the correlation coefficient for this

modified RCP with the original circuit. Change the
size of the gate back to its size in iterationk − 1.

9: If not violating the minimum size constraint, size
down the gate by multiplying the size by the factor
1/F , keeping all other gate sizes unchanged from
iterationk − 1

10: Computeρk
d,i as the correlation coefficient for the

modified RCP by sizing gatei down. Change the
size of the gate back to its size in iterationk − 1.

11: end for
12: Choosej such thatρk

u,j or ρk
d,j is the largest among all

correlation coefficients, and setρk to be this correlation
coefficient.

13: if ρk > ρ(k−1) then
14: Set the RCP to be the RCP from iterationk − 1,

except that the size of gatej is sized up or down by
the factorF .

15: else
16: break
17: end if
18: end while

of the circuit, chosen as described above, and replicate it
to achieve an initial version of the RCP. Note that this is
similar to the critical path replica method described in [17],
and guarantees our method is at least as good as that approach.
This critical path is then refined by iteratively sizing the gates
on the path, using a greedy algorithm, in such a way that its
correlation with the original circuit delay is maximized.

The first step of this approach involves performing conven-
tional static timing analysis (STA) on the circuit to identify a
nominal critical path, which is picked as the initial version of
the RCP. Next, we perform SSTA on the circuit to obtain the
PDF of the circuit delay variable,dc, in the canonical form.
This analysis provides us with the coefficients of the PCs in the
circuit delay expression, namely, the vectora of Equation (3),
as well as the independent term. We repeat this procedure for
the initial RCP, to obtain the coefficients of the PCs in the

expression for the delay,dp, of the RCP. Based on these two
canonical forms, we can compute the correlation coefficient,
ρ0, between the two delay expressions.

The iterative procedure updates the sizes of gates on the
current RCP, using a TILOS-like criterion [23], with one
modification: while TILOS will only upsize the gates, we
also allow for the gates to be downsized. The rationale is that
TILOS, for transistor sizing, begins with the minimum-sized
circuit; in contrast, our approach begins with the sized nominal
critical path, with the intention that since this configuration
lies within the solution space for the RCP, the final RCP is
guaranteed to be no worse than the nominal critical path.

In the kth iteration, we process each gate on the RCP one
by one. As an example, for the gatei, we examine the case
of multiplying its current size by a constant factor,F or 1/F ,
to, respectively, up-size or down-size the gate, while leaving
all other gate sizes identical to iterationk − 1. We perform
SSTA on this modified RCP to obtain the new coefficients for
the PCs corresponding to this change, and calculate the new
correlation coefficient,ρk

u,i andρk
d,i. We apply this procedure

to all gates on the RCP during each iteration, and over all of
these possibilities, we greedily choose to up-size or down-
size the gatej whose size update provides the maximum
improvement in the correlation coefficient. We then update
the RCP by perturbing the size of the gatej, and set the value
of ρk to the improved correlation coefficient. We repeat this
procedure until no improvement in the correlation coefficient
is possible, or until the sizes of gates in the RCP become too
large.

We can save on the computation time by exploiting the fact
that the RCP is a single path, and that SSTA on this path
only involves sum operations and no max operations. When
the size of a gate is changed, the delays of most gates on
the critical path are left unchanged. Therefore, it is sufficient
to only perform SSTA on the few gates and wires that are
directly affected by the perturbation, instead of the entire path.
However, we still must walk through the whole path to find the
gate with the maximum improvement. If the number of gates
of a nominal critical path is bounded bys, and the sizing
procedure takesK iterations, then the run time of Algorithm
1 is O (Ks).

The final RCP is built on-chip, and after manufacturing, its
delay is measured. Using Equation (6) in Section III-A, we
may then predict the delay of the original circuit.

As mentioned at the beginning of this section, a significant
advantage of this approach is that by choosing the nominal
critical path as the starting point for the RCP, and refining
the RCP iteratively to improve its correlation with the circuit
delay, this approach is guaranteed to do no worse than one that
uses the unmodified nominal critical path, e.g., in [17]–[19].
For a circuit that is dominated by a single critical path, this
method is guaranteed to find that dominating path, e.g., the
optimal solution.

The primary drawback of this method is also related to the
fact that the starting point for the RCP is the nominal critical
path. This fixes the structure of the path and the types of
gates that are located on it, and this limits the flexibility of
the solution. Our current solution inherits its transformations
in each iteration from the TILOS algorithm, and changes the
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sizes of gates in the circuit. However, in principle, the idea
could also be used to consider changes, in each iteration, not
only to the sizes but also to the functionality of the gates on
the RCP by choosing elements from a standard cell library,
so that the delay of the modified RCP (with appropriately
excited side-inputs) shows improved correlations with the
circuit delay. Another possible enhancement could be to select
the nominal critical path with the highest initial correlation
coefficient with the circuit delay, instead of choosing thispath
arbitrarily. These extensions may be considered in future work,
but Section IV shows that even without them, our approach
still produces good results.

2) Method II: Critical Path Generation Using Standard
Cells: The second approach that we explore in this work builds
the RCP from scratch, using cells from the standard cell library
that is used to build the circuit. In principle, the problem of
forming a path that optimally connects these cells together
to ensure high correlation withdc can be formulated as an
integer nonlinear programming problem, where the number
of variables corresponds to the number of library cells, and
the objective function is the correlation between the statistical
delay distribution,dp, of an RCP with n stages of logic
composed of these cells, where a stage is defined as a gate
together with the interconnect that it drives, anddc.

The integer nonlinear programming formulation is listed
below:

maximize ρ = a
T
b(Ns)√

aT a+σ2

Rc

q

b(Ns)T b(Ns)+σ2

Rp
(Ns)

(9)

s.t. Ns ∈ Zn

eTNs ≤ s

b = Σn
i=1Nsibi

σ2
Rp

= Σn
i=1Nsiσ

2
Rpi

The objective function above is the correlation coefficient, ρ,
betweendp anddc, as defined by Equation (5). The variable
n represents the number of possibilities for each stage of the
RCP, and the vectorNs = [Ns1, Ns2, · · · , Nsn]T , whereNsi

is the number of occurrences ofi in the RCP.
The first constraint states the obvious fact that each element

of Ns must be one of the allowable possibilities. In the second
constraint,e = [1, 1, · · · , 1]T , so that the constraint performs
the function of placing an upper bound on the total number of
stages in the RCP. For the purposes of this computation,a and
σ2

Rc
come from the canonical form of the circuit delay,dc, and

are constant. The values ofb and σ2
Rp

are functions ofNs,
where the mapping corresponds to performing SSTA on the
RCP to find the vector of PC coefficientsb and the variance
of the independent termRp in the canonical form. The terms
bi, 1 ≤ i ≤ n, are the PC coefficients corresponding to each
stage of the RCP, and theRpis correspond to the independent
terms, so thatb and σ2

Rp
are related toNs through the last

two constraints.
Since Equation (9) does not map on to any tractable problem

that we are aware of, we propose an incremental greedy
algorithm, described in Algorithm 2, which is simpler and
more intuitive than any exact solution of the integer nonlinear
program. While this algorithm is not provably optimal, it is
practical in terms of its computational cost. We recall that
the goal of our problem is to make the correlation coefficient

betweendc anddp as large as possible. The algorithm begins
by performing SSTA on the original circuit to determinedc.

Algorithm 2 Critical path generation using standard cells.
1: Initialize the RCPP to be the initial loadINV .
2: Perform SSTA on the original circuit to finddc in canon-

ical form, and also compute the canonical form for the
delay of each of thep × q choices for the current stage.

3: Calculate the loadLk−1 presented by the(k − 1)-stage
RCP computed so far.

4: With Lk−1 as the load, perform SSTA on thep×q choices
for stagek.

5: Statistically add the canonical expressions for the delays
of each of thep × q choices with the canonical form for
the delay of the partial RCP computed so far,P . Calculate
the correlation coefficient between the summed delays and
the delay of the original circuit for each case.

6: Select the choice that produces the largest correlation
coefficient as stagek in pathP .

7: Go to Step 3.

During each iteration, the RCP is constructed stage by stage.
If we havep types of standard gates, andq types of metal
wires, then in each iteration we havep × q choices for the
stage to be added. For an RCP withm stages, to find the
optimal solution corresponds to a search space of(p × q)m.
Instead, our method greedily chooses one of thep× q choices
at each stage that maximizes the correlation of the partial RCP
constructed so far withdc, thereby substantially reducing the
computation involved. In practice, we control the complexity
even further by using the minimum driving strength gate of
each functionality in the library, rather than consideringall
driving strengths for all gates.

The approach begins at the end of the critical path. We
assume that the path drives a measurement device such as a
flip-flop, and the part of the device that acts as a load for
the critical path is an inverter INV . Therefore, for the first
iteration, this inverter is taken as the load, and it corresponds
to a known load for the previous stage, which will be added
in the next iteration.

In iteration k, we consider appending each of thep × q
choices to the partial RCP from iterationk − 1, and perform
SSTA for all of these choices to obtain the coefficients for
the PCs, and the correlation withdc, using Equation (5).
The choice that produces the largest correlation coefficient is
chosen to be added to the critical path. The load presented by
this choice is then calculated for the next selection procedure,
and the process is repeated. During the process of building
the RCP, there may be cases where a wire on the RCP crosses
the boundary between two correlation grids: if so, the current
gate and the one it drives belong to two different grids, and the
wire connecting them must be split into two parts to perform
the SSTA. The maximum number of stages used in the RCP
is a user-specified parameter. During our iterations, we keep
a record of the correlation coefficient after adding each stage.
Once all stages up to the maximum number are added, we
find the maximum correlation coefficient saved and eliminate
stages added beyond that point.

A complementary issue for this algorithm is related to
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determining the physical layout of each stage. To simplify the
search space, we assume that the RCP moves monotonically:
for example, the signal direction on all horizontal wires
between stages must be the same, and the same is true of
signal directions on all vertical wires. Because of symmetry
of the spatial correlation profile and hence the PCA results,
we only choose the starting points to be from the bottom grids
of the die. For a given starting point, the path would move
towards the right and upper directions of the circuit.

It should be noted that systematic variations would affect the
sensitivities of the parameter values, causing PC coefficients
of identical cells at symmetric locations to become different.
However, because systematic variations can be precharacter-
ized before statistical analysis by a change of nominal values
at different locations, we show in Section IV that a reasonable
disturbance of the nominal values would not significantly
affect the final results. The procedure continues until the
number of stages in the RCP reaches a prespecified maximum,
or when the monotonic path reaches the end of the layout.

If the number of stages of the RCP is bounded bys and
the number of starting points that we try for the RCP isω,
the runtime of Method II isO(ωpqs), because at each of the
s stages, we havep × q choices. In comparison to Method I,
if the bound of maximum number of stages for each method
is comparable, then the comparison betweenK andω× p× q
determines which method has the longer asymptotic run time.

This approach has the advantage of not being tied to a
specific critical path, and is likely to be particularly useful
when the number of critical paths is large. However, for a
circuit with one dominant critical path, this method may not
be as successful as the first method, since it is not guided by
that path in the first place.

3) Method III: Combination of the Two Methods:As stated
above, each of the above two methods has its strengths and
weaknesses. If the circuit is likely to be dominated by the
nominal critical path, it is likely that Method I will outperform
Method II; moreover, by construction, one can guarantee that
Method I will do no worse than the critical path replica
method. However, the structure of the RCP from Method
I is also closely tied to that of the nominal critical path,
limiting its ability to search the design space, and Method II
provides improved flexibility in this respect, although it loses
the guarantee of doing no worse than the critical path replica
method.

We can combine the two methods discussed above in
different ways to obtain potentially better results than either
individual method. Many combinations are possible. For ex-
ample, we could first build the RCP by sizing the nominal
critical path using Method I, and then add additional stages
from the standard cell library to it using Method II. However,
the number of stages may become too large in this case. The
approach used in this paper combines the methods by first
building the RCP from scratch using Method II, setting the
size of each gate to be at its minimal value. Next, we update
the sizes of the gates on this RCP using Method I to further
improve the result. The procedure is listed as Algorithm 3
below for completeness.

Algorithm 3 Critical path generation using the combined
method.

1: Build the initial RCP,P , using Method II. All gates are
at their minimal size.

2: Perform the TILOS-like sizing of Method I onP

IV. EXPERIMENTAL RESULTS

We demonstrate the effectiveness of the approaches pre-
sented in this paper, and compare it with thecritical path
replica (CPR) approach, which represents the conventional
approach to solving the problem. Our experiments are shown
on the ISCAS89 benchmark suite. We use 90nm technology
and the related constants are extracted from PTM model. The
netlists are first sized using our implementation of TILOS: this
ensures that the circuits are realistic and have a reasonable
number of critical paths. The circuits are placed using Capo
[24], and global routing is then performed to route all of the
nets in the circuits. The cell library contains the following
functionalities: NOT, 2-input NAND, 3-input NAND, 4-input
NAND, 2-input NOR, 3-input NOR, and 4-input NOR.

The variational model uses the hierarchical grid model
in [25] to compute the covariance matrix for each spatially
correlated parameter. Under this model, if the number of
grids is G and the number of spatially correlated parameters
being considered isP , then the total number of PCs is no
more than (P × G). The parameters that are considered as
sources of variations include the effective channel length
L, the transistor widthW , the interconnect widthWint, the
interconnect thicknessTint and the inter-layer dielectricHILD .
The width W is the minimum width of every gate before
the TILOS sizing. We use two layers of metal, and take the
parameters for different layers of metal to be independent.
The parameters are Gaussian-distributed, and their mean and
3σ values are shown in Table I. As in many previous works on
variational analysis, we assume that for each parameter, half
of the variational contribution is assumed to be from die-to-die
(D2D) variations and half from within-die (WID) variations.
We useMinnSSTA[3] to perform SSTA, in order to obtain the
PCA coefficients fordc. All programs are run on a Linux PC
with a 2.0GHz CPU and 256MB memory.

TABLE I

PARAMETERS USED IN THE EXPERIMENTS.

L W Wint Tint HILD
(nm) (nm) (nm) (nm) (nm)

µ 60.0 150.0 150.0 500.0 300.0
3σ 12.0 22.5 30.0 75.0 45.0

We first show the results of the algorithm that corresponds
to Method I, described in Section III-C.1, synthesizing the
RCP by modifying a nominal critical path of the original
circuit. The initial sizes of the gates are their sizes aftertiming
optimization. We only show the results of the larger circuits,
since these are more realistic, less likely to be dominated by
a small number of critical paths, and are large enough to
allow significant within-die (WID) variations. Of these, circuit
s9234 is smaller than the others, and is divided into 16 spatial
correlation grids, while all other circuits are divided into 256
grids.
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In our implementation of Method I, we do not consider con-
gestion issues. We assume both the CPR method and Method I
replicate the nominal critical path, including the interconnects,
to provide a fair comparison. In practice, Method I can route
the replicated nominal critical path in the same way as any of
the prior CPR methods reported in the prior literature.

We use a set of Monte Carlo simulations to evaluate the
RCP. For each circuit being considered, we perform 10,000
Monte-Carlo simulations, where each sample corresponds toa
manufactured die. For each Monte Carlo sample, we compute
the delay of the RCP, the delay of the original circuit, and the
delay of the nominal critical path that may be used in a CPR
method, as in [17]–[19]. The delay of the RCP is then used to
compute the circuit delay using Equation (6) in Section III-A,
which corresponds to the mean of the conditional distribution
in Equation (2).

Figure 1 illustrates the idea of the conditional PDF, de-
scribed in Section II, based on a sample of the Monte-Carlo
simulations for circuit s9234. The lower curve shown with a
solid line is the result of SSTA, and the circled points represent
the conditional PDF obtained using Equation (2). The mean of
this conditional distribution is indicated using a dashed line,
and this is used as the estimate of the true circuit delay. The
figure uses a solid vertical line to display the true circuit delay,
and it can be seen that the two lines are very close (note that
the plot does not start at the origin, and distance between these
two lines is exaggerated in the figure).

300 350 400 450 500 550 600
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0.02
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0.06
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P
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SSTA
Conditional PDF
Real delay
Predicted delay

Fig. 1. Conditional PDF of s9234.

Since the probability of the true circuit delay being beyond
the 3σ value of the conditional PDF is very low, the smaller
the conditional variance, the smaller the errors. It is worth
recalling that the conditional variance is given byσ2

c (1− ρ2),
each term of which is a constant for a specific RCP. Therefore,
this variance is exactly the same for each die (corresponding
to each sample of the Monte Carlo simulation), and if the RCP
heuristic maximizesρ as intended, we minimize this variance.

In our experiments, we compare the computed circuit delay,
called the predicted delay,dpredic, with the true circuit delay
of the circuit, referred to as the true delay,dtrue. We define
the prediction error as

|dtrue − dpredic|
dtrue

× 100%. (10)

In order to maximize yield, we must add aguard bandfor
the predicted delay values to ensure that the predictions are
pessimistic. Therefore in this set results we also compare the

guard band needed to make 99% of the delay predictions pes-
simistic for both Method I and the CPR method, respectively.

TABLE II

A COMPARISON BETWEENMETHOD I AND THE CPR METHOD.

Circuit Average error Maximum error Guard band (ps)
Method I CPR Method I CPR Method I CPR

s9234 1.58% 2.84% 10.50% 14.93% 28.5 43.7
s13207 0.52% 1.07% 5.67% 6.61% 18.3 26.9
s15850 1.00% 2.15% 7.70% 10.88% 36.6 57.6
s35932 2.35% 5.77% 12.53% 21.46% 33.2 58.9
s38584 1.79% 3.23% 11.44% 17.89% 43.8 72.3
s38417 2.77% 5.24% 13.87% 21.22% 53.5 84.1

TABLE III

CONDITIONAL STANDARD DEVIATION , NUMBER OF STAGES FORRCP,

AND CPUTIME OF METHOD I.

Circuit Avg σcond

µcond
Max σcond

µcond

Number CPU
of stages time

s9234 1.40% 1.84% 67 1.46m
s13207 1.06% 1.41% 71 10.98m
s15850 1.30% 1.74% 96 20.92m
s35932 2.51% 3.18% 36 8.23m
s38584 2.11% 2.68% 66 13.95m
s38417 3.12% 3.95% 41 3.88m

The results of the comparisons are presented in Table II,
where the rows are listed in increasing order of the size of the
benchmark circuit. For Method I as well as the CPR Method,
we show the average error and maximum error over all sam-
ples of the Monte-Carlo simulation. All of the average errors
of our approach are below3% and both the average errors and
maximum errors are significant improvements compared to the
CPR method. The guard bands required by the two methods
are listed in the last two columns. The guard band for Method
I for each circuit is observed to be much smaller than the CPR
method, and the advantage of Method I becomes particularly
noticeable for the larger circuits.

The conditional variance derived in Section II defines the
confidence of our estimate. Therefore we show the conditional
standard deviationσcond as a percentage of the conditional
meanµcond in Table III. Becauseµcond is different for each
sample, we list the average and maximumσcond

µcond
over all

samples for each circuit. In order to provide more information
about the RCP that we generate, we also show the number
of stages for each RCP in the table. In this case, the number
of stages for each RCP is the same as the nominal critical
path for that circuit. The last column of the table shows the
CPU time required by Method I for these benchmarks. The
run time of Method I ranges from around one to twenty
minutes. The conditional standard deviation is typically below
3% of the conditional mean on average. This method provides
improved results in comparison with [26], which only upscales
the transistors and does not consider downscaling as is done
here.

For a visual interpretation of the performance of Method
I, we draw scatter plots of the results for circuit s35932
in Figure 2(a) for Method I, and in Figure 2(b) for the
CPR. The horizontal axis of both figures is the delay of the
original circuit for a sample of the Monte-Carlo simulation.
The vertical axis of Figure 2(a) is the delay predicted by our
method, while the vertical axis of Figure 2(b) is the delay
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Fig. 2. The scatter plot: (a) true circuit delay vs. predicted circuit delay by
Method I and (b) true circuit delay vs. predicted circuit delay using the CPR
method.

of the nominal critical path, used by the CPR method. The
ideal result is represented by the(x = y) axis, shown using
a solid line. It is easily seen that for the CPR method, the
delay of the CPR is either equal to the true delay (when
it is indeed the critical path of the Monte-Carlo sample)
or smaller (when another path becomes more critical, under
manufacturing variations). On the other hand, for Method I,
all points cluster closer to the(x = y) line, an indicator that
the method produces accurate results. The delay predicted
by our approach can be larger or smaller than the circuit
delay, but the errors are small. Note that neither Method I
nor the CPR Method is guaranteed to be pessimistic, but such
a consideration can be enforced by the addition of a guard
band that corresponds to the largest error. Clearly, MethodI
can be seen to have the advantage of the smaller guard band
in these experiments.

Our second set of experiments implements the algorithm
corresponding to Method II, presented in Section III-C.2.
The maximum number of stages that we allow for the RCP
for each circuit is 50, comparable to most nominal critical
paths for the circuits in our benchmark suite. We use 7
standard cells at each stage, and 2 metal layers; therefore
we have 14 choices for each stage. As in Method I, we do
not consider congestion issues here and assume that the CPR
method can perfectly replicate the nominal critical path. In
practice, congestion considerations can be incorporated issues
by assigning a penalty to congested areas when selecting wire
directions. The setup of the Monte-Carlo simulations is similar
to the first set of experiments, and the corresponding errorsand
guard bands are shown in Table IV. Since this Monte Carlo
simulation is conducted separately from that in Table II, there
are minor differences in the CPR error in these two tables,
even though both tables use the same CPR as a basis for
comparison. The average and maximumσcond

µcond
, the number

of stages for each RCP, as well as the run times are shown in
Table V. The advantage of Method II, again, increases with
the size of the circuit.

It is observed that for almost all cases, the average and
maximum errors for Method II are better than those for the
CPR method. An exception to this is circuit s13207, which
is dominated by a small number of critical paths, even after
sizing using TILOS. We illustrate this using the path delay
histogram in Figure 3(a), which aggregates the delays of paths
in the sized circuit into bins, and shows the number of paths

TABLE IV

A COMPARISON BETWEENMETHOD II AND THE CPR METHOD.

Circuit Average error Maximum error Guard band (ps)
Method II CPR Method II CPR Method II CPR

s9234 1.98% 2.84% 10.57% 15.15% 31.4 44.0
s13207 1.51% 1.06% 8.51% 7.22% 35.3 26.5
s15850 1.73% 2.14% 9.22% 10.97% 45.4 56.9
s35932 2.27% 5.80% 13.91% 21.34% 32.3 59.9
s38584 2.11% 3.29% 10.89% 17.12% 43.0 72.1
s38417 2.28% 5.27% 12.01% 22.88% 42.4 84.2

TABLE V

CONDITIONAL STANDARD DEVIATION , NUMBER OF STAGES FORRCP,

AND CPUTIME OF METHOD II.

Circuit Avg σcond
µcond

Max σcond
µcond

Number CPU
of stages time

s9234 2.18% 2.79% 49 0.1s
s13207 1.75% 2.31% 30 15.7s
s15850 1.88% 2.45% 50 15.1s
s35932 2.19% 2.81% 50 16.7s
s38584 2.14% 2.73% 50 18.6s
s38417 2.13% 2.77% 50 15.5s

that fall into each bin. In this case, it is easily seen that the
number of near-critical paths is small. In contrast, Figure3(b)
shows the same kind of histogram for circuit s9234, which is a
more typical representative among the remaining benchmarks:
in this case it is seen that a much larger number of paths is
near-critical, and likely to become critical in the manufactured
circuit, due to the presence of variations.
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Fig. 3. Histograms of path delays of (a) s13207 and (b) s9234 after TILOS
optimization.

Under the scenario where the number of near-critical paths
is small, it is not surprising that Method II does not perform
as well as a CPR. First, as pointed out in Section III-C.2,
Method II does not take advantage of any information about
the structure of the original circuit, and is handicapped insuch
a case. Moreover, the unsized circuit s13207 was strongly
dominated by a single critical path before TILOS sizing;
after sizing, the optimized near-critical paths are relatively
insensitive to parameter variations, meaning even if one of
these becomes more critical than the nominal critical path on
a manufactured die, it is likely to have more or less the same
delay.

We also show scatter plots for both Method II and CPR
in this case, in Figure 4(a) and Figure 4(b), respectively. The
figures are very similar in nature to those for Method I, and
similar conclusions can be drawn. In comparing Methods I and
II by examining the numbers in Tables II and IV, it appears
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Fig. 4. The scatter plot: (a) true circuit delay vs. predicted delay by Method
II and (b) true circuit delay vs. predicted delay using the CPR method.

that there is no clear winner, though Method II seems to show
an advantage for the largest circuits, s35932 and s38417. With
our limited number of choices for each stage of the RCP,
referring to discussions about run time in Section III-C.2,it is
not surprising that Method II is faster in terms of CPU time, as
shown in Table V. The algorithm finishes within a few seconds
for all of the benchmark circuits.
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Fig. 5. The RCP created by Method II for circuit s38417.

Next we show the location of the RCP built for circuit
s38417 using Method II on the chip in Figure 5. The figure
shows the die for the circuit. The size of the die is determined
by our placement and routing procedure, and the dashed lines
indicate the spatial correlation grids. The solid bold lines are
the wires of the critical path. The figure shows that the critical
path grows in a monotonic direction and it starts from one of
the grids at the bottom of the chip, both due to the layout
heuristics discussed in Section III-C.2.

In order to gain more insight into the trend of improvement
of the correlation coefficients, Figure 6 shows the correlation
coefficient of Method II after each stage is added for one
starting point: beyond a certain number of iterations, the
marginal improvement flattens out. A similar trend is seen
for Method I.

Our third set of experiments show the results of Method III,
which is a combination of Method I and Method II. We first
build an RCP from scratch using Method II, and then refine
this RCP by the iterative sizing technique employed by Method
I. Considering that Method II uses minimum-sized standard
cells to restrict its search space, in the combined method, we
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Fig. 6. Trend of correlation coefficient after each iteration.
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Fig. 7. Scatter plots of s38417 with and without nominal value disturbance
for the RCP, to model systematic variations.

allow the cells to be sized up. In Table VI, we compare the
correlation coefficients of the delay of the built RCP using
Method II and using Method III. The correlation coefficients
are calculated using Equation (5) and indicate of how closely
the RCP can track the original circuit delay. The average and
maximum errors, the guard band needed to ensure 99% of the
predictions pessimistic, as well as the run time of the combined
method are also listed in the table. It is observed that the sizing
does indeed improve the results of Method II.

TABLE VI

RESULTS OF THEMETHOD III AND ITS COMPARISON WITHMETHOD II.

Circuit ρ Method III
Method II Method III Avg. Max. Guard CPU

error error band time
s9234 0.9732 0.9821 1.68% 7.64% 28.9ps 2.44s
s13207 0.9719 0.9750 1.38% 5.55% 31.2ps 16.97s
s15850 0.9613 0.9737 1.46% 7.2% 39.5ps 22.52s
s35932 0.9464 0.9492 2.26% 11.98% 34.1ps 20.38s
s38584 0.9493 0.9609 1.89% 9.13% 43.0ps 28.84s
s38417 0.9505 0.9526 2.17% 9.12% 37.4ps 15.06s

Finally, we experimentally demonstrate that our assump-
tion of neglecting systematic variations is reasonable. We
demonstrate this on Method II, and show that a reasonable
change in the nominal parameter values of the RCP cells due
to systematic variations would not affect the final results by
much. This justifies our heuristic to only choose the starting
point of the RCP at the bottom of the die.

The experiment proceeds as follows: after the RCP is built,
we disturb the nominal values of all parameters associated with
the RCP by 20%, while leaving those of the original circuit
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unperturbed. This models the effect of systematic variations,
where the RCP parameters differ from those of the original
circuit. We show the final results of the scatter plots for circuit
s38417, with and without disturbance, in Figures 7(a) and 7(b),
respectively. It is shown that the plots are almost identical, and
the average error is 2.26% with disturbance as compared to
2.28% for the normal case.

The intuition for this can be understood as follows. The
correlation between the original circuit and the RCP depends
on the coefficients of the PCs in the canonical expression.
The coefficients depend on the sensitivities of the delay to
variations, and not on their nominal values. Although the delay
is perturbed by 20%, the corresponding change in the delay
sensitivity is much lower, and this leads to the small change
in the accuracy of the results.

V. CONCLUSION

In this paper, we have presented two novel techniques
to automatically generate a critical path for the circuit to
capture all of the parameter variations. A third approach isa
simple hybrid of the two approaches that provides noticeable
improvements over either individual approach. The key idea
used in this paper is to take advantage of spatial correlations
to build a test structure, the RCP, that captures variations
in multiple critical paths in the circuit, exploiting the spatial
correlation structure. Experimental results have shown that our
methods produce good results.

Our current framework only handles process variations;
environmental variations are addressed by adding adequate
delay margins, since these are often worst-cased in practice.
Addressing these through prediction remains an open area for
future work. A straightforward extension of our method for
very large circuits is to build not one, but a small number, of
RCPs, one for each region of the circuit. The fundamental
approach for building each path would be identical to the
method proposed here.
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