
Technology Mapping Using Logical Effort Solving
the Load Distribution Problem

Shrirang K. Karandikar and Sachin S. Sapatnekar

Abstract— Technology mapping is a crucial step in the synthesis
of digital designs, and can be used to obtain mapped circuits
that are optimized for delay or area. Current tree-based mapping
algorithms break the circuit into individual trees and map these
optimally. However, these solutions are not globally optimal. This
paper presents a new approach to delay-optimal mapping, based
on the principle of logical effort. This algorithm maps individual
trees such that the solution of the entire circuit is optimal. In
traditional technology mapping, the best match for a gate depends
on the load being driven, which is not known at the matching stage.
Current algorithms handle this situation by generating matches for
all loads, and selecting the best match at a later stage. This strategy
works for fanout-free circuits, but breaks down at multiple fanout
points, where each fanout has to be sized correctly, depending on
its criticality. This can have a significant impact on the selection
of matches as well, but has not been addressed adequately in the
published literature. We refer to the correct sizing of branches of
multiple fanout points as the load-distribution problem, which is
formally defined and solved in the context of technology mapping
in this paper. The effect of the new logical effort based mapping
algorithm combined with correct sizing of individual branches of
a multiple fanout point leads to implementations that are closer
to the global optimum. On average, benchmark circuits mapped
using our approach are 37.20% faster and 32.99% smaller than
those obtained using SIS.

I. INTRODUCTION

The conversion of a register-transfer level description of a de-
sign into an implementation in silicon starts with logic synthesis,
which consists of technology independent optimization, followed
by technology mapping. In the latter step, the design is mapped
to cells belonging to the target library, while optimizing one or
more performance metrics, such as delay, area or power. High-
performance designs use rich libraries, with multiple instances of
each cell, which have various delay, area and drive capabilities.
Technology mapping has to not only identify the best logic
functionalities of cells to be used to implement some logic, but
also the best instance of each selected cell.

This paper addresses the problem of delay-optimal technology
mapping, for which a number of algorithms have been proposed
in the past, such as tree-mapping [1] and DAG-mapping [2],
using load-dependent delay models [3], constant delay models
[4], [5] as well as using logical effort [6]. In this paper, the
current state of delay-optimal technology mapping is extended
in two directions. We present a new approach to mapping, using
logical effort (which has previously been used for quick delay
estimation and gate sizing). We also present and solve the load-
distribution problem, which, to the best of our knowledge has not
been formally addressed in the literature previously. Optimally
solving the load distribution problem can lead to mapped circuits

This work was supported by SRC under contract 2001-TJ-884 and NSF under
award CCR-0205227.

that are more delay- and area-efficient than prior approaches,
which have addressed this problem heuristically.

The first contribution of this paper is a new logical-effort
based technology mapping algorithm. Logical effort [7], [8] has
been widely used in a variety of application domains [5], [9],
[10], [11] as well as in industry standard EDA synthesis tools
[12], [13]. The method of logical effort primarily provides a
quick means of estimating the delay of a path of logic, but
has significant drawbacks when analyzing entire circuits having
gates with multiple fanouts. This technique also provides a
means of calculating the gate sizes that lead to the estimated
minimum delay. Consequently, given multiple implementations
of the same path of logic, and input and output capacitances
for the path, logical effort can be used to easily determine
the minimum delay implementation. This notion can be used
to constructively map a path of logic to the minimum delay
implementation, in a manner similar to traditional mapping
algorithms, by enumerating choices and eliminating suboptimal
ones. This is the idea behind the new technology mapping
algorithms presented in this paper. Our approach, described in
Section IV, has a few advantages over previous methods. First,
unlike conventional methods, the selection of gate sizes in the
solution is implicit, and does not have to be determined during
matching. Second, the delay model is inherently load-dependent,
and there is no need to enumerate solutions for all possible
load values, as is done in the traditional mapping approach [3].
Finally, the size of the library used is much smaller, since each
gate need not be instantiated for each available size, leading to
faster matches. Combined, these features make our algorithm
faster than current algorithms for fanout-free circuits.

The second contribution of this paper is the formulation and
solution of the “load distribution problem”. Traditional technol-
ogy mapping approaches partition a circuit into fanout-free trees,
and map each tree separately. Every gate within such a tree drives
one other gate that is also contained in the tree. The output gate
of the tree drives either a primary output, or gates that are input
gates of other trees. Within a tree, traditional technology mapping
approaches recognize the fact that the delay-optimal match of a
gate, and its corresponding size, depend on the load being driven.
This is true for the output gate of the tree as well, which drives
multiple fanouts. Selecting the correct solution for this output
gate is crucial, since this solution, in turn, determines the load
for other gates in the tree. However, the load being driven by
the output gate of a tree is not known in advance. Additionally,
indiscriminately selecting the best solution for each path in a
tree can lead to the input gates of the tree having large sizes.
While this may lead to each tree in the circuit having the best
input-to-output delay, such a solution for the complete circuit is
severely sub-optimal. What is required is an approach that takes

2

into account the criticality of each component of multiple fanout
points, and selects solutions that optimizes the delay of the entire
circuit. The problem of assigning correct sizes (or equivalently,
capacitances) to gates at multiple fanout points is referred to as
the load distribution problem, and is described in greater detail
in Section III-B. A solution to this issue in the context of gate
sizing has been presented in [14], [15], [16], and is extended to
the technology mapping arena in this paper.

II. BACKGROUND

We first present a brief overview of the method of logical
effort, and how it applies to sizing a path for minimum delay.
This is followed by a discussion of algorithms that are currently
used for technology mapping, and the delay models used in these
algorithms.

A. Logical Effort and Gate Sizing
In the method of logical effort, the delay of a gate is estimated

by modeling it as a linear function of the load being driven as:

D = g× cl
ci

+ p = g×h+ p

= f + p (1)
where

• Logical Effort (g) is the complexity of the gate, relative
to an inverter. It measures how much worse the gate is at
driving a specified load than an inverter. The base case of
an inverter is taken to have unit logical effort, and complex
gates such as NAND, NOR and XOR have successively
higher values of logical effort. Asymmetric gates, such as
AOI or OAI gates have different logical efforts for each
input.

• Electrical Effort, or Gain (h = cl
ci

) describes how the
electrical environment of the logic gate affects performance
and how the size of the transistors in the gate determines
its load-driving capability. cl is the load being driven and
ci is the input capacitance of the gate under consideration.

• Effort Delay (f = gh) is the product of the logical and the
electrical efforts of the gate.

• Parasitic Delay (p) expresses the intrinsic delay of the
gate due to its own internal capacitance, and is largely
independent of the size of the transistors in the logic gate.

This formulation separates the different components that con-
tribute to the delay of a gate. More importantly, it leads to a
natural extension for estimating the minimum delay, D̂, of a path
of logic as

D̂ = NF1/N +P (2)
where F = GH is referred to as the path effort, P as the path
parasitic delay and N is the number of gates on the path under
consideration [8]. The path logical effort, G, is the product
of the logical efforts of the gates on the path, and the path
electrical effort, H, is the product of the gate electrical efforts.
The minimum delay of Equation (2) is obtained by distributing
the path effort F equally to each gate on the path.

The path electrical effort can also be calculated as the ratio
of output and input capacitances of the path. Consider Figure 1,

PSfrag replacements

A B C D
cin

CL

coutA coutB coutC coutD

cinA cinB cinC cinD

Fig. 1. Calculating the Electrical Effort of a Path

which shows a simple path of four gates, A, B, C and D. Each of
these gates have input capacitance cinA , cinB , cinC and cinD , and
drive output capacitances coutA , coutB , coutC and coutD respectively.
The input capacitance of the path, cin, is the input capacitance
of gate A, and the output capacitance of the path, CL, is the
output capacitance of gate D. The path electrical effort, H, is
the product of the gate electrical efforts, so in this case,

H =
coutA
cinA

×
coutB
cinB

×
coutC
cinC

×
coutD
cinD

=
coutA
cin

×
coutB
cinB

×
coutC
cinC

×
CL
cinD

However, this product telescopes since the input capacitance of
each gate is the load capacitance of its input (e.g., cinC = coutB).
Thus,

H =
coutA
cin

×
coutB
cinB

×
coutC
cinC

×
CL
cinD

=
CL
cin

(3)

The traditional logical effort approach is well suited for
estimating the minimum delay that can be achieved by sizing
a path of logic (using Equation (2)), if the electrical effort, H,
of the path is known. The individual gate sizes that are required
to achieve this minimum delay can be calculated as follows. Each
gate is assigned a gate effort of f = F 1

N . Starting with the gate
at the output that drives a known load of CL, the size of each
gate is successively determined. Since the logical effort g of a
gate is fixed, if an effort delay f is assigned to a gate, the input
capacitance cin that meets this effort delay can be calculated as

cin =
g× cl

f , (4)

where cl is the load begin driven by the gate under consideration.
In general, the input capacitance of the kth gate from the

output, cink , can be calculated as

cink =
∏k

i=1 gi
f k ·CL (5)

Further additions to deal with multiple fanouts in circuits
have been presented in [8]. However, as discussed in [16], the
“branching effort” has significant drawbacks due to the lack of a
priori knowledge of the input and load capacitances of individual
branches in a circuit. These drawbacks can create inaccuracies
when calculating the minimum achievable delay of a circuit, and
the corresponding gate sizes, as discussed in greater detail in
Section III-B.

B. Traditional Technology Mapping
We now briefly summarize the state of technology mapping

and the delay models used in these algorithms. Cell- or library-
based technology mapping is the process of binding a technology
independent logic level description of a circuit to a library of
gates in the target technology. A dynamic-programming algo-
rithm based on tree covering was proposed in [1], and has served

3

as the basis of later technology mapping algorithms. This is a
two-step algorithm:

• In the matching step, matches for all gates are generated in
an input-to-output traversal of the circuit, and the optimum
match (based on its cost and the cost at its inputs), and
the corresponding matches at the inputs, is stored as the
solution for that gate.

• In the covering step, the solution for the entire circuit is
generated by an output-to-input traversal of the circuit. At
the primary outputs, the best match is selected, and the
covering recurses on the inputs of this match.

The delay of a match is a function of the load it is driving,
a quantity that is not known during the matching step. In order
to account for this in delay-optimal technology mapping, sets of
solutions are stored at each gate, each solution being the optimal
one for a specific load value. In the covering step, the load is
known, and the corresponding optimal match can be selected.

One of the drawbacks of this approach is that the circuit
to be mapped (represented by a “subject graph”) is partitioned
into disjoint fanout-free trees, which are then optimally mapped.
However, this leads to restrictions on the solutions, since matches
cannot cross tree boundaries. In [2], it was pointed out that
if duplication at tree boundaries were to be allowed, DAG-
mapping, as opposed to tree-mapping, would provide optimal
results. However, this work allocates a fixed, load-independent
delay to each gate, and assumes that later gate sizing and buffer
tree insertion can achieve the delay assigned. Thus, it does not
address the load-distribution problem, described shortly.

The delay models used in technology mapping fall into the
following categories:

• Load-Independent Delay Models assume that the delay of
a cell does not depend on the load being driven, which is
unrealistic. However, during technology mapping (even in
the case of fanout-free regions), the load is not known until
the covering step, and assuming load-independence of delay
is convenient. Approaches using these models assume a
fixed load during matching, and use buffer insertion and gate
sizing after mapping to improve the final delay. This can
lead to sub-optimal solutions, when compared to approaches
that integrated sizing with mapping.

• Load-Dependent Delay Models express the delay as a
polynomial function of the load being driven. Higher-order
delay functions, such as quadratic functions, can be used
for greater accuracy, although linear functions, as used in
[3], may also suffice. A technology mapping that uses such
a delay function generates optimal matches for all possible
load values in the matching step. During covering, the actual
value of the load becomes known, and the corresponding
match can be selected as the solution.

• Constant Delay Models assign a fixed delay to each library
cell (note that this is not the same as the load-independent
delay models). The technology mapping procedure is car-
ried out under the assumption that given a load, these cells
can be sized in order to achieve the assigned delay. These
models have been used in [4], [5], but the main drawback
is that the optimal selection of cells during matching is
sensitive to the load being driven.

• Gain-Based Delay Models express the delay of a gate as

a function of the ratio of output-to-input capacitance of the
gate, and have been applied to technology mapping in [6].
However, the selection of sizes of gates in [6] is based on
an ill-defined parameter called global gain, whose value is
set either by experimentation or relies on the intuition of
the designer.

Thus, there have been a variety of approaches to account for
the fact that gate delays depend on the load being driven. While
technology mapping makes use of these approaches to generate
optimal solutions locally, the global picture is left unfinished
i.e., while the selection of the gate types and gate sizes may
be optimal within fanout-free trees, the traditional algorithms
degenerate into heuristic or greedy approaches at multi-fanout
points. This is illustrated in the following section.

III. DRAWBACKS OF TRADITIONAL METHODS

In traditional tree-mapping methods, the input circuit, repre-
sented as a DAG, is partitioned at multi-fanout points into trees,
which are then mapped optimally. These algorithms address
the fact that size and functionality selection of matches have
a significant impact on the quality of the final mapped solution.
However, there are a few issues that are not taken into account.
First, the selection of the optimal match and the corresponding
size is based on the load being driven, and ignores any constraints
on the input capacitance of the tree. If this input capacitance
is bounded, the best solution may be different from the one
selected, as we show in Section III-A. Typically, bounds on
the input capacitance are needed, so that the driving gates do
not see an unnecessarily large load. The second issue is related
– rather than an arbitrary bound on the input capacitances of
a tree (which are multi-fanout points in the original circuit),
an optimal assignment of capacitances to all fanouts and the
driving gate, based on their respective criticalities, can lead
to superior solutions, as discussed in Section III-B. Finally,
optimally mapping trees need not lead to optimal solutions for
the entire circuit, as shown in Section III-C.

A. Load-Dependence of Optimal Matches

 4

 6

 8

 10

 12

 14

 16

 18

 2 4 6 8 10 12

1

PSfrag replacements

C

C

a

a

b

b

2
8

CL/Cin

N
or

m
al

iz
ed

D
el

ay

NAND2
INV-NOR2-INV

Fig. 2. Influence of Load on Solutions

Consider Figure 2, where output C is the NAND of two inputs,
a and b. The load at the output of C is CL, and the input
capacitance is a fixed Cin. This functionality can be obtained
by either selecting a NAND2 gate directly, as shown on the
top, or by selecting an INV-NOR2-INV chain as shown at the

4

bottom. It may seem that the smaller solution will outperform
the larger one. However, consider the delay equations for each
option, assuming the following values: gINV = 1, gNAND2 = 4

3 ,
gNOR2 = 5

3 , pINV = 1 and pNAND2 = pNOR2 = 2. The minimum
delay that can be achieved by each option can be calculated
using Equation (2), where the number of stages, N, is 1 for the
NAND2 solution, and 3 for the INV-NOR2-INV solution.

D̂NAND2 =
4
3 ×

CL
Cin

+2

D̂INV−NOR2−INV =3 ·
[

5
3 ×

CL
Cin

] 1
3
+4 (6)

Figure 2 also plots the minimum delay of Equation (6) as a
function of the electrical effort, CL

Cin
. It is obvious that there is no

universally better choice in this case – for small values of elec-
trical effort, the NAND2 has lower delay, while the INV-NOR2-
INV is better for larger values of electrical effort. Thus, input
and output capacitance, rather than the output capacitance only,
determine the optimal match, a point that is largely ignored by
the traditional technology mapping algorithms. Typically, bigger
gates are faster than smaller ones, but have a correspondingly
higher input capacitance. In order to ensure that the driving
gates at the tree inputs do not see an excessive load, limits
on the maximum input capacitance may be enforced. However,
these limit are not taken into account when selecting the optimal
match.

This example serves to highlight a crucial point – in order
to determine optimal matches, we need to know the output as
well as input capacitances of logic under consideration. To the
best of our knowledge, this aspect of technology mapping has
not been taken into account previously. However, it is implicit
in our formulation of logical-effort based technology mapping,
and in the load-distribution problem and its solution.

B. The Load-Distribution Problem
As seen in the previous section, the optimal solution for a

fanout-free tree of logic depends on input as well as output
capacitance. The natural question that arises is: in the context
of the entire circuit, what are the values of input and output
capacitances of the component trees that minimize the delay of
the entire circuit? This issue is analyzed in this section.

A

B

C

Fig. 3. Assigning Capacitance at Multiple Fanouts for Optimizing Circuit Delay

Consider the situation shown in Figure 3, with a block of
logic A fanning out out to two other blocks, B and C, which
eventually drive primary outputs. Each of A, B and C are fanout-
free regions of the circuit. The optimal solution selected for A
depends directly on the load being driven at its output, which,
in this case, is the input capacitance of B and C. There are two
situations that have to be considered:

• The interaction between A and its outputs Assigning a
larger input capacitance to B and C makes them faster, at
the cost of increasing the load on A and slowing it down,
and vice versa. What is the optimum value of capacitance
that should be assigned to the output of A, so that the delay
of the entire circuit is minimized?

• The interaction between B and C The delays of these two
fanout-free regions to the primary outputs of the circuit are
influenced by their constituent logic and respective input
and output capacitances. If the two blocks of logic have
very different delays, we would like the critical branch to
have a larger input capacitance. On the other hand, if B and
C have the same delay, they should have the same input
capacitance. Thus, even if we could determine the optimal
load that A should be driving, what is the best distribution
of this capacitance to each fanout?

We refer to these two problems together as the load-
distribution problem. Given a load at a multiple fanout point in
the circuit, current algorithms can determine the best mapping
for the logic up to that point. However, this load is typically es-
timated using heuristics, and since the mapped solution depends
directly on the load being driven, wrong estimates can lead to
sub-optimal solutions.

We solve the load-distribution problem by integrating the
approach suggested in [16] with technology mapping. This
enables us to accurately determine the optimal load that should
be driven at a multiple fanout point, and how this load should
be distributed, in the form of input capacitance, to each fanout.
Once this load has been calculated (as against being estimated),
we can use our technology mapping approach to map the circuit.

C. Critical Paths of Trees and of the Entire Circuit
When dealing with fanout-free regions, or trees, in isolation,

it is easy to determine the critical input of the tree – this is the
tree input that has the maximum delay to the tree output. The
path from this critical input to the tree output is the critical path
of the tree. Note that the critical path of the mapped circuit may
be significantly different from the critical path of the unmapped
circuit, depending on the target library. Therefore, the critical
path of the mapped tree is not known during the matching phase,
and may change depending on the choice of the matches made
and the corresponding sizes selected. However, the traditional
tree mapping algorithms can map trees so that the delay on the
critical path of the mapped tree is minimized.

PSfrag replacements

Pr
im

ar
y

In
pu

ts

Primary
Output

Fanout-free
trees

P1

P2

Fig. 4. Critical Path in a Tree and in the Circuit

Now consider the situation when the tree is part of a bigger
circuit. In this case, the desired mapped solution is the one that
minimizes the delay of the the critical path of the circuit, which
may not correspond to the critical path of the constituent trees.
This is shown in Figure 4, which shows a part of a circuit that

5

has been divided into fanout-free trees. Each of these trees fanout
to multiple outputs or to primary outputs. In the topmost tree,
path P1 is the path with longest delay. However, the critical path
of the circuit is path P2, which traverses multiple trees. As in
the case of trees, the critical path of the unmapped circuit can
be very different from the critical path of the mapped circuit,
and therefore cannot be used to determine the critical inputs of
individual trees.

In such a scenario, optimally mapping individual trees and
connecting these mapped trees together can lead to solutions for
circuits that are sub-optimal. We address this issue in Section IV-
C.3 by generating solutions for each input of a fanout-free
segment, and selecting the solution corresponding to the critical
input, once it is known, so that the delay through the entire
circuit is minimized.

IV. LOGICAL EFFORT BASED TECHNOLOGY MAPPING

In this section, we present our approach to mapping a circuit
to a target library, that address the drawbacks of traditional
approaches presented in the previous section. We first present
a logical-effort based technology mapping algorithm for fanout-
free circuits. This algorithm is modified in Section IV-B to
handle the fact that the critical path in the circuit is not known
during the matching step. A key feature of this algorithm is
that the solutions generated are functions of input and output
capacitances. This allows us to address the load-distribution
problem, which uses the concept of Delay-Cin curves, and
their application to dealing with multi-fanout points, presented
in Section IV-C. The combination of our logical effort based
technology mapping algorithm and Delay-Cin curves leads to our
approach for mapping entire circuits optimally, as presented in
Section IV-D.

A. Optimal Technology Mapping for Fanout-Free Circuits
We first present our algorithm for a simple path of logic,

with each gate having a single input and single output. We then
show how this algorithm can be extended to fanout-free circuits,
with each gate having multiple inputs but a single output. This
algorithm is optimal for trees, but as described in Section III-
C, this optimality may not extend to entire circuits. We present
a modified version of the matching step, which, when used in
conjunction with Delay-Cin curves, leads to solutions closer to
the global optimum.

In traditional technology mapping, in an input-to-output traver-
sal, all possible matches are generated at each gate. However,
only one match (the optimal match, as determined by the cost
function), has to be stored for every gate. For minimum-delay
technology mapping, the cost function at a gate is the delay of
any path from a primary input to the output of the gate, and can
be calculated as the sum of the delay of the match itself, and the
maximum delay at the inputs of the match. This approach fits
the classical dynamic programming paradigm – the delay of the
path is optimal only if the delay of a sub-path is optimal; hence
all non-optimal matches can be discarded. When gate sizing is
taken into consideration, a set of solutions, each corresponding
to different possible load values have to be evaluated and stored,
rather than a single solution.

Our approach uses the cumulative path logical effort, G as the
cost function. Recall that G is the product of all individual gate
logical efforts1 g on any path from a primary input to the gate
under consideration. We will show shortly that if the number
of gates on a path are taken into account, minimizing G is
equivalent to minimizing the delay of that path. This formulation
also fits into the optimal substructure property of dynamic pro-
gramming, since by definition, the minimum value of cumulative
logical effort of a path is obtained when the cumulative logical
effort of any sub-path is minimum. This formulation has a couple
of advantages over previous methods. First, different load values
are automatically accounted for, and therefore only one solution
has to be stored for each gate. Second, the solution for a path
is a function of the input and output capacitances of that path,
as shown later in this section. This leads to globally optimal
solutions when extended for complete circuits.

We now show how minimizing path logical effort G leads
to minimum-delay solutions. Recall Equation (2), which can be
expanded as

D̂ = N (GH)1/N +P (7)
where H = CL

cin
Given a path having N stages of logic and path logical effort G

and path electrical effort H, the minimum delay in Equation (7)
can be obtained by sizing gates on the path appropriately. If
we were to have the freedom of replacing gates on the path
with functionally equivalent choices, while maintaining the path
length and electrical effort, it is obvious that the optimal solution
after gate sizing is obtained when the path logical effort G
is minimized. Thus, in an input-to-output traversal of a path,
selecting the match that minimizes the cumulative logical effort
for a certain path length will lead to a solution that minimizes
the delay of the mapped path after sizing. For greater accuracy,
we use the parasitic delay P as a secondary criteria, to break ties
when we have solutions with equal path logical effort.

Of course, the length of the path can vary depending on the
matches selected. At each gate, we store a set of optimal matches,
for different path lengths. Correspondingly, at the primary output,
we obtain a set of solutions of different path lengths and different
values of cumulative logical effort. We can then use Equation (7)
to determine the combination of path length N, cumulative
logical effort G and parasitic delay P that will minimize the
delay of the mapped circuit after sizing.

Our logical effort based approach to technology mapping, for
a simple path, with a known input and output capacitance can
be summarized as follows.

• In the matching step, traverse the path from the primary
input to the primary output. For each match at a gate, the
cost function is computed as the product of the logical effort
of the match and the cumulative logical effort at the input
of the match. The length of the path is the length of the
input of the match plus 1. For all path lengths, store the
best match.

• At the primary output, determine the combination of G, P
and N that will minimize the delay after sizing, as calculated
by Equation (7).

1In this context, “gate logical effort” refers to the logical effort of individual
matches.

6

• In the covering step, traverse the path from the primary
output to the primary input, generating the solution as
in regular technology mapping. In addition, calculate the
correct sizes of each gate using Equation (5).

The above description was restricted to simple paths of logic
where each gate has a single fanin and a single fanout. We
can now generalize this approach to circuits with gates having
multiple fanins (the case with multiple fanouts is handled in the
following sections). Since each gate has a single fanout, there
is a single path from a primary input to any gate in this circuit.
In traditional technology mapping, for some gate t, the input to
a match at t with the maximum delay from a primary input is
defined as the critical input, and this delay is used in combination
with the delay of the match to determine the delay (and hence the
cost) at the output of the match. In our approach, the minimum
delay of a path is achieved by minimizing the cumulative logical
effort for a selected path length. In this case, we determine the
critical input and calculate the cost function as follows.

Let the match at gate t have r inputs I1,I2, . . .Ir. Consider the
situation where this match has some input capacitance cint , and
the path length from a primary input to any input of the match
at t is the same. The input capacitance of the match is the load
capacitance that each of I1,I2, . . .Ir have to drive. If the input
capacitance at each primary input were also fixed (say equal to
cinPI), the electrical effort of all the paths from primary inputs
to the input of gate t will be H =

cint
cinPI

, and will be equal. Thus,
on the basis of Equation (7), the critical input Ic, which has
maximum delay from its primary input, is the one that has the
maximum cumulative logical effort for that path length. When
calculating the cost of a match at gate t for some value of path
length N, we need to determine the cumulative logical efforts at
each input of this match for path lengths N−1, and the maximum
of these is used to calculate the cumulative logical effort at the
output of t.

The above argument makes a couple of assumptions that may
seem restrictive. However, we will show that these do not affect
the definition of the critical input. The first assumption is that
a match will present the same input capacitance on every input
pin. This is true for symmetric gates (such as NANDs or NORs),
but not for asymmetric gates, such as AOIs or OAIs. However,
we shown in Lemma 1 that even with each input to a match
having different electrical efforts, the critical input is still the one
with maximum cumulative logical effort, as defined above. The
other assumption is that every input has solutions corresponding
to a given path length. That is, when determining the optimal
solution for path length n, our approach assumes that solutions
of path length n− 1 are available at each input of the match.
This may not be the case in general, and remains a drawback of
our approach. However, even with this drawback, the solutions
obtained by our approach are significantly better than the ones
obtained by traditional methods, as will be seen in the results
presented in Section V.

A final consideration that has to be accounted for is the load
seen by non-critical inputs of a match after sizing the final
mapped circuit. The cumulative logical effort up to a gate being
mapped is calculated by taking the product of the logical effort
of the match itself and the cumulative logical effort of the critical
input of the match. Tracing the path from the primary output to

a primary input, following the critical input at each gate defines
the critical path in the circuit under consideration. At the primary
output, the cumulative logical effort is used to size this critical
path, as shown in Section II-A, so that the delay on this path is
minimized. The non-critical inputs of gates on this path, however,
have no choice in this sizing. Is it possible that the load seen by
non-critical inputs becomes large enough, so as to make them
critical? As the following Lemma shows, this is not the case.

Lemma 1: Let Ic be the critical input of a gate t, as defined
previously. After sizing t and its outputs, Ic is still the critical
input of t.

Proof: See Appendix.
Our logical effort based technology mapping procedure for

fanout-free circuits can be carried out in a manner similar to the
approach for simple paths. The optimum solution at each gate is
determined for all values of path lengths. For some path length N
under consideration, the cost of each match is the product of the
logical effort of the match, and the maximum of the costs at its
inputs, corresponding to lengths N−1. At the primary output, for
some electrical effort, the combination of path length, cumulative
logical effort and parasitic delay that minimizes the delay of the
circuit as determined by Equation (7) is selected (this assumes
that gate sizing will be applied to the selected solution). If only
such a fanout-free circuit is to be mapped, the electrical effort is
known. If this fanout-free circuit is part of a bigger circuit, the
electrical effort is determined using Delay-Cin curves, discussed
in the following sections.

The pseudo-code of our dynamic-programming based algo-
rithm for technology mapping fanout-free circuits is presented
in Algorithm 1.

An Illustrative Example: We use Figure 5 to illustrate Algo-
rithm 1. Here, a simple chain of three gates, A, B and C is to
be mapped to a library of three cells, X, Y and Z, with logical
efforts gX, gY and gZ and parasitic delays pX, pY and pZ.

As discussed before, we store optimal solutions for each
legal value of path length. For each gate t we keep track of
the accumulated product of logical efforts Gt , the sum of the
parasitic delays Pt , and the corresponding matches Mt , indexed
according to the length of the path. The path length is obtained
by the length at the inputs to the match at t plus one for the
match itself2.

In the example, the only match of a library pattern at gate
A is that of pattern X, and the corresponding solution for A is
GA[1] = gx, PA[1] = px, MA[1] = X. At gate B, however, we have
two possible matches, the match of X, with solution GB[2] = g2

x ,
PB[2] = px + px, MB[2] = X, and the match of Y, with solution
GB[1] = gy, PB[1] = py, MB[1] = Y. Thus, B has two solutions
of length 1 and 2. At gate C, all three library patterns match,
generating the following solutions:

• Match of Z: This is straightforward, with the solution being
GC[1] = gz, PC[1] = pz, MC[1] = Z.

• Match of Y: In this case, the input to the match is A, and
the only input solution available is of length 1. Hence, the
corresponding solution for C, of length 2, is GC[2] = gx ·gy,
PC[2] = px + py, MC[2] = Y.

2For example, Gt [3] is the cumulative logical effort of a path having length
3, and the corresponding match is stored in Mt [3]

7

Algorithm 1 Optimal LE-Based Technology Mapping for
Fanout-Free Regions

// Gt is the cumulative logical effort at the output of gate t,
indexed by path lengths
// Mt is the set of selected matches at t, indexed by path length
// M is the set of all possible matches at gate t
// I is the set of inputs to match m
// initialize
for each primary input p do

Gp[0] = 1
end for
// Phase I: Matching
for each gate t in topological order do

set Mt [n] = 0 for all n
for each m ∈ M , with logical effort gm do

for each available path length n do
// calculate cumulative effort Gt [n] from the inputs,
// using solutions corresponding to path length n−1
temp = gm ×maxi∈I Gi[n−1]
if Mt [n] = 0 OR temp < Gt [n] then

Gt [n] = temp
Pt [n] = pm +Pi[n]
Mt [n] = m

end if
end for

end for
end for
// Phase II: Selecting Solution
at the primary output, select the combination of G, H and N
that minimizes delay
// Phase III: Covering
select matches in a traversal from the primary output to
primary inputs, sizing the matches appropriately

• Match of X: The input to this match is B, which has two
solutions. Each of these leads to two solutions for C, of
length 2: GC[2] = gy · gx, PC[2] = py + px, MC[2] = X and
of length 3: GC[3] = g3

x , PC[3] = 3 · px, MC[3] = X.

Note that we now have two solutions at circuit node C of length
2, due to the matches of Y and X. We store the solution with
the minimum value of cumulative logical effort.

As we have reached the primary output, the matching step
is complete. We have three possible solutions at the primary
output, of lengths 1, 2 and 3. The load CL is known for each
solution, and assume that the primary input has a fixed drive
capability of Cin. This determines the electrical effort H = CL

Cin
,

and we can calculate the minimum delay corresponding to each
available solution using Equation (7), and select the minimum.
In this case, we have the minimum delay of the mapped circuit
with path length 1 to be

D̂ = 1 · (GC[1] ·H)1/1 +PC[1]

= gz ·H + pz,

PSfrag replacements

Library

Circuit

Matches at A and B

Matches at C

Cin

Cin

Cin

X gX Y gY Z gZ

A

A

A

B

B

B

C

C

C

D

CL

CL

CL

MA[1] = X MB[1] = Y, MB[2] = X

MB[1] = Y
MB[2] = X

GA[1] = gx GB[1] = gy GB[2] = g2
x

MC[1] = Z, MC[2] = Y, MC[3] = X

MC[1] = Z
MC[2] = Y
MC[3] = X
MC[2] = X

GC[1] = gz GC[2] = gx ·gy GC[3] = g3
x

GC[2] = gx ·gy

Fig. 5. Example of LE-Based Technology Mapping

for path length 2
D̂ = 2 · (GC[2] ·H)1/2 +PC[2]

= 2 · (gy ·gx ·H)1/2 + py + px,

and for path length 3
D̂ = 3 · (GC[3] ·H)1/3 +PC[3]

= 3 · (g3
x ·H)1/3 +3 · px,

As discussed before, the individual gate sizes can then be
determined using Equation (5).

As described in Section II-B, traditional approaches calculate
and store solutions for all possible load values. We trade this off
with generating solutions for different values of path length, N.
The number of legal values of N depend on the circuit being
mapped, but also depends on the library. During the mapping
stage of Algorithm 1, complex gates, if available in the library,
will cover a greater part of the circuit while increasing path
length by 1. In comparison, simple gates will increase the path
length by a larger amount. We also note that the number of path
lengths is not the same for all gates in a path, but increases as we
traverse the path from the input to the output. Thus, in practice,
we find that keeping track of N solutions at each gate is faster
than keeping track of solutions for each load value, as done in

8

the traditional approach.
If we map fanout-free regions only, Algorithm 1 provides

optimal solutions. The path effort F can be used to calculate the
sizes of each match selected on the critical path. Matches that
are not on the critical path can be sized once the critical path
has been fixed. The non-critical paths have a certain amount of
slack in the delay that they have to meet. This slack, and the fact
that the critical path is now presenting a load that is smaller than
previously anticipated can be used in a possible optimization, to
control the area of the implementation.

B. Generalized Matching for Fanout-Free Regions
As presented in Section III-C, the critical path of a circuit

may not correspond to the critical path of a fanout-free region
or tree. Therefore, while Algorithm 1 can optimally map fanout-
free regions, the optimal solution for a tree may not provide
the minimum delay for the entire circuit. This drawback also
exists in current tree-mapping algorithms. The main problem
with correctly addressing this issue is that the critical input (for
minimizing circuit delay) of a fanout-free region is not known
during the matching phase, and can change depending on the
selections made (and their corresponding size assignment) during
technology mapping. In this section, we modify the matching
step of Algorithm 1 so as to obtain generalized solutions for
fanout-free trees. In the covering step, these solutions can be used
to select the true critical input, and the corresponding optimal
matches.

Consider a fanout-free region having inputs s1,s2, . . . ,sk. In
a tree, each gate has only one output, and therefore if there is
a path from an input s j to a gate t in the fanout-free region,
this path is unique. In Algorithm 1, we stored one solution for
each path length for gate t, with cost Gt [n], and the optimality
of this solution was based on determining the critical input to
the match. In the context of the entire circuit, we can no longer
use the critical input within a fanout-free region to determine
global optimality. Instead, we store k solutions for each path
length, corresponding to each input s j of the fanout-free region,
denoted by Gs j→t [n].

The modified version of the matching step is shown in
Algorithm 2. Consider the situation when matching at some gate
t. Each input i of the match has a set of solutions of the form
Gs j→i[n], where there exists a path from the jth input of the tree
to i. This can be combined with the current match to obtain the
solution for gate t, Gs j→t [n+1]. Other matches for gate t of path
length n+1 from tree input s j can produce different costs, and
as before, we store the minimum cost solution. In this manner,
we track solutions of different path lengths from each tree input,
and defer the determination of criticality to a later stage. The
complexity of doing so increases by O|FI|, where |FI| is the
number of tree inputs, which can be potentially large. However,
we show in Section V that this number is less than three on
average. Also note that the number of tree inputs that fanin to
a gate increases with the depth of the tree, and it is only the
output of the tree that has to keep track of solutions from each
tree input.

Algorithm 2 is an algorithm for the matching step for fanout-
free circuits, which generates sets of solutions for the fanout-
free region corresponding to different inputs of the region and

Algorithm 2 Optimal LE-Based Matching for Fanout-Free Re-
gions

// The fanout-free region has k inputs, s1, s2,. . . ,sk
// Gs j→t is the cumulative logical effort from input s j to the
output of gate t, indexed by path lengths
// Ms j→t is the set of selected matches at t for each input s j,
indexed by path length
// M is the set of all possible matches at gate t
// initialize
for each input s j do

Gs j→s j [0] = 1
end for
for each gate t in topological order do

set Ms j→t [n] = 0 for all inputs s j and path lengths n
for each m ∈ M do

for each available path length n do
// calculate cumulative effort Gs j→t [n] from the inputs
of the match,
// using solutions corresponding to path length n−1
for each input i of match m, having logical effort gmi
do

for each input s j of the fanout-free region having a
path to i do

temp = gmi ×Gs j→i[n−1]
if Ms j→t [n] = 0 OR temp < Gs j→t [n] then

Gs j→t [n] = temp
Ps j→t [n] = pm +Ps j→i[n]
Ms j→t [n] = m

end if
end for

end for
end for

end for
end for

different path lengths. Given an electrical effort (output load ca-
pacitance and input capacitance), the optimal matching solution
is readily determined. The covering step is based on Delay-Cin
curves, and is described in the following sections. Determining
which input is critical is handled after covering.

C. Delay-Cin Curves and their Efficient Calculation
We now turn to the case of gates having multiple fanouts.

Here, the correct choice when mapping and sizing each branch
depends on which one is critical, as formalized by the load
distribution problem. Traditional approaches handle each branch
separately, but it is clear that this can lead to suboptimal
solutions. Our approach to a globally optimal solution uses
the notion of Delay-Cin curves, previously developed for gate
sizing [16]. We show how Delay-Cin curves can be calculated
easily when integrated with the technology mapping algorithm
presented in Section IV-A.

The Delay-Cin curve is characterized at the input of each
fanout-free segment of the circuit. Each point on the curve
corresponds to the minimum delay of the critical path from
that input to some primary output, for different values of input
capacitance. Which primary output terminates the critical path is

9

PSfrag replacements
(a) Original Circuit to be Mapped

(b) Solutions from the Matching Step,
and Corresponding Delay-Cin Curves

(c) Combined Delay-Cin
Curve, With Sub-Optimal
Points Removed

Cin

Cin

Cin

Cin

Cin

D
el

ay
D

el
ay

D
el

ay
D

el
ay

D
el

ay

N = 1

N = 2

N = 3

N = 4

N = 1
N = 2
N = 4

Sub-optimal
Points

Combined
Delay-Cin Curve

Fig. 6. Delay-Cin Curves Calculation for a Tree Driving a Primary Output

immaterial, in fact is is possible that different paths are critical
for different values of input capacitance. For some input s,
the minimum delay on its Delay-Cin curve is represented by
Ds→PO[cin]. The critical path may traverse multiple trees, each
of which have multiple fanouts. As shown in Section III-B,
correctly assigning capacitance to each fanout can have a large
affect on circuit performance. Delay-Cin curves keep track of
this information in addition to the minimum delay values for
different input capacitances.

We calculate Delay-Cin curves for each input of every tree
in the circuit in a recursive manner, starting from the primary
outputs and traversing trees in reverse topological order to the
primary inputs. There are three main situations that have to
be handled, the base case of the primary outputs, trees that
only drive primary outputs, and finally trees that have multiple
fanouts, as follows.

1) Primary Outputs: The Delay-Cin curve at a primary output
has only one point – a delay of zero for the fixed load being
driven. If a required arrival time is specified for each primary
output, a proportional delay value can be used in the Delay-Cin
curve. For example, the primary output with the smallest required
arrival time is assigned a delay of zero in its Delay-Cin curve,
and the other primary outputs are assigned delays equal to the
difference in their required arrival times and the smallest required
arrival time. In addition, if the circuit being mapped is part of
a bigger design, the effects of different load capacitances at the
primary outputs can be captured by adding these to the Delay-
Cin curve of the primary output, thus allowing for an exploration
of a much larger space of solutions. This does not add to the
complexity of our algorithm.

2) Trees Driving Primary Outputs: When the fanout-free
region drives a primary output, the load being driven is known
and is fixed, and the Delay-Cin curve is straightforward to

calculate. Consider Figure 6(a), where the circuit drives a fixed
load of CL at a primary output. Our matching algorithm generates
four possible solutions, of lengths one to four. For each solution,
we know the minimum delay can be obtained by the formula

D̂ = N (GH)1/N +P

= N(G×
CL
cin

)1/N +P,

where the matching step gives different values of cumulative
logical effort, G, for each value of path length, N. The minimum
delays for each solution are therefore functions of the input
capacitance, cin -

D̂ = 1 · (G[1] · CL
cin

)1/1 +P[1] for N = 1
D̂ = 2 · (G[2] · CL

cin
)1/2 +P[2] for N = 2

D̂ = 3 · (G[3] · CL
cin

)1/3 +P[3] for N = 3
D̂ = 4 · (G[4] · CL

cin
)1/4 +P[4] for N = 4

Different values of cin give us different delays to the primary
output for each of the above possibilities. These constitute the
Delay-Cin curves for each of four mapped solutions, as shown
in Figure 6(b). It is not necessary to keep track of each of
these curves, instead, they can be combined to obtain the curve
shown in Figure 6(c), by selecting the minimum delay value
for each possible cin. Points on this plot that do not lie on the
Delay-Cin curve are suboptimal, and can be disregarded, since
they represent solutions that have higher input capacitance and
greater delay than the points on the curve. Thus, in the context
of technology mapping, the Delay-Cin curve also keeps track of
which path length each point on the curve corresponds to.

Note that by calculating the Delay-Cin curve, we have still
not selected any particular match as optimal at this stage. After
the matching step, solutions were generated for different path
lengths, and the electrical effort was not known. After calculating
Delay-Cin curves, the dependency on path lengths is removed,
since each point on the curve explicitly corresponds to the best
value of path length for that input capacitance. In addition, the
set of solutions is now a function of input capacitance – once this
is known, the optimal match is also known. In the current case of
the tree driving a primary output, the load capacitance is fixed,
however, in the general case, presented next, the optimal load
capacitance is also determined when calculating the Delay-Cin
curves.

The example in Figure 6 shows a single input fanout-free
region. In general, Delay-Cin curves can be calculated for every
input of a tree with multiple inputs. In this calculation, the
implicit assumption is that the input being considered is the
critical input. Whether this is really the case is not known until
the covering step, when the appropriate solution is selected.

3) Trees With Multiple Fanouts: The final case that has to be
taken into consideration when calculating Delay-Cin curve is the
most general one, that of an intermediate tree, such as the one
shown in Figure 7, where a fanout-free region with output t and
inputs s1,s2, . . . ,sk drives multiple fanouts, F1,F2, . . . ,Fl , each of
which may be inputs of other fanout-free regions or may be
primary outputs. The load that t has to drive, CL is the sum of
the input capacitances of each of its fanouts, CL = ∑l

j=1 cinFj
.

10

PSfrag replacements Fanout-Free Region

s1
s2

s3

sk

t

F1

F2

F3

Fl

CL = ∑l
j=1 cinFj

DCurvesi [CL][cinsi
] DFj→PO[cinF j

]

Dsi→PO[cinsi
] = DCurve[CL][cinsi

]+ max
j=1...l

DFj→PO[cinF j
]

Fig. 7. Delay-Cin Curves and Multiple Outputs

Since this is a fanout-free region, there is exactly one path
from each of the si to output t, and after the matching step,
we have solutions for each input of the fanout-free region, for
different path lengths. For some load CL at the output of t,
we can calculate the minimum delay from si to t for different
values of cinsi

, as done in the previous section. This is denoted
by DCurves j [CL][cinsi

] and is one component of the critical path
delay from si to a primary output. The second component is the
delay from the output of t (or equivalently, the input of the crit-
ical fanout, Fj) to a primary output. In order to determine which
fanout is critical, we need to know the minimum delays from
each fanout to any primary output. However, this information is
readily available in the Delay-Cin curves of the fanouts – recall
that this is denoted by DFj→PO[cinFj

]. In order to calculate the
Delay-Cin curve at si, the above sum (of DCurve[CL][cinsi

] and
max j=1...l DFj→PO[cinF j

] has to be repeated for all values of CL,
and the minimum is taken. Thus,

Dsi→PO[cinsi
] = min

CL

{

DCurve[CL][cinsi
]+ max

j=1...l
DFj→PO[cinF j

]

}

(8)
Algorithm 3 shows how the Delay-Cin curve of input si of a

fanout-free region terminating in t can be calculated. Given an
electrical effort, H = CL

cinsi
, the first procedure, Calculate DCurvesi

is used to calculate the best delay of the fanout-free region from
all the solutions of different lengths that have been generated by
Algorithm 2. Given the electrical effort H = CL

cin
, this procedure

determines the length of the path and the cumulative logical
effort that supply the best delay. Procedure Calculate Dsi→PO of
Algorithm 3 determines the best load, and the best distribution
of this load to all fanouts, for the given input capacitance, as
described above.

While it may seem that the total number of combinations of
cinF j

is large (it is in fact O(|cinF1 | × |cinF2 | × . . . |cinFl |), where
|cinF j | is the number of possible values of input capacitance
of F j), it is shown in [16] that the number of combinations
that actually have to be considered is much smaller (O(|cinF1 |+
|cinF2 |+ . . . |cinFl |)). This is accomplished as follows. We take the
minimum values of cinFj

for all j as the first combination, and

Algorithm 3 Calculating the Delay-Cin Curve for Input si of a
Multiple-Fanout Tree

Calculate DCurvesi [CL][cinsi
]

// si is the input, t is the output of the path
for all values of path length n do

temp = n
[

Gsi→t [n]× CL
cinsi

]1/n
+Psi→t [n]

if temp < DCurvesi [CL][cinsi
] then

DCurvesi [CL][cinsi
] = temp

Store n
end if

end for

Calculate Dsi→PO[cinsi
]

// t has l outputs, F0,F1 . . .Fl
for every combination of cin j of all fanouts F j do

if the selected combination is not redundant then
CL = ∑l

j=1 cin j
Calculate DCurvesi [CL][cinsi

]
temp = DCurve[CL][cinsi

]+ max
j=1...l

DFj→PO[cinF j
]

if temp < Dsi→PO[cinsi
] then

Dsi→PO[cinsi
] = temp

Store the input capacitances cinF j
of each fanouts

end if
end if

end for

sort the fanouts by delay. Say F1 is the critical fanout in this
case. All combinations of cinF1

other than the current one can be
ignored, since they will lead to a higher value of CL and have the
same maximum delay to a primary output. The next combination
can be obtained by selecting the next value of cinF1

, and again
determining the most critical fanout.

As discussed in the previous section, in the matching step
(Algorithm 2), for this fanout-free region, we had obtained a
set of solutions for different values of path lengths N for input
si, and the electrical effort (the ratio of the output and input
capacitances) was an unknown. After the Delay-Cin curve has
been calculated, we now have a solution for each value of
input capacitance, and the dependence on path length has been
removed. The unknown value of output capacitance, CL, that
gives us the best delay is now a known quantity, and is embedded
in the Delay-Cin curve.

Recall the load distribution problem at a gate with multiple
fanouts, in which the correct assignment of capacitances between
a gate and its fanouts, and the correct assignment of capacitances
between the fanouts could have a large impact on the overall
delay of the circuit. In Algorithm 3, we consider all values
of load capacitance CL when selecting the optimal solution for
input si of the fanout-free region. This handles the first part of
the load distribution problem, that of the correct distribution of
capacitance between a gate and its multiple fanouts. The different
values of load capacitance, CL are obtained by considering all
combinations of input capacitances of the fanouts, cinFj

. This
implicitly handles the second aspect of the load distribution
problem, that of distributing a capacitance between multiple
fanouts. For some distributions, a particular fanout Fx may be

11

critical, for some other, another fanout Fy may be critical. This
is taken care of by the formulation of Equation (8) and in
Algorithm 3.

Algorithm 3 is a dynamic programming algorithm. The Delay-
Cin curves of one fanout-free region are calculated based on
the curves at its outputs, and a particular critical path delay is
obtained by simply taking the combination of the delay of the
fanout-free region with the maximum critical path delay of the
outputs. This also exhibits optimal substructure, since the delay
of the critical path is minimized only when the delay of each
component of the path is minimized. Hence the delay curves
obtained at primary input encode globally optimal solutions to
the load-distribution problem.

D. A Comprehensive Technology Mapping Approach
The complete approach for logical effort based technology

mapping addressing the load-distribution problem, called MELT
(Technology Mapping using Logical Effort: the order of letters
are suggestive of the multiple input-output-input traversals of the
circuit required by our approach) is presented in Algorithm 4.
After the first three steps, which have been described previously,
we have Delay-Cin curves at the primary inputs of the circuit.
At each primary input, the load that minimizes the maximum
delay to any output is selected. The primary inputs are processed
in decreasing order of this delay. A forward traversal from the
primary inputs using the selected loads fixes the input and output
capacitances and the lengths of each fanout-free region. This
information, in turn can be used to select the matches of the
optimal solution.
Algorithm 4 MELT: Technology Mapping using Logical Effort

Divide the circuit into fanout-free regions
PI→ PO Traversal: generate matches for each fanout-free
region using Algorithm 2, storing optimal matches for each
input of the fanout-free region
PO→ PI Traversal: calculate Delay-Cin curves for each input
to the fanout-free region using Algorithm 3
PI→ PO Traversal: select the optimal electrical effort for each
fanout-free region, and the corresponding lengths
Covering: use the assigned output and input capacitances to
generate the corresponding optimal covers for each fanout-free
region

In Algorithm 4, there are two issues that restrict the optimality
of the final solution. First, the processing of each input of a
fanout-free region is carried out independent of other inputs
of this region. The solutions generated by different inputs may
contradict each other. Second, in general, circuits have recon-
vergent fanouts. The interaction between multiple, overlapping
reconvergent paths is difficult to analyze efficiently. For both
these cases, we use the heuristic of assuming that all paths are
independent, and make the best choice available. The loss of
optimality is acceptable when compared with the alternative of
calculating the exact solution.

The first step in Algorithm 4, that of generating matches, takes
time O(|V |+ |E|) · |L| · |N| · |FI| for each tree, where |V | is the
number of nodes and |E| is the number of edges in the tree,
|L| is the size of the library, |N| is the maximum path length

and |FI| are the number of inputs to the tree. In traditional
approaches, matches for every load value have to be determined
and stored, and the library used for matching includes multiple
sizes of each gate. In contrast, our approach stores solutions for
all values of |N| (which is small, on average), and the library
has only one instance of each gate type. Since we store solutions
for each path length, and each input to a fanout-free region, the
storage requirement is O(|V | ·N · |FI|). Note that this is a very
loose upper bound. We show in the results section that N is
relatively small, and while |FI| can be exponentially large in
theory (O(2P), if the entire fanout-free region is a tree of 2-input
gates for a path length of P from input to output), in practice, it
is much smaller.

Calculating the Delay-Cin curves dominates the running time
of our algorithm. The time complexity of this step is O(|FI| ·
|cin|2 · |FO|2), where |cin| is the number of possible values for
input capacitances, and |FO| is the number of fanouts at a
multiple fanout point. This bound too, is very loose, and for
benchmark circuits, the running time is of the same order as
that of SIS.

V. RESULTS

In order to validate our approach, we have implemented Al-
gorithm 4 and used it to map ISCAS and MCNC combinational
benchmark circuits. These results were compared with SIS [17].
The library used for SIS was generated by calibrating INV,
2-, 3- and 4-input NAND and NOR gates, and a variety of
AOI and OAI gates on a 0.1µ technology using the Berkeley
Predictive Technology Model3 [18]. Twenty sizes of each gate
were generated, for a total library size of approximately 400
elements. These gates were also calibrated in order to obtain the
logical effort and parasitic delays, which constitute the library
used by our algorithm, with 23 elements, one for each gate type.
In our approach, calculating gate sizes as described in Section IV
can lead arbitrary values (less than the largest gate size). In order
to make a fair comparison with SIS, gate sizes are normalized
to the 20 sizes of each gate that are used by SIS.

Table I presents structural statistics of the benchmark circuits
used in our experiments. For each circuit, we list the size, as
determined by the number of gates, and the number of trees,
after the circuit has been broken into fanout-free regions. Next,
we present the minimum, maximum and average values of the
sizes of the trees, the number of fanins and fanouts of each tree,
and the path lengths within each tree. The traditional technology
mapping approach maps each tree separately, whereas our ap-
proach deals with the entire circuit as a whole. Consequently,
the running time of our algorithm depends not only on the
sizes of each tree, but also on the number of fanins, fanouts
and the path lengths within each tree. As can be seen from
Table I, in the worst case, each of these can be large, however the
average case, listed in the last row is much more tractable. For
example, the circuit pair has a tree with 41 outputs. Combining
the Delay-Cin curves of these outputs is expensive if these curves
have approximately similar delay values. If this were the case
for all trees, the runtime would be prohibitive. However, other
trees in this circuit have much smaller fanouts, and an average

3Available from http://www-device.eecs.berkeley.edu/˜ptm.

12

TABLE I
CIRCUIT STATISTICS

Number of Tree Size Statistics |FI| Statistics |FO| Statistics Path Length StatisticsCircuit
Gates Trees Min Max Avg Min Max Avg Min Max Avg Min Max Avg

C17 35 3 1 7 4.66 1 2 1.66 2 2 2.00 1 5 2.20
C432 1071 75 1 300 12.06 1 63 3.37 2 28 3.44 1 23 2.95
C499 2037 155 1 82 10.25 1 16 3.05 2 12 3.61 1 15 3.03
C880 1841 115 1 71 8.87 1 14 2.69 2 9 3.71 1 22 3.46
C1355 2517 259 1 82 7.98 1 16 2.62 2 12 2.96 1 15 3.10
C1908 3145 188 1 124 13.13 1 26 3.57 2 25 4.23 1 20 3.68
C2670 4497 216 1 354 19.89 1 72 4.90 2 56 4.62 1 27 3.60
C3540 6428 320 1 318 19.09 1 62 4.75 2 41 4.86 1 22 3.88
C5315 10526 441 1 93 16.11 1 19 4.23 2 70 5.58 1 19 3.56
C6288 10029 1425 1 13 6.76 1 4 2.58 2 16 2.65 1 7 2.81
C7552 12869 704 1 164 16.47 1 35 4.37 2 230 4.59 1 23 3.80
9symml 1143 17 1 24 7.70 1 6 2.52 2 32 14.29 1 34 3.36
alu2 1919 68 1 306 18.73 1 63 4.76 2 39 6.63 1 33 3.32
apex6 3542 205 1 127 4.62 1 26 1.80 2 34 4.07 1 21 2.85
b9 674 28 1 85 10.14 1 17 2.82 2 18 4.60 1 23 3.20
cc 380 13 1 11 2.23 1 3 1.23 2 14 6.00 1 13 2.74
cm138a 148 4 1 13 4.00 1 3 1.50 8 8 8.00 1 8 4.00
count 637 34 1 5 2.73 1 2 1.44 2 32 4.17 1 11 3.23
cmb 267 13 1 118 10.00 1 25 2.84 2 6 3.76 1 26 3.47
decod 296 7 1 6 2.28 1 2 1.28 2 16 9.71 1 9 3.96
example2 1519 62 1 35 5.95 1 7 2.06 2 39 5.14 1 15 3.49
f51m 629 22 1 21 6.40 1 5 2.18 2 23 7.09 1 20 3.74
frg1 568 26 1 19 2.11 1 5 1.26 2 9 4.53 1 13 1.69
i5 2020 127 1 80 4.88 1 15 1.74 2 10 3.28 1 15 3.25
pair 8098 366 1 47 9.05 1 10 2.72 2 41 5.26 1 34 4.15
pcler8 400 25 1 12 5.00 1 3 1.72 2 9 3.44 1 12 3.00
t 35 3 1 7 3.00 1 2 1.33 2 2 2.00 1 8 3.00
ttt2 1375 28 1 20 4.39 1 5 1.71 2 25 10.57 1 25 4.80
vda 6716 107 1 57 27.00 1 11 5.95 2 92 13.35 1 23 6.34
x1 2073 47 1 4 1.19 1 2 1.06 2 34 9.27 0 24 2.89
z4ml 283 17 1 20 6.35 1 5 2.23 2 10 4.35 1 11 2.60
Average Tree Size 9.334 |FI| 2.748 |FO| 5.647 Path Length 3.392

fanout of 5.26 is tractablt. Similarly, the values of the other
structural parameters presented in Table I affect the runtime
of our algorithm. MELT determines and store matches for all
values of path lengths for each input of fanout-free regions of
the circuit. These are then examined to obtain the minimum
achievable delays for the fanout-free regions. Therefore, having
long path lengths and a large number of inputs can lead to large
run times. As before, though some paths can be large, and a few
trees have a large number of fanins, the averages are skewed
towards small values.

The results of mapping these circuits are as shown in Table II.
The first column lists the benchmark circuit. The next two,
under the title SIS show the best delay obtained for each circuit
using the command map -n 1 in SIS, the area of the final
solution and the corresponding running time, T , in seconds. The
performance of MELT for the same circuits is as shown. On
average, our algorithm generates circuits that are 37.20% faster
than those obtained using SIS. Interestingly, MELT also has an
average area improvement of 32.99%. During the covering step,
the load at multiple fanout points is accurately known, as is the
optimal electrical effort for individual segments, which is not
taken into account by SIS. This leads to a higher incidence of
complex gates in the MELT solution. The area tradeoff between
using complex and simple gates depends on the sizes of each gate
being selected. Smaller sizes of complex gates such as OAIs are
more area-efficient than the equivalent circuit using simple gates
such as NANDs, NORs and INVs. However, the larger sizes
of these complex gates occupy more area than the equivalent
circuit using simple gates. Thus, while we usually have an area

improvement for most circuits, for some circuits, such as count,
i5 and t, we obtain more expensive (albeit faster) solutions from
MELT. In the case of C17 and C6288, the circuits selected are
very similar, and consist largely of NAND2 gates. In this case,
the gate sizes selected in MELT are larger than those selected
by SIS. Once again, it is the electrical effort that guides this size
selection. While we obtain mapped circuits that are faster, the
area overhead in these cases is significant.

It is important to point out that it is quite understandable that
the area numbers for our algorithm to be higher, simply because
MELT only optimizes the delay, and does not explicitly optimize
the area. Such a delay minimizer is very useful in practice, since
it allows a designer to determine the best possible performance
that can be achieved by a circuit. It is easily seen that in terms
of delay, MELT always outperforms SIS, and the improvement
over SIS ranges from just over 1% to nearly 80%.

This wide range in the achievable improvement can be ex-
plained by the circuit characteristics described in Table I. For
example, C6288 has a large number of fanout-free regions with
small average path lengths, as compared to other circuits. For
small path lengths, the effect of varying the electrical effort is
limited, which in turn restricts the freedom that our algorithm
has, and results in solutions that are very similar to those of that
would be obtained by traditional methods, and therefore only a
1.31% improvement in delay is seen in this circuit. In contrast,
C7552 has fewer, but larger fanout-free regions, which results in
better mapped solutions, leading to a solution from MELT that
has a delay 39.88% better than that obtained from SIS.

13

TABLE II
TECHNOLOGY MAPPING: SIS VS. MELT
SIS MELT % Change inCircuit

Delay(ps) Area T (s) Delay(ps) Area T (s) Delay Area
C17 79.91 18.96 0.10 65.72 47.61 0.04 17.76 -151.11
C432 1629.21 1609.07 6.84 795.93 1407.17 4.03 51.15 12.55
C499 822.77 2143.44 11.53 658.15 2813.28 3.20 20.01 -31.25
C880 700.98 1634.78 7.58 643.43 1399.71 2.20 8.21 14.38
C1355 854.79 2527.04 11.44 678.19 2581.55 4.55 20.66 -2.16
C1908 1289.69 3431.64 21.99 868.42 2402.54 4.23 32.66 29.99
C2670 2161.43 5664.06 41.95 868.82 3515.99 8.19 59.80 37.92
C3540 2624.79 9720.64 45.40 1218.21 4650.69 12.90 53.59 52.16
C5315 1709.62 13790.11 103.58 971.36 7016.89 13.49 43.18 49.12
C6288 2931.69 11358.46 50.51 2893.31 18008.40 17.94 1.31 -58.55
C7552 1825.71 18687.65 183.32 1097.69 6903.13 19.64 39.88 63.06
9symml 1229.74 2301.95 9.76 346.78 610.05 0.55 71.80 73.50
alu2 2357.10 4123.53 21.19 1137.77 1449.93 2.76 51.73 64.84
apex6 769.49 3691.38 16.93 388.89 3687.13 3.86 49.46 0.12
b9 440.00 604.68 3.70 227.89 684.65 0.56 48.21 -13.23
cc 307.25 272.07 2.23 157.22 232.89 0.25 48.83 14.40
cm138a 195.23 125.88 0.71 120.11 125.64 0.16 38.48 0.19
cmb 228.95 241.70 1.03 216.70 258.88 0.29 5.35 -7.11
count 907.22 553.14 2.84 592.17 854.11 0.38 34.73 -54.41
decod 326.95 232.98 2.50 98.50 291.79 0.26 69.87 -25.24
example2 711.10 1404.83 8.51 331.66 1179.15 1.46 53.36 16.06
f51m 753.01 897.81 7.20 344.53 366.36 0.46 54.25 59.19
frg1 472.26 950.53 2.54 379.31 494.52 0.50 19.68 47.97
i5 392.54 1419.17 6.81 222.76 2330.55 1.93 43.25 -64.22
pair 1224.90 8675.52 53.86 814.31 7053.61 11.78 33.52 18.70
pcler8 615.45 405.61 1.51 331.04 551.60 0.33 46.21 -35.99
t 77.10 19.44 0.11 74.92 56.22 0.03 2.82 -189.20
ttt2 824.10 1724.02 15.50 279.97 854.25 0.68 66.03 50.45
vda 2193.22 11328.42 70.82 443.30 1888.76 20.75 79.79 83.33
x1 1055.87 2632.88 16.95 343.81 1444.36 1.21 67.44 45.14
z4ml 301.13 256.44 1.58 198.91 189.20 0.31 33.95 26.22
Average 37.20 32.99

VI. CONCLUSION AND FUTURE DIRECTIONS

This paper presents a new approach to technology mapping,
based on the theory of logical effort. Most of the improvement
obtained by our algorithm is due to the solution of the load-
distribution problem, which allows for accurate assignment of
capacitances at multiple fanout points. This leads to better
selection of matches, since the exact load to be driven is known.
We observe an average improvement of 37.20% in terms of delay
and 32.99% in terms of area, as compared to SIS.

In [19], [20], all possible decompositions of circuits are
considered during the matching step. The algorithm divides the
circuit into disjoint ugates, and applies technology mapping to
each such ugate. Our algorithm can be extended to generate
matches in each ugate, and calculate Delay-Cin curves by travers-
ing the ugates. This approach can also be applied to DAG-
mapping [2], which allows matches across tree boundaries, and
therefore can generate better solutions. Here, multiple fanout
points are not well defined initially. However, once the matching
has been done, the fanout points are specified and the Delay-Cin
curves can be calculated as before.

APPENDIX
PROOF OF LEMMA 1

We first prove the case of symmetric gates, in which the delay
characteristics of each input pin to the output of the gate are the
same. The proof for the case of asymmetric gates is similar, and
follows from the proof for symmetric gates.

Consider the situation where we have a match at some
gate t, with r inputs, I1,I2, . . . ,Ir, each having cumulative
logical effort for path of length n from the primary inputs

GI1 [n],GI2 [n], . . .GIr [n]. Since gate t is symmetric, the load being
driven by each of I1,I2, . . . ,Ir is equal, and is cint , a value that
is yet to be determined. Let Ic be the critical input, and let I j
denote the other non-critical inputs. As mentioned previously,
Ic being the critical input implies that GIc [n] ≥ GI j [n] ∀ j. In
this case, we select GIc [n] to be multiplied with the gate effort
of the match at t, gmt in order to obtain Gt [n + 1]. This means
that when the segment is sized, the size of the match at gate t
(which determines the load cint at the output of any I j) will be
determined by the value of GIc [n], and this size will be different
from the size determined if we had selected GI j [n]. We show
that this is in fact the correct choice to make.

As mentioned previously, the sizes of gates are determined
by applying Equation (5) in a backward traversal. If the load at
the primary output is CL, and there are k gates from gate t to
the primary output in the mapped solution, Equation (5) can be
applied to each gate successively, to obtain

cint =
∏k gk

f̂ k ·CL (9)

Note that the stage effort for optimal delay is in the denominator
of Equation (9), and f̂ = F 1

N = (G ·H)
1
N . Therefore, choosing

GIc [n] induces a size on gate t that is smaller than that we would
have obtained by using GI j [n]. This means that the delay GI j [n]
would have induced (say DI j) would depend on a larger size
of gate t. Since t is now smaller than anticipated by gate I j, its
load on I j is smaller, and hence the delay of the branch from an
input to gate I j does not increase (from the value it would have
been, if the solution corresponding to I j had been used to size
t) by taking the choice of GIc [n], i.e., Ic is still the critical input
of t.

14

We now turn to the general case of asymmetric gates. In
this case, the logical effort of each input of the gate to the
output depends on the functionality. However, we show that the
assertion of Lemma 1 still holds.

PSfrag replacements

Pr
im

ar
y

In
pu

ts Primary
Output

a

b

ga

gb

Ga

Gb

Gk

Gate t
Fig. 8. Proof of Lemma 1 for Asymmetrical Gates

Consider asymmetric gate t with two of its inputs, a and b
having logical efforts ga and gb respectively. Let the cumulative
logical effort up to each input be Ga and Gb, and the cumulative
logical effort from the output of t to a primary output be Gk.
Since gate t is asymmetric, the capacitance at each input is
different, but this also implies that the logical efforts are in the
same ratio i.e., if cinb = z× cina , then gb = z× ga (this follows
from the definition of logical effort). There are two cases to
consider, as follows.

1) Ga > Gb: In this case, the solution at input a is selected
as it is considered to be critical. Sizing gate t according
to this solution will imply some capacitance c∗inb

at input
b, and we need to show that c∗inb

≤ cinb .

cina =
Gk ·ga

f̂ k
a

·CL

c∗inb =z× cina

=z× Gk ·ga

f̂ k
a

·CL

=
Gk ·gb

f̂ k
a

·CL

cinb =
Gk ·gb

f̂ k
b

·CL

Since Ga > Gb, f̂a > f̂b and c∗inb
< cinb .

2) Gb > Ga: As in the previous case, the solution at input b
is selected, which implies some capacitance c∗ina at input
a. We need to show that c∗ina ≤ cina .

cinb =
Gk ·gb

f̂ k
b

·CL

c∗ina =
cinb

z
=

Gk ·gb

f̂ k
b × z

·CL

=
Gk ·ga

f̂ k
b

·CL

cina =
Gk ·ga

f̂ k
a

·CL

Since Gb > Ga, f̂b > f̂a and c∗ina < cina .

Thus, in both cases, the non-critical input eventually drives a
smaller load than anticipated, and therefore the delay at the non-
critical input does not increase to a value greater than that of the
critical input.

REFERENCES

[1] K. Keutzer, “DAGON: Technology Binding and Local Optimization by
DAG Matching,” in Proceedings of the IEEE/ACM Design Automation
Conference, June 1987, pp. 341–347.

[2] Y. Kukimoto, R. K. Brayton, and P. Sawkar, “Delay-Optimal Technology
Mapping by DAG Covering,” in Proceedings of the IEEE/ACM Design
Automation Conference, June 1998, pp. 348–351.

[3] H. J. Touati, C. W. Moon, R. K. Brayton, and A. Wang, “Performance-
Oriented Technology Mapping,” in Proceedings of the 6th MIT Conf. on
Advanced Research in VLSI, 1990, pp. 79–97.

[4] J. Grodstein, E. Lehman, H. Harkness, B. Grundmann, and Y. Watanabe,
“A Delay Model for Logic Synthesis of Continuously-Sized Networks,”
in Proceedings of the IEEE/ACM International Conference on Computer
Aided Design, Nov. 1995, pp. 458–462.

[5] L. Stok, M. A. Iyer, and A. J. Sullivan, “Wavefront Technology Mapping,”
in Proceedings of the Design, Automation and Test in Europe Conference,
Mar. 1999, pp. 531–536.

[6] B. Hu, Y. Watanabe, A. Kondratyev, and M. Marek-Sadowska, “Gain-Based
Technology Mapping for Discrete-Size Cell Libraries,” in Proceedings of
the IEEE/ACM Design Automation Conference, June 2003, pp. 574–579.

[7] R. F. Sproull and I. E. Sutherland, “Theory of Logical Effort: Designing
for Speed on the Back of an Envelope,” in IEEE Advanced Research in
VLSI, 1991, pp. 1–16.

[8] I. Sutherland, B. Sproull, and D. Harris, Logical Effort: Designing Fast
CMOS Circuits. San Fransisco, CA: Morgan Kaufmann, 1999.

[9] F. Beeftink, P. Kudva, D. Kung, and L. Stok, “Gate-Size Selection for
Standard Cell Libraries,” in Proceedings of the IEEE/ACM International
Conference on Computer Aided Design, Nov. 1998, pp. 545–550.

[10] W. Donath, P. Kudva, L. Stok, P. Villarrubia, L. Reddy, A. Sullivan, and
K. Chakraborty, “Transformational Placement and Synthesis,” in Proceed-
ings of the Design, Automation and Test in Europe Conference, Mar. 2000,
pp. 194–201.

[11] K. Sulimma, I. Neumann, L. van Ginneken, and W. Kunz, “Improving
Placement under the Constant Delay Model,” in Proceedings of the Design,
Automation and Test in Europe Conference, Mar. 2002, pp. 677–682.

[12] L. Stok, D. S. Kung, D. Brand, A. D. Drumm, A. J. Sullivan, L. N. Reddy,
N. Hieter, D. J. Geiger, H. H. Chao, and P. J. Osler, “BooleDozer: Logic
Synthesis for ASICs,” IBM Journal of Research and Development, vol. 40,
no. 4, pp. 407–430, 1996.

[13] “Gain Based Synthesis: Speeding RTL to Silicon,” 2002, magma De-
sign Automation white paper. Available at http://www.magma-da.com/c/
@57hzNi1ExOwpA/Pages/Gainbasedoverview.html.

[14] S. K. Karandikar and S. S. Sapatnekar, “Fast Comparisons of Circuit
Implementations,” in Proceedings of the Design, Automation and Test in
Europe Conference, Feb. 2004, pp. 910–915.

[15] ——, “Fast Estimation of Area-Delay Tradeoffs in Circuit Sizing,” in
Proceedings of the IEEE International Symposium on Circuits and Systems,
June 2005, pp. 3575–2578.

[16] ——, “Fast Comparisons of Circuit Implementations,” IEEE Transactions
on VLSI Systems, vol. 13, no. 12, pp. 1329–1339, Dec. 2006.

[17] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal-
danha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “SIS: A System for Sequential Circuit Synthesis,” Electronics
Research Laboratory, Department of Electrical Engineering and Computer
Science, University of California, Berkeley, Tech. Rep. UCB/ERL M92/41,
May 1992.

[18] Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and C. Hu, “New Paradigm of
Predictive MOSFET and Interconnect Modeling for Early Circuit Design,”
in Proceedings of the IEEE Custom Integrated Circuits Conference, 2000,
pp. 201–204.

[19] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic Decom-
position during Technology Mapping,” in Proceedings of the IEEE/ACM
International Conference on Computer Aided Design, Nov. 1995, pp. 264–
271.

[20] ——, “Logic Decomposition During Technology Mapping,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 16, no. 8, pp. 813–834, Aug. 1997.

