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Abstract

This paper presents an efficient method for optimizing power/ground (P/G) networks

by widening wires and adding decoupling capacitors (decaps). It proposes a structured

skeleton that is intermediate to the conventional method that uses full meshes, which are

hard to analyze efficiently, and tree-structured networks, which provide poor performance.

As an example, we consider a P/G network structure modeled as an overlying mesh with

underlying trees originating from the mesh, which eases the task of analysis with acceptable

performance sacrifices. A fast and efficient event-driven P/G network simulator is proposed,

which hierarchically simulates the P/G network with an adaptation of PRIMA to handle

non-zero initial conditions. An adjoint network that incorporates the variable topology of

the original P/G network, as elements switch in and out of the network, is constructed

to calculate the transient adjoint sensitivity over multiple intervals. The gradients of the

most critical node with respect to each wire width and decap are used by a sensitivity-
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based heuristic optimizer that minimizes a weighted sum of the wire and the decap area.

Experimental results show that this procedure can be used to efficiently optimize large

networks.

I. Introduction

The design of power/ground (P/G) networks is critical to the correct functioning of a

chip. With the rapid increases in the clock frequency and reductions in the feature sizes

of high-speed electronic circuits, it is becoming more and more important to design and

optimize P/G networks fast and efficiently. The major effects that influence the circuit

functionality are the voltage drop due to current flow in the network, ground bounce due

to inductive effects, and possible electromigration effects due to excessive current densities.

The first two can lead to unacceptable circuit switching speeds and/or glitches, while the

latter places a limit on the useful lifetime of a chip [5].

Various algorithms and simplified device models for P/G networks that offer faster but

less accurate results have been explored in the past. Early work on P/G networks focuses on

tree-like structures so as to allow the use of path tracing algorithms for efficiency [6,24] and

assumes resistance-only models for the network. A 3-stage IR-drop analysis methodology

during the whole design process is presented in [9]. The authors of [27] propose a hierarchical

analysis technique and a novel sparsification method based on 0-1 integer linear program-

ming. A PDE-like multigrid method is proposed in [16] to perform both DC and transient

simulation of power grids efficiently. Each of the above methodologies aims at speeding up

the analysis and predicting the power grid performance properly.

Other related work on optimizing P/G networks includes [22,23,25], which use techniques

ranging from simulated annealing to the solution of a sequence of linear programs for wire

widening, or [15], which optimizes the topology of the P/G network. A frequency domain
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sensitivity-based decoupling capacitor optimization method is proposed in [1]. The work

in [3] formulates the P/G network optimization problem as a nonlinear convex optimization

problem.

Most of the existing techniques have focused on methods that optimize a specific topology

that is typically specified by the user to be a large and complex mesh. There is an inherent

conflict between P/G networks that are easy to analyze, and those that provide reliable

power levels and evenly distributed current densities. While tree structures provide all of

the former benefits, they result in poor quality in P/G signal delivery. On the other hand,

dense meshes are excellent in satisfying the latter requirement but are very computationally

difficult to analyze. For example, the work in [5] shows that it requires several hours to

analyze a P/G network using SPICE. The key idea used in this work is that an approach

that meets both of these requirements would be something between a pure tree and a full

mesh. In this work, we use one such topology skeleton with a global mesh feeding local

trees, as described later in this section; a similar method has been used in [21]. However, we

emphasize that this approach can be modified to other topologies that are intermediate to

the two extremes of full trees and full meshes: one such example is a global mesh that feeds

smaller unconnected local meshes.

We point out that such an approach may not be optimal for a high-performance full-

custom microprocessor, where a dense mesh may be essential for reliable P/G levels1. How-

ever, we believe that it will be of great utility in ASIC design, where fast turnaround time of

the design is a major criterion, and ease of analysis of the P/G network with an acceptable

performance hit can greatly ease the task of P/G network optimization. For this scenario,

we present an analysis/sensitivity calculation/optimization procedure in this paper.

The P/G network model used here, characterized by the mesh/tree topology of [21],
1 Even for processor designs, the use of more general hierarchical structures is not uncommon [27].
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is illustrated in Fig. 1; for simplicity, only one tree is shown in the figure. An overlying

coarse mesh structure of a user-specified topology provides global distribution of the P/G

signals across the chip. From various nodes of this mesh, tree structures of user-specified

topologies originate and distribute the supply voltage to the utilization points, each of which

is modeled as an equivalent RC element, as is shown in Fig. 1. The advantage of using an

RC element instead of an equivalent current source (as is used in most P/G network analysis

work, e.g., [9], [16] and [27]) is that such a model also captures the loading effects of the

utilization points on the P/G network.

Practically, the designer can estimate a list of candidate nodes that are potential worst-

case voltage drop nodes. They often correspond to a sampling of the nodes close to the most

active macros or regions. Therefore, we assume that the list of critical nodes is user-specified.

A set of worst-case switching patterns can also be obtained [2,7,14], and are assumed to be

provided as inputs to our approach. Each specified switching event in a switching pattern at

a utilization point provides information on which RC elements at that utilization point load

the network at a given time. A schematic of an example switching pattern at a utilization

point is shown in Fig. 2, where each arrow indicates that at that time, a set of RC elements

has entered or left the network due to switching events at gates. We assume, at the beginning

of each switching event, that the initial voltage across the capacitor in an RC element is at

the supply voltage level, Vdd, if this element is to be switched into the ground network.

Therefore, the RC elements with non-zero initial conditions2 are the only sources that inject

currents into the ground network. Similarly, for supply networks, the initial voltages on the

capacitances associated with the switching RC elements are assumed to be zero, and they

are the only sources that draw currents from the supply network.

An efficient noise metric for the performance of every node in a power/ground network
2 Non-zero initial conditions can be modeled using independent sources as in [21].
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Fig. 1. A structured P/G bus topology.

is the integral of voltage drop beyond the noise margin, which is represented by the shaded

area in Fig. 3. The voltage drop integral is always greater or equal to zero. This idea was

first introduced in [8] and it proves to be an efficient measure for circuit optimization.
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Fig. 2. Switching events at a node in a P/G network.

According to this noise metric and our assumption on the given list of critical nodes, the

most critical node in the P/G network becomes the one with the worst-case voltage drop in-

tegral among all the given critical nodes. Then our optimization problem is to minimize the

total P/G bus area, subject to the constraints that the voltage drop integral of the most criti-

cal node is zero, and subject to the technology-dependent constraints on minimum/maximum

wire widths. The process of optimizing the P/G network requires an iterative loop within

which it is necessary to analyze the network to determine whether it satisfies the constraints



6

or not, and to determine gradient information to guide the optimization.
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Fig. 3. Voltage drop of node j in a power network during Event i−1 and i.

Several techniques may be used for this optimization: varying the topology, varying wire

widths, and adding decoupling capacitors. In this work, we focus on optimization by varying

wire widths and extend this technique to add decoupling capacitors.

The structure in Fig. 1 is amenable to fast analysis, while also maintaining the perfor-

mance by using mesh structures that reduce the voltage drops and current densities in the

highest current regions. In [21], an AWE-based technique is proposed for simulating P/G

networks. While AWE tends to be unstable at higher orders of approximation, for such

a structure, the task of analysis is rapidly performed using PRIMA [17], a reduced order

modeling technique that produces provably passive macromodels.

Other P/G network analysis work using PRIMA-based model order reduction technique

include [4] and [26]. Both approaches use a large number of piece-wise linear (PWL) current

sources to model the loads, which brings non-constant terms in the frequency domain and is

inefficient for multi-port model reduction. To overcome this inefficiency, the extended Krylov

subspace (EKS) method and an improved EKS method for calculating PWL current source

moments are proposed in [26] and [4], respectively. In our work, we use an RC element with

non-zero initial conditions across the capacitor instead of a current source to model the loads.



7

This has the advantage of providing convenient PRIMA-based analysis using the standard

Krylov subspace method, where all the inputs to the system are constant in the frequency

domain (as will be described in Section II). Moreover, the current drawn by a load is not

truly independent of the supply voltage, as assumed in [4, 26], and our RC element model

reflects this and captures the dependency.

Transient sensitivity has been particularly useful in circuit optimization and tuning

and has been used to provide gradient information [8, 10, 11]. In the case of P/G network

optimization, the optimization of the objective function requires the computation of transient

sensitivity of the most critical node with respect to all the elements in the whole network,

and we employ the adjoint method [18].

Traditionally, transient sensitivity computation for a circuit with a fixed topology is

performed by a convolution between the forward-in-time voltage/current slope of the ele-

ment (capacitor, resistor or inductor) in the original circuit and the backward-in-time volt-

age/current across the same element in the adjoint circuit, where the same fixed topology is

used for the pair of original and adjoint circuits.

In our work, the topology of the original P/G network changes at the beginning of each

switching event as new RC elements are added to the network or removed from it. This paper

presents an appropriate extension of the adjoint network technique over multiple-intervals

for the variant topology so that the sensitivities can be efficiently computed. Our sensitivity

computation is coupled with an efficient PRIMA-based order reduction approach so that

it can handle large-scale P/G networks. A closed-form transient sensitivity expression is

provided for a PRIMA approximation of a given order.

To the best of our knowledge, this is the first work to use time domain sensitivity for P/G

network optimization. In addition, we have augmented time-domain sensitivity to handle
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the case where the network topology undergoes changes as RC elements switch into or out

of the network.

In the next section we discuss in detail the hierarchical P/G network simulator. We then

describe in Section III the transient adjoint sensitivity technique with respect to R, L and

C elements over multiple intervals and then present the closed-form formula. The detailed

theoretical derivation can be found in the appendix. In Section IV we describe the heuristic

optimization procedure. The simulation and optimization results are presented in Section

V, followed by concluding remarks in Section VI.

The following notation will be used throughout the paper. The voltages [currents] in the

original network are denoted by v [i], while the voltages [currents] in the adjoint network

are ψ [ϕ]. The symbols t and τ denote the temporal variables in the original and adjoint

network, respectively.

II. Hierarchical analysis of the P/G network incorporating non-zero

initial conditions

It is well-known that the procedure for analysis of the power and ground network is

symmetric, implying that it is enough to develop a solution for one of these problems. In

this section, we will develop a hierarchical analysis method that can be applied for both the

original and the adjoint network.

The interconnect in the P/G network is modeled as follows. Each wire on the mesh

or tree structure is modeled as a set of connected segments under the π-model, with each

segment modeled using lumped RLC parameters given by

Rs = ρls/ws

Cs = (βws + α)ls

Ls = γls/ws

(1)
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where ls and ws are the length and the width of the segment, and the parameters ρ, β, α and

γ are the sheet resistance per square, capacitance per square, fringing capacitance per unit

length and the inductance per square of the metal layer that is being used for routing the P/G

network. Each package pin is modeled as an RLC branch connected to pads on the mesh.

The pin parameters were found from IBM public-domain product documents. Although

the wire inductive model is approximate, since it does not consider the mutual inductance

and uses a simple model for the self-inductance, it reasonably captures the nature of wire

inductance in current technologies where their magnitude is small and is dominated by pin

inductances. In principle, the approach can be extended to handle more complex models.

The simulation is event-driven, proceeding one interval at a time, starting from the

first interval until the last, updating the corresponding switch states specified in the event

list while moving from one interval to the next. The final state (i.e., capacitor voltages

and inductor currents) at the end of each interval constitutes the initial state for the next

interval. At the beginning of the first event, initial conditions on all capacitors and inductors

are given, i.e., those initial voltages on capacitor in the ground nets are zero and Vdd for those

in supply nets, those across capacitors in the RC elements switching to ground nets are Vdd

and zero for those switching to supply nets and all the inductors have zero initial currents.

The entire system may be modeled as a linear system characterized by the modified

nodal analysis (MNA) equation

(G + sC)V(s) = J(s) (2)

where G and C represent the conductance and susceptance matrices. The vector V(s) of

the MNA variables is of dimension N × 1, and includes the nodal voltages and the branch

currents for voltage sources and inductors. The N variables correspond to various levels of

the hierarchy that we will use later: the variables that relate to the mesh, the variables that
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correspond to the connections between the mesh and the trees, and the variables related to

the tree structures. The right hand side vector J(s) contains all the sources in the system.

Our fast analysis method reduces this system to a smaller system that captures the response

of the system to the given set of switching events including sources that model the initial

conditions in the system.

The hierarchical model reduction and simulation proceeds in three stages: first, each

tree is reduced to an equivalent passive model. Next, the mesh is solved, along with these

passive models to find all nodal voltages in the mesh, i.e., mesh voltages. Finally, these mesh

voltages provide the voltage source at the root of each tree and are used to solve each tree

individually and independently. This hierarchical approach serves to reduce the amount of

computation required during the analysis.

A. Reduction of the trees

The MNA equation for each of the trees with initial conditions can be written as

(GT + sCT)VT(s) = BTuport

iport = LT
TVT(s) + iTinit

(3)

where GT and CT are the conductance and susceptance matrices for the tree. iport and uport

are vectors denoting the port currents and voltages. The constant vector iTinit captures the

initial conditions stored in capacitors or inductors in the tree. In our P/G network, there are

at most three “ports” for a tree, which correspond to (a) the tree root (the node connected to

one of the mesh nodes), (b) all non-zero initial conditions on capacitors in the RC elements

and wire inductors, which are respresented by independent sources and, (c) for the adjoint

network only, the most critical node where the adjoint current source (see Section III for

details) is applied. Therefore, BT = [J1(s) J2(s) J3(s)], uport = [uroot 1 ucritical]
T , iport =

[iroot icritical]
T , iTinit = J2(s), and BT captures all the potential sources in the tree (these
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are described in further detail later). Since the admittance matrix Y(s) of a circuit (defined

by iport = Y(s)vport) is assuming zero initial conditions (setting J2(s) as 0), let B1T =

[J1(s) J3(s)]
T , then LT = B1T, which guarantees no sources inside the system except for

the two ports. The property of LT = B1T is used in the proof of PRIMA to preserve the

passivity of the system [17].

Each column in BT is described as follows. J1(s) is the input excitation to the tree, which

has an entry of 1 for the root node since we are interested in the transfer function (impulse

response) of the tree during the later waveform propagation step. An initial condition at

time t0 on a capacitor Ci[inductor Li] may be modeled as a voltage [current] source of value

VCi
(t0) [ILi

(t0)] in series [parallel] with a capacitor [inductor] with zero initial conditions.

The vector J2(s) captures these initial conditions of the tree and has entries of the type

CiVCi
(t0) and LiILi

(t0), where the multiplications by Ci and Li correspond to conversions

between Thevenin and Norton forms for ease of application for the formulation, and VCi
(t0)

and ILi
(t0) corresponds to the Laplace Transform of the nodal voltage and branch current

with non-zero initial conditions. The vector J3(s) is only considered when an impulse current

source (with a Laplace Transform of 1) or a current source of square wave is applied to the

most critical node in the adjoint network. Detailed derivations on adjoint circuit analysis

will be discussed in Section III. However, we point out here that the right hand side of

Eqn. (3) contains constant entries only.

The PRIMA reduction procedure is applied to obtain a provably passive tree reduction.

A RICE-like tree traversal [19] computes the orthonormal basis X of the Krylov space, so

that the procedure is extremely fast. The three-column right hand side matrix in Eqn. (3)

tells us that three columns are added to X in each iteration and to obtain a reduction of

order qT , ⌈ qT

3
⌉ iterations are required. As described in the introduction section, we will apply
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the transient adjoint sensitivity technique [10, 11] to find out the voltage noise sensitivity

with respect to all the RLC elements in the network. This technique requires the analysis of

the circuit itself (original circuit) and an adjoint circuit, which is constructed according to

the topology of the original circuit and the responses of nodes/branches of interest. While

for the analysis of the original network (comparing to the adjoint network), the right hand

side only includes two columns ([J1(s) J2(s)]) and consequently the number of iterations is

⌈ qT

2
⌉. Details of the PRIMA reduction procedure may be found in [17].

B. Solving the mesh

Substituting the reduced order model of each tree can reduce the MNA equation (2) for

the whole system to

(GM + sCM)VM(s) = JM(s), (4)

where

GM =



















G Stamps for 0 0

the mesh Iport 0

0 0 Iport −L̃T

T

0 − ˜B1T 0 G̃T



















, (5)

CM =



















C Stamps for 0 0

the mesh 0 0

0 0 0 0

0 0 0 C̃T



















, (6)

and

JM =



















iMinit

0

ĩTinit



















. (7)

where “G Stamps for the mesh” and “C Stamps for the mesh” are the MNA matrix

stamps [18] for the conductances and capacitances in the mesh structure shown in Fig. 1.
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Iport is an NT × NT identity matrix, where NT is the total number of trees.

As compared the size of vector V(s), the size of vector VM(s) is reduced to the sum

of total number of mesh nodes, number of non-zero mesh and package inductances, total

number of trees and each reduced tree stamps. Generally speaking, the number of columns

of JM(s) can be 2, which corresponds to non-zero initial conditions in the mesh and reduced

non-zero initial conditions of each tree contributing to the mesh, and, for adjoint analysis

only, the adjoint current source applied to the most critical node, if it is one of the mesh

nodes. However, the most critical node is typically in the underlying trees, so JM(s) has

only one column as shown in Eqn. (7). Similar to the right-hand-side vector of a tree, JM(s)

contains constant entries only.

The size of Eqn. (4) is still large, so PRIMA is applied to Eqn. (4) again to this reduced

system to further reduce the system to a smaller order:

(G̃M + sC̃M)ṼM = J̃M(s) (8)

where G̃M, C̃M, Ṽm and J̃M are the reduced matrices/vectors obtained from PRIMA.

Since GM is sparse, sparse matrix technique can be used to compute the orthonormal

basis X of the Krylov space, where the inverse of the matrix G̃M is required. Since the

overlying mesh is typically small in terms of the number of nodes and the order of the

final system is small, the computational cost of this is also reasonably small. As previously

mentioned, a more detailed description of the PRIMA reduction procedure may be found

in [17].

The transient response (in Laplace domain) of each mesh node in the P/G net is found

to be:

VMesh(s) =
qm
∑

i=1

ri

s − λi

(9)

where λi and ri are the ith pole and residue of a mesh node. qm is the number of dominant



14

poles for the mesh, which is determined by the reduced order of the mesh matrix. After

taking an inverse Laplace transform, we have

VMesh(t) =
qm
∑

i=1

rie
λit, 0 ≤ t ≤ Tf , (10)

where Tf is the period of time between two continuous events.

C. Propagating Waveforms Down the Trees

The mesh nodel voltages are contained in the solution to Eqn. (8). These values are used

to compute the voltage at each of the internal node in the local trees. The voltage at each

tree node is computed as the sum of the zero input response and the zero initial condition

response; note that the input for the tree is the voltage at the mesh node (root of the tree),

which is typically non-zero.

The propagation formula of a tree node in Laplace domain is

VTree(s) =
qT
∑

j=1

rTzj

s − λTzj

+
qm
∑

i=1

qT
∑

j=1

ri

s − λi

×
rT impj

s − λT impj

, (11)

where λTzj
and rTzj

are the jth pole and residue of the local tree’s zero input response,

λT impj
and rT impj

are the jth pole and residue of its impulse response. qT is the order of the

approximant for each local tree. Eqn. (11) is obtained from classical linear circuit theory

which states that the total response of any node in a circuit is equal to the sum of two

component responses: its zero-input response and its zero-state response [13]. Zero-state

response can be calculated from the transfer function (Laplace transform of the impulse

response) of this node. This equation can further be derived into the following form using

the partial fractional method:

VTree(s) =
QT
∑

i=1

rTi

s − λTi

(12)
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where QT = qm + qT and the poles of the tree are

λT =











λi, i = 1 · · · qm

λT impj
= λTzj

, j = 1 · · · qT

(13)

and the corresponding residues are

rT =















qT
∑

j=1

rirTimpj

λi−λTimpj

, i = 1 · · · qm

rTzj
+

qm
∑

i=1

rTimpj
ri

λi−λTimpj

, j = 1 · · · qT

(14)

By taking inverse Laplace Transform we get:

VTree(t) =
QT
∑

i=1

rTk
eλTk

t, 0 ≤ t ≤ Tf (15)

Currents flowing through mesh branches are solved from the MNA equation of the mesh,

while every tree branch current flowing through node i and j is found through i(s) = (vi(s)−

vj(s))/(Rij+ sLij) and by taking an inverse Laplace transform of i(s) we can get i(t).

D. A Simple RC Example

V(0) = 1.65V6
0V

4 5 6

V(0) = 0V V(0) = 0V V(0) = 0.01V V(0) = 0.02V5

C

C4
C5

C
6

1Ω1Ω

1Ω

2

31
10Ω

4

C

2

1

1

2V(0) = 0V

3
1Ω

3C

1Ω

Mesh Tree

1Ω

Fig. 4. A simple example (original circuit).

We show a small and simplistic example (Fig. 4) to illustrate our hierarchical analysis

method. For simplicity we use RC modeling for wires. The circuit shown in Fig. 4 is a
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ground network with a mesh (nodes 1, 2 and 3) driving a tree (nodes 3, 4, 5 and 6) at node

3. An RC element (R56 and C6) with C6(0) = 1.65V is switching into the tree. We assume

C1 = C2 = C4 = 0.2pF, C3 = 0.3pF, C5 = 0.1pF and C6 = 1pF . Initial voltages on C4 and

C5 are assumed to be 0.01V and 0.02V (non-zero due to previous switching events).

The MNA equation for the tree:

(GT + sCT)VT(s)

=

















































1 −1 0 0 1

−1 2 −1 0 0

0 −1 1.1 0.1 0

0 0 −0.1 0.1 0

−1 0 0 0 0

























+ s

























0 0 0 0 0

0 0.2e − 12 0 0 0

0 0 0.1e − 12 0 0

0 0 0 1e − 12 0

0 0 0 0 0









































































v(3)

v(4)

v(5)

v(6)

i(3)

























=

























0 0

0 2e − 15

0 2e − 15

0 1.65e − 12

−1 0































u3

1





 = BTuport

iport = LT
TVT(s) + iTinit = [0 0 0 0 − 1]

























v(3)

v(4)

v(5)

v(6)

i(3)

























+

























0

2e − 15

2e − 15

1.65e − 12

0

























(16)

We choose qT = 3 and therefore the orthonormal basis X can be obtained by two

iterations and truncation of the last column.

X =

























−0.500 −0.389 −0.491

−0.500 −0.283 0.226

−0.500 −0.179 0.415

−0.500 0.852 −0.150

4.44e − 17 0.106 0.716

























(17)
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Reduced matrices for the tree:

G̃T =













2.08e − 17 −0.0528 −0.358

0.0528 0.128 −0.19

0.358 0.264 0.581













, C̃T =













3.25e − 13 −3.88e − 13 3.19e − 14

−3.88e − 13 7.44e − 13 −1.48e − 13

3.19e − 14 −1.48e − 13 5.01e − 14













,

B̃T =













−4.44e − 17 −8.45e − 13

−0.106 1.40e − 12

−0.716 −2.35e − 13













, L̃T =













−4.44e − 17

−0.106

−0.716













(18)

Poles and residues can be further calculated out and the zero-input response and impulse

response of every tree node can be evaluated.

Stamping the reduced tree matrices into the mesh MNA equation:

(GM + sCM)VM(s)

=













































































3 −1 −1 0 0 0 0

−1 2 −1 0 0 0 0

−1 −1 2 1 0 0 0

0 0 0 1 4.44e − 17 0.106 0.716

0 0 4.44e − 17 0 2.08e − 17 −0.0528 −0.358

0 0 0.106 0 0.0528 0.128 −0.190

0 0 0.716 0 0.3580 0.264 0.581







































+s







































0.2e − 12 0 0 0 0 0 0

0 0.2e − 12 0 0 0 0 0

0 0 0.3e − 12 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 3.25e − 13 −3.88e − 13 3.19e − 14

0 0 0 0 −3.88e − 13 7.44e − 13 −1.48e − 13

0 0 0 0 3.19e − 14 −1.48e − 13 5.01e − 14



















































































































v(1)

v(2)

v(3)

i(3)

ṽT







































=
[

0 0 0 0 −8.45e − 13 1.40e − 12 −2.35e − 13

]T

= JM(s)

(19)

After solving Eqn. 19 using PRIMA again, the poles and residues of every mesh node
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can be obtained, and so is the zero-input response of every mesh node. The total response

of every tree node can be computed by propagating the waveform of node 3 using Eqn. (11).

III. Adjoint sensitivity computation over multiple switching intervals

Adjoint sensitivity analysis is a standard technique for circuit optimization where the

sensitivity of one output with respect to many parameter values is required [18]. In adjoint

sensitivity analysis, Tellegen’s theorem is applied to a pair of circuits with the same topology

by combining the branch currents and voltages at any two instants of time.

For our problem, we simulate the P/G network over the specified event list. At the

beginning of each event, a set of switching activities occurs, with some RC elements switching

out of the network and others switching in. This complicates the task of adjoint sensitivity

computation since the topology changes for each interval. One contribution of this work is

to extend adjoint analysis to handle this variant topology.

A. Adjoint sensitivity analysis over variant topology

For multiple switching intervals in which the structure of the circuit can change between

intervals, with elements being added or removed from the circuit, the traditional adjoint

sensitivity approach [18] cannot be directly applied. In this section, we show an extension

of adjoint sensitivity to our problem, and a detailed derivation and proof is provided in the

appendix.

Suppose there are a total of f+1 events, each event is lasting from tk−1to tk, k=1 to f ,

where t0=0, and suppose the worst-case voltage drop happens at Tpeak and tp−1 < Tpeak < tp,

the procedure of the variant adjoint sensitivity analysis is summarized as follows:

- Select the initial topology of the adjoint circuit the same as the original circuit between

event f and f+1. Set initial conditions in the adjoint circuit zero.
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- Apply a current source of -δ(t−Tpeak) or u(t−tsk)−u(t−tek) to the worst-case voltage

drop node, depending on the chosen noise metric.

- Analyze the adjoint circuit in the backward order of switching event (from event f+1

to 1). Set the initial condition of the circuit at the beginning of each backward event.

This ensures the adjoint circuit the same topology as the original one between pairs

of corresponding switching intervals.

- Convolve the original and adjoint waveforms using Eqn. (41), (42) (43) and (44) to

compute the adjoint sensitivities with respect to every capacitor, resistor and inductor

in the circuit.

B. Closed-form Transient Sensitivity Formula

The simulation technique as discussed in Section II can be applied to analyze the adjoint

P/G network in backward time. This requires the computation of the response to the input

u(τ−τsk)−u(τ−τek) applied to the most critical node, where u(t) represents the step function.

If we compute the impulse response, ω(s), corresponding to an excitation of δ(τ) applied to

the most critical node, then the response to the above signal is υ(s) = ω(s)(e−sτsk −e−sτek)/s.

The event-driven simulation of the adjoint P/G network is performed in a backward

order of the specified events, so that the topology of the adjoint network is also changing

in the reverse temporal order. The response of the tree with the most critical node is the

superposition of υ(τ) = L−1(υ(s)), the voltage response propagated from the root (mesh

node) and its zero-input response which is non-zero for all the backward events except for

the very first one, where L−1 is the inverse Laplace operator.

Given the nodal voltage v(t) (for capacitors) and branch current i(t) (for resistors or
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inductors) having the following form as indicated from Eqn. (10) and (15):

fk(t) =
P

∑

i=1

rie
λit, 0 ≤ t ≤ Tk, Tk = tk − tk−1, (20)

the nodal voltage ψ(τ) (for capacitors) and branch current ϕ(τ) (for resistors or inductors)

can be represented as

gk(τ) =







































Q
∑

j=1
rzj

eΛjτ ,

Q
∑

j=1
rzj

eΛjτ +
Q+1
∑

j=1
Rje

Λj(τ−Tk+tek
),

Q
∑

j=1
rzj

eΛjτ +
Q+1
∑

j=1
Rje

Λj(τ−Tk+tek
) −

Q+1
∑

j=1
Rje

Λj(τ−Tk+tsk
),

0 ≤ τ ≤ Tk − tek

Tk − tek
≤ τ ≤ Tk − tsk

Tk − tsk
≤ τ ≤ Tk,

(21)

where Tk = tk − tk−1, Λj is the jth pole, rzj is the jth residue of the zero-input response and

Rj is the jth residue of the response to the current source of u(τ − τ sk) - u(τ − τ ek) at every

switching event k.

Transient adjoint sensitivity calculation is performed using Eqn. (41), (42) (43) or (44).

As an example, the transient adjoint sensitivity of the noise integral, denoted as Z, with

respect to a capacitor C can be computed as:

∂Z
∂C

=
f
∑

k=1
{−

∫ Tk

0

P
∑

i=1
riλie

λit
Q
∑

j=1
rzj

eΛj(Tk−t)dt

−
∫ tek

0

P
∑

i=1
riλie

λit
Q+1
∑

j=1
Rje

Λj(tek−t)dt +
∫ tsk

0

P
∑

i=1
riλie

λit
Q+1
∑

j=1
Rje

Λj(tsk−t)dt}

=



















−
P
∑

i=1

Q
∑

j=1
riλirzj

eΛjTkTk −
P
∑

i=1

Q+1
∑

j=1
riλiRje

Λjtektek +
P
∑

i=1

Q+1
∑

j=1
riλiRje

Λjtsktsk,

−
P
∑

i=1

Q
∑

j=1

riλirzj
[eλiTk−e

ΛjTk ]

λi−Λj
−

P
∑

i=1

Q+1
∑

j=1

riλiRj [e
λitek−e

Λjtek ]

λi−Λj
+

P
∑

i=1

Q+1
∑

j=1

riλiRj [e
λitsk−e

Λjtsk ]

λi−Λj
,

λi = Λj

λi 6= Λj

(22)

IV. Heuristic optimization

The optimization technique used in this work is a sensitivity-based heuristic that is

similar to the TILOS [12] algorithm, which is a greedy heuristic optimizer that changes the
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parameters that provide the “biggest bang for the buck.” The basic philosophy of optimizing

the P/G network using this technique is to try to reduce the maximum voltage drop violation

in the network with the minimum increase in the area, by successively increasing parameter

sizes by a small amount in each iteration.

The problem of optimizing a P/G network by varying wire widths can be formulated as

Minimize Area =
∑

i

liwi

Subject to Max(Z) = 0

and wmin ≤ wi ≤ wmax

In the objective function, li represents the total length of a set of the P/G wire segments

with width wi, where w′

is are the optimization variables and they are subject to the minimum

and maximum wire width constraints. In each iteration, we first analyze the original network

to identify the most critical node with the maximum voltage drop integral, then determine

the parameter of the network that this critical node is most sensitive to, by transient adjoint

analysis, and finally bump up the width of this parameter by a certain small amount so that

the most critical voltage drop integral is reduced. It should be noted that the most critical

node can be different during different iterations.

In our method, we divide each wire in the mesh/trees into several π-segments, but

model a set of adjacent wires as having the same width in order to reduce the network of

optimization parameters. The gradients with respect to the area Ai of each set of N wires

with width wi is computed using the chain rule as follows:

∂Z

∂Ai

=
∂Z

∂wi

×
∂wi

∂Ai

=
∂Z

∂wi

×
1

N
∑

j=1
lj

(23)

and

∂Z

∂wi

=
N

∑

j=1

[

∂Z

∂Cj1

∂Cj1

∂wj

+
∂Z

∂Cj2

∂Cj2

∂wj

+
∂Z

∂Rj

∂Rj

∂wj

+
∂Z

∂Lj

∂Lj

∂wj

]

(24)
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where the set of wires with width wi consists of N wire segments; each of the segment j has

resistance Rj, inductance Lj, and capacitance Cj1, Cj2 at each terminal of the wire.

From (1), it is easy to see that

∂Rj

∂wj

= −ρlj/w
2
j (25)

∂Lj

∂wj

= −γlj/w
2
j (26)

∂Cj1

∂wj

=
∂Cj2

∂wj

=
βlj
2

(27)

The overall optimization procedure is as follows:

- Simulate the original P/G network over the entire period using the hierarchical simu-

lation method discussed in Section II.

- Determine the most critical node with its Zmax.

- Save voltage approximants (poles and residues) for all C’s and current approximants

for all R’s and L’s in the network.

- Simulate the adjoint network backward in time (event) with zero initial conditions.

- Save voltage/current waveforms for the adjoint network.

- Compute the voltage sensitivities with respect to all R’s, L’s and C’s.

- Compute the voltage sensitivities with respect to Ai using Eqn. (23), (24), (25), (26)

and (27).

- Bump up the width of the set of wires with maximum sensitivity by multiplying it

with a small factor (< 1.1).

- Repeat the above procedure until the maximum voltage drop integral in the network

is below zero.

The above procedure can be extended to include the optimization of decoupling capac-

itors. The objective of this optimization is to determine appropriate sizes of each wire and

each decoupling capacitor for the minimum area overhead. Initially, decoupling capacitors
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with some small values are connected to some user-specified nodes in the P/G network. The

gradients of the most critical node with respect to these decoupling capacitors are exactly

the transient adjoint sensitivities calculated in each iteration. The cost function for the op-

timization is a weighted sum of the wire area and the areas of all the decoupling capacitors.

In each iteration, either the wire width or the decoupling capacitor with the maximum sen-

sitivity with respect to the objective function will be increased with a small factor until the

constraints are met.

V. Experimental results

The simulation and optimization procedure was implemented in C, and the results on

several P/G networks were tested. The networks were constructed randomly for power

delivery to a 2cm x 2cm chip in a 0.18µm technology with Vdd = 1.65V . The set of events is

randomly generated and is different for each P/G network. The set of most critical nodes are

chosen as the nodes close to those actively switching RC elements. The results shown here

can be considered to correspond to a top level P/G distribution network, since complete P/G

networks may have several millions of nodes. The utilization points here would correspond

to functional blocks, each of which is reduced to an equivalent RC representation.

We have used the commercial simulator, HSPICE, to analyze the speed and accuracy of

our simulation results. All experiments are performed on Sun Ultra-60 Workstations.

The waveforms for two networks are shown in Fig. 5, with the waveforms using HSPICE

plotted concurrently on the same figures using dotted lines. In each case, our waveform and

that of HSPICE are quite close. The order of approximation is chosen such as the integral

of noisy area is within 10% to that of HSPICE.

The comparison of the run-time for the two cases and the speedup are shown in Table I.

It can be seen that our simulation runs significantly faster than HSPICE.
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Fig. 5. Simulation results on a 1000-node and a 2500-node supply network. The reduced orders for the two
networks are 13 and 15, respectively. HPRIMA stands for our Hierarchical PRIMA simulator. Vdd = 1.65V .

Table II lists the results of optimization and the run-time for five different P/G networks

with and without decaps. Two rows are listed for each case, with the first row showing wire

sizing results only and the second row showing both wire sizing and decap optimization.

The total number of nodes (“total”) and the number of user-specified critical nodes (“crt”)

are listed. The results for the specific voltage constraint, listed in the “spec” column, are

shown, along with the total wire area. The “Zmax” and the “Init Vm” column refer to the

worst-case noise integral and the worst-case voltage level when all wires are unsized. The

“Opt Vm” column shows the voltage drop after the specifications are met or when Zmax is

optimized to zero. The CPU times and the number of iterations of the heuristic optimizer

are shown in the last two columns.

Table III shows the comparison between two networks with different topologies. Circuit

1 deviates from the one-level hierarchical scheme shown in Fig. 1, and is a two-level hierarchy

in which the top level is a 9-node mesh with a tree of 112 nodes originating from each mesh

node; we will refer to such a structure as a “9x112 structure”. Some of the tree nodes of

this upper level are connected to separate 9x112 structures. Specifically, in the structure
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here, we have a total of nine such 9x112 bottom level structures. Pads are assigned to each

of these bottom level networks. The optimization is performed hierarchically. The bottom-

level net is first optimized to within 7% of Vdd with a voltage source of 97%Vdd applied to

the connecting node to the top-level network. The top-level net is then optimized to within

3% of Vdd with the reduced order model connected to the top-level network. As a result,

the two-level hierarchical network has a worst-case voltage drop of 10%Vdd. Optimizing a

network to within 3% of Vdd normally takes more CPU time than optimizing it to 7%. Since

we have only 1 top-level network and 9 bottom-level networks in the 2-level hierarchical

structure, intuitively the selection of the constraint of 3% for the 1 top-level network and

7% for the 9 bottom-level networks should lead to some smaller total amount of CPU time.

For comparison, a one-level 90x112 network (circuit 2) is constructed and optimized. The

optimization results show that the two-level hierarchy can be performed far more quickly

than the one-level network with similar wire areas and performance.

# of nodes THPRIMA THSPICE Speed
Ckt Mesh/Tree Crt (s) (s) Up

1 9/1008 10 1.59 82.42 51.84
2 25/2500 25 4.24 232.09 54.74
3 25/3000 32 7.50 325.42 43.39
4 25/4000 38 9.42 499.53 53.03
5 25/5000 38 10.37 680.15 65.59
6 49/10800 78 18.87 1641.02 86.96

TABLE I

Runtime comparisons with HSPICE.

VI. Conclusion

An efficient transient sensitivity computation method for P/G network design and opti-

mization is presented. A fast and efficient event-driven P/G network simulator is developed.

Experimental results show that the simulation is accurate and fast. The optimization proce-

dure involves a procedure for fast calculation of adjoint sensitivities in a heuristic optimiza-
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# of nodes Spec Zmax Init Opt Wire Max Num CPU Num
Ckt Vm Vm Area Decap of time of

Total Crt (V × ns) (V ) (V ) (cm2) (nF ) Decap (hrs) Itr
1 1017 10 0.165 7.50 0.698 0.161 0.083 - - 0.35 109
1 1017 10 0.165 1.13 0.718 0.165 0.045 0.0379 9 0.41 142
2 2016 19 1.485 8.34 1.080 1.488 0.172 - - 0.92 125
2 2016 19 1.485 2.39 1.174 1.485 0.125 0.3450 13 0.78 117
3 3025 32 0.165 6.60 0.760 0.165 0.347 - - 3.64 276
3 3025 32 0.165 1.46 0.544 0.165 0.225 1.7700 20 2.42 186
4 5025 38 1.485 4.81 1.058 1.485 0.651 - - 4.60 231
4 5025 38 1.485 0.59 1.058 1.485 0.476 0.1460 24 3.51 195
5 9849 78 1.485 0.81 1.224 1.485 0.119 - - 8.60 256
5 9849 78 1.485 0.42 1.224 1.485 0.109 1.3310 30 7.58 227

TABLE II

Optimization results.

# # of nodes Zmax Init Opt Wire Max Num CPU
Ckt level Spec Vm Vm Area Decap of time

Mesh/Tree Crt (V × ns) (V ) (V ) (cm2) (nF ) Decap (hrs)

1 2 90/10080 100 1.485 12.07 1.260 1.486 1.323 1.1918 30 3.74
2 1 90/10080 100 1.485 16.72 1.120 1.485 1.308 1.2100 30 33.51

TABLE III

Topology comparison

tion loop. This procedure is illustrated on a specific family of topologies described in Fig. 1,

with an example of two-level hierarchy of such a topology. It can also be extended to other

mesh topologies that have an overall tree-like structure, e.g., a tree-like macro structure in

which each vertex is a mesh.

Because of the changing of topology, our PRIMA-based analysis technique has to perform

model order reduction for each topology and is not able to take the advantage of circuit

changes, because any such changes will change the reduction matrix X . The procedure

could be made more efficient if the model order reduction can be done incrementally.
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Appendix

This appendix describes the extension of the traditional adjoint sensitivity analysis tech-

nique to our scenario where the structure of the circuit can change between intervals, with
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elements being added to and removed from the circuit from one interval to the next. The

basic approach was outlined in Section III A, and a formal proof for the extension is provided

within this appendix.

The basis for adjoint analysis comes from Tellegen’s theorem, which when integrated

over a time period of interest from t0 to tf , gives

∑

all branches

∫ tf

t0

[ϕ(τ)δv(t) − ψ(τ)δi(t)]dt = 0 (28)

Suppose there are a total of f +1 events, each event is lasting from tk−1to tk, k=1 to f ,

where t0=0. Then (13) becomes

∑

all branches

f−1
∑

k=1

∫ tk

tk−1

[ϕ(k)(τ)δv(k)(t) − ψ(k)(τ)δi(k)(t)]dt = 0 (29)

The superscript (k) denotes the voltage or current response corresponding to the topology

between switching event k−1 and k.

If we are interested in the sensitivity of v(t) at some moment t, we isolate δv(t) by setting

all voltage sources in the adjoint circuit to zero. The left-hand side of the sensitivity term

becomes

∑

all current sources





f−1
∑

k=1

∫ tk

tk−1

−ϕ(k)(τ)δv(k)(t)dt



 (30)

Suppose the most critical voltage drop occurs at t = Tpeak. To obtain the term δv(Tpeak), we

set an impulse current source at the node of interest in the adjoint network, i.e.,

ϕ(p)(τ) = −δ(t − Tpeak) (31)

where tp−1 < Tpeak < tp. Only for interval tp−1 < Tpeak < tp, this term is non-zero:

∫ tp

tp−1

δ(t − Tpeak)δv
(p)(t)dt = δv(p)(Tpeak) (32)

which is exactly what is desired in the left-hand side of the sensitivity term.
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As described in Section I, in our work, the performance of power/ground network is

measured using the shaded area beyond the threshold voltage (noise margin) shown in Fig. 3.

Suppose the most critical node has only one overshoot between tsk and tek during event k,

the sum of shaded area, denoted by Z, over all switching events can be represented as

Z =
f

∑

k=1

∫ tek

tsk

[NMH − v(t)] dt (33)

As discussed in [8], instead of applying an impulse current source of −δ(t−Tpeak), a current

pulse of u(t−tsk)−u(t−tek), k = 1. . . f , is applied to the most critical node. Then Eqn. (30)

becomes:

f
∑

k=1

∫ tk

tk−1

[−u(t − tsk) + u(t − tek)] δv(t)dt =
f

∑

k=1

∫ tek

tsk

−δv(t)dt = δZ (34)

which, similar to Eqn. (32), is exactly what is desired in the left-hand side of the sensitivity

term.

A. Sensitivity with respect to capacitors

For capacitors, we have the device equation

iC = Cv̇C(t)

δiC(t) = Cδv̇C(t) + v̇C(t)δC
(35)

From Eqn. (29), the right-hand side of the sensitivity term becomes

f
∑

k=1

∫ tk

tk−1

{ϕ
(k)
C (τ)δv

(k)
C (t) − ψ

(k)
C (τ)[Cδv̇

(k)
C (t) + v̇

(k)
C (t)δC]}dt (36)

We can integrate by part the δv̇
(k)
C (t) term in Eqn. (36) to obtain3:

f
∑

k=1
[−ψ

(k)
C (τ)Cδv

(k)
C (t)

∣

∣

∣

tk
tk−1

− δC
∫ tk
tk−1

ψ
(k)
C (τ)v̇

(k)
C (t)dt]

+
f
∑

k=1

∫ tk
tk−1

[ϕ
(k)
C (τ)δv

(k)
C (t) + Cψ̇

(k)
C (τ)δv

(k)
C (t)]dt

(37)

3 Note that ψ̇C and v̇C are not defined everywhere. In particular, at switching time points, the derivatives
can be discontinuous although the function is continuous. However, removing a finite number of points
constitutes the removal of a set of zero measure and does not alter the evaluated value of the integral, where
ψ̇C and v̇C are continuous [20].
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As in normal adjoint calculation, to avoid negative energy storage elements, we choose τ to

be the backward time in each interval k. Thus we have

τ = tk−1 + tk − t (38)

The capacitor in the adjoint circuit can be chosen as

ϕC(τ) = −Cψ̇C(τ) = −C
dψ(τ)

dt
= C

dψ(τ)

dτ
(39)

which is an ordinary capacitor. So Eqn. (37) becomes

f
∑

k=1

[

−ψ
(k)
C (τ)Cδv

(k)
C (t)|tktk−1

− δC
∫ tk
tk−1

ψ
(k)
C (τ)v̇

(k)
C (t)dt

]

=

−ψ
(1)
C (t0)Cδv

(1)
C (t1) + ψ

(1)
C (t1)Cδv

(1)
C (t0) − δC

∫ t1
t0

ψ
(1)
C (τ)v̇

(1)
C (t)dt

−ψ
(2)
C (t1)Cδv

(2)
C (t2) + ψ

(2)
C (t2)Cδv

(2)
C (t1) − δC

∫ t2
t1

ψ
(2)
C (τ)v̇

(2)
C (t)dt

. . . . . .

−ψ
(f)
C (tf−1)Cδv

(f)
C (tf ) + ψ

(f)
C (tf )Cδv

(f)
C (tf−1) − δC

∫ tf
tf−1

ψ
(f)
C (τ)v̇

(f)
C (t)dt

(40)

To remove the integration-by-parts term in Eqn. (40), we use the following procedure:

- ψf
C(tf−1) = 0(initial conditions for the adjoint circuit is set to zero)

- ψk
C(tk) = ψk−1

C (tk−2), k = 2, . . . , f

- δv1
C(t0) = 0(by definition, since the initial conditions of the original circuit are known)

This will set all the non-integral terms in Eqn. (40) to zero. In case there is only one interval,

this result reduces to the conventional adjoint sensitivity calculation procedure [18] that sets

ψC(t0) = 0. It can be inferred from this that the adjoint circuit simulation proceeds in the

backward order of event (time).

The transient sensitivity formula with respect to capacitor C at the moment of Tpeak is

as follows:

δv(p)(Tpeak)

δC
= −

p
∑

k=1

∫ tk

tk−1

ψ
(k)
C (tk−1 + tk − t)v̇

(k)
C (t)dt (41)

where tp−1 < Tpeak < tp. Notice that since zero-initial conditions are set in the adjoint

circuit and there is no excitation until t = Tpeak (assuming t0 = 0), i.e. until τ = tf − Tpeak,
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ψC(τ) = 0 when τ < tf − Tpeak. ψC(τ) is continuous over the period tf ≥ τ ≥ tf − Tpeak. In

other words, ψC(t) is continuous over the period 0 ≤ t ≤ Tpeak.

Similarly, the sensitivity of Z with respect to capacitor C is:

δZ

δC
= −

f
∑

k=1

∫ tk

tk−1

ψ
(k)
C (tk−1 + tk − t)v̇

(k)
C (t)dt (42)

where ψC(τ) is the voltage drop across capacitor C under the current excitation of u(τ −

τsk)− u(τ − τek), τsk = tk−1 + tk − tek and τek = tk−1 + tk − tsk , applied to the most critical

node.

B. Sensitivity with respect to resistors and inductors

The sensitivity with respect to resistors and inductors can be derived similarly:

- Apply a current source of -δ(t−Tpeak) (referring to Eqn. (32)) or u(t− tsk)−u(t− tek)

(referring to Eqn. (34)) at the most critical node.

- Set τ = tk−1 + tk − t for each interval k to maintain dτ/dt = −1.

- Choose ψR(τ) = RϕR(τ) and ψL(τ) = Lϕ̇L(τ).

- Set initial conditions in the adjoint circuit to zero.

- Simulate the circuit in the backward order of event

Specifically, for RLC circuits, the transient sensitivity formula with respect to R and L at

Tpeak are
δv(p)(Tpeak)

δR
=

p
∑

k=1

∫ tk
tk−1

ϕ
(k)
R (tk−1 + tk − t)i

(k)
R (t)dt

δv(p)(Tpeak)

δL
= −

p
∑

k=1

∫ tk
tk−1

ϕ
(k)
L (tk−1 + tk − t)i̇

(k)
L (t)dt

(43)

wheretp−1 < Tpeak < tp. Similarly, ϕR (t) and ϕL(t) are continuous over the period 0

≤ t ≤ Tpeak.

Similarly, the sensitivity of Z with respect to R and L are

δZ
δR

=
f
∑

k=1

∫ tk
tk−1

ϕ
(k)
R (tk−1 + tk − t)i

(k)
R (t)dt

δZ
δL

= −
f
∑

k=1

∫ tk
tk−1

ϕ
(k)
L (tk−1 + tk − t)i̇

(k)
L (t)dt

(44)


