Fast and Exact Transistor Sizing Based on Iterative Relaxation

Vijay Sundararajan®, Sachin S. Sapatnekar?, Keshab K. Parhi?
! Texas Instruments, Wireless Infrastructure Branch
Dallas, TX 75243
2Dept. of ECE, University of Minnesota
Minneapolis, MN 55455
E-mail: vijay@ti.com, sachin@ece.umn.edu, parhi@ece.umn.edu

Abstract— This paper presents MINFLOTRANSIT, a new
transistor sizing tool for fast sizing of combinational circuits
with minimal cost. MINFLOTRANSIT is an iterative relaxation
based tool that has two alternating phases. For a circuit with
|V| transistors and |E| wires, the first phase (D-phase) is based
on minimum cost network flow, which in our application, has a
worst-case complexity of O(|V||E|log(log(]V]))). The second phase
(W-phase) has a worst case complexity of O(|V||E|). In practice,
during our simulations both the D-phase and W-phase show a near
linear run-time dependence on the size of the circuit, compara-
ble to TILOS. Simulation results show excellent run-time behav-
ior for MINFLOTRANSIT on all the ISCAS85 benchmark cir-
cuits. For reasonable delay targets MINFLOTRANSIT shows up
to 16.5% area savings (in relatively large circuits) over a circuit
sized using a TILOS-like algorithm. In our opinion the primary
contribution of this paper is to take advantage of the structure of
the transistor sizing problem and devise an iterative relaxation
based gradient descent approach (D-phase) that has excellent
convergence properties.

I. INTRODUCTION

As evidenced by the successive announcement of ever faster
computer systems, increasing the speed of VLSI systems is one
of the major requirements for VLSI system designers today.
Faster integrated circuits are making possible newer applica-
tions that were traditionally considered difficult to implement
in hardware. In this scenario of increasing circuit complexity,
reduction of circuit delay in integrated circuits is an important
design objective. Transistor sizing is one such task that has
been employed for speeding up circuits for quite some time now
[1]. Given the circuit topology, the delay of a combinational cir-
cuit can be controlled by varying the sizes of transistors in the
circuit. Here, the size of a transistor is measured in terms of its
channel width, since the channel lengths of MOS transistors in
a digital circuit are generally uniform. In any case, what really
matters is the ratio of channel width to channel length, and if
channel lengths are not uniform, this ratio can be considered as
the size. In coarse terms, the circuit delay can usually be re-
duced by increasing the sizes of certain transistors in the circuit
from the minimum size. Hence, making the circuit faster usually
entails the penalty of increased circuit area relative to a mini-
mum sized circuit and the area-delay trade-off involved here is
the problem of transistor size optimization. A related problem
to transistor sizing is called gate sizing, where a logic gate in a
circuit is modeled as an equivalent inverter and the sizing opti-
mization is carried out on this modified circuit with equivalent
inverters in place of more complex gates. There is, therefore,
a reduction in the number of size parameters corresponding to
every gate in the circuit. Needless to say, this is an easier prob-
lem to solve than the general transistor sizing problem. Note
that gate sizing mentioned here is distinct from library specific
gate sizing that is a discrete optimization problem targeted to
selecting appropriate gate sizes from an underlying cell library.
The gate sizing problem targeted here is one of continuous gate
sizing where the gate sizes are allowed to vary in a continuous

This research has been supported in part by the ARO under grant number
DA/DAAG55-98-1-0315 and by SRC under grant number 99-TJ-692.

manner between a minimum and a maximum size.

There has been a large amount of work done on transistor siz-
ing [1], [2], [3], [4], [5], [6], [7], [8], [9] that underlines the impor-
tance of this optimization technique. Starting from a minimum
sized circuit, TILOS [1] uses a greedy strategy for transistor
sizing by iteratively sizing transistors in the critical path. A
sensitivity factor is calculated for every transistor in the crit-
ical path to quantify the gain in circuit speed achieved by a
unit upsizing of the transistor. The most sensitive transistor is
then bumped up in size by a small constant factor to speed up
the circuit. This process is repeated iteratively until the tim-
ing requirements are met. The technique is extremely simple
to implement and has run-time behavior proportional to the
size of the circuit. Its chief drawback is that it does not have
guaranteed convergence properties and hence is not an exact op-
timization technique. Among the past approaches, only [2] and
[8] are exact optimization techniques and the other techniques
do not have proven convergence properties. While [2] was the
first ever polynomial time technique reported for addressing the
problem exactly, it does not have very good run-time behavior.
The technique presented in [8] has shown impressive run-time
behavior for sizing large adders. The run-time behavior of this
technique on more complex circuits such as multipliers and con-
trollers was not demonstrated. Moreover, the approach appears
to be amenable only to tackling sizing problems where the gate
delay is expressed using Elmore delays. The approach in [9] is a
unique approach in that it uses a very accurate dynamic timing
analyzer. While this renders the solutions exact, howvever there
is a huge penalty paid in times of computation speed. What is
required is an approach that can handle a loosely restricted class
of delay models and at the same time can perform sufficiently
fast optimizations. The result of such an optimization can then
be used as an input to a more detailed approach like [9] to obtain
exact solutions with a reasonable computational delay.

This paper presents a novel way of solving the transistor siz-
ing problem exactly and in an extremely fast manner. The pro-
posed approach has some similarity in form to [6], [7], [10] which
will be subsequently explained, but the similarity in content is
minimal and the details of implementation are vastly different.
In essence, the proposed technique and the techniques in [6], [7],
[10] are iterative relaxation approaches that involve a two-step
optimization strategy. The first-step involves a delay budgeting
step where optimal delays are computed for transistors/gates.
The second step involves sizing transistors optimally under this
“constant delay” model to achieve these delay budgets. The two
steps are iteratively alternated until the solution converges, i.e.,
until the delay budgets calculated in the first step are exactly
satisfied by the transistor sizes determined by the second step.
The primary features of the proposed approach are:

o It is computationally fast and is comparable to TILOS in its
run-time behavior.

o It can be used for true transistor sizing as well as the relaxed
problem of gate-sizing. Additionally, the approach can easily

incorporate wire sizing, as outlined in section II-A.
o It can be adapted for more general delay models than the
Elmore delay model, see Apendices A-C for details.

The starting point for the proposed approach is a fast guess
solution. This could be obtained, for example, from a circuit
that has been optimized using TILOS to meet the given delay
requirements. The proposed approach, as outlined earlier, is an
iterative relaxation procedure that involves an alternating two-
phase relaxed optimization sequence that is repeated iteratively
until convergence is achieved. The two-phases in the proposed
approach are:

o The D-phase where transistor sizes are assumed fixed and
transistor delays are regarded as variable parameters. Irrespec-
tive of the delay model employed, this phase can be formulated
as the dual of a min-cost network flow problem. Using |V| to
denote the number of transistors and |E| the number of wires
in the circuit, this step in our application has worst-case com-
plexity of O(|V||E|log(log|V|)) [11].

o The W-phase where transistor/gate delays are assumed fixed
and their sizes are regarded as variable parameters. As long as
the gate delay can be expressed as a separable function of the
transistor sizes, this step can be solved as a Simple Monotonic
Program (SMP) [12]. The complexity of SMP is similar to an
all-pairs shortest path algorithm in a directed graph, [12], [13],
ie, O(|VI|IE]).

The objective function for the problem is the minimization of
circuit area. In the W-phase, this objective is addressed directly,
and in the D-phase the objective is chosen to facilitate a move
in the solution space in a direction that is known to lead to a
reduction in the circuit area.

II. PROPOSED APPROACH

The transistor size optimization problem can be stated as,

Z o

all transistors, i

minimize

subject to : Delay(Circuit) < T,

minsize < 2; < mazsize, 1)

where z; refers to the size of transistor ¢, T is timing requirement
specified as an input to the optimization and minsize, mazsize
are, respectively, minimum and maximum bounds on the sizes
of transistors in the circuit.

A. Equivalent DAG for Transistors/Gates

—q
LKL 3
O
—n, B
— N, 9
41[\11 Ny N N

- P
Delay(Na)-%(aB X, * B§5 + EP,<6 +G + B

Fig. 1. The DAG corresponding to a 3-input static CMOS nand gate.
The proposed approach requires transistor delay to be ex-
pressible as a sum of simple monotonic functionals of transistor
sizes, which are defined as follows:
Definition II.1: A function D;(z1,...,zn) is a
monotonic functional if

simple
it can be rewritten as D; =

g(zi)g(z1,y .oy Ti—1, Tit1, ..., Tn), where g(z;) is a monotonic de-
creasing function of z; and ¢(x1, ..., Zi—1, Tit+1, ..., Tn) is a mono-
tonic increasing function of each z; j € {1,...,n} j # .

Definition II.2: A function D(z1, ..., Zy) is termed decompos-

able into simple monotonic functionals if D = Zz P D;
where each D;, as in definition (IL.1), is a simple monotonic
functional. D; is termed the simple monotonic projection of D
on rj;.
In order to mathematically model the transistor size optimiza-
tion problem, every static CMOS gate in the circuit is first
converted in to an equivalent Directed Acyclic Graph (DAG)
model, shown in figure 1, as follows. There is a vertex in
the DAG corresponding to every transistor. An edge is drawn
between an NMOS (PMOS) transistor and another NMOS
(PMOS) transistor provided there is a discharging (charging)
path consisting of the two transistors. The edge is always di-
rected from the transistor higher up in the discharging (charg-
ing) path to the transistor lower down in the discharging (charg-
ing) path. Every vertex of this DAG has a delay attribute as-
sociated with it. This delay attribute is given by the simple
monotonic projection of the worst case discharging (charging)
path delay through the transistor corresponding to the vertex
on to the size of this transistor. Note that, as will be evident
soon, the rise and fall delays are implicitly distinguished due to
the fact that the DAG corresponding to every gate has separate
components for pullup and pulldown networks.

For ease of exposition, we will henceforth consider the com-
monly used Elmore delay model that can be decomposed in
to simple monotonic functionals. Assuming z; to be the size
of transistor N;(P;) in the pulldown(pullup) network of the 3-
input NAND gate shown in figure 1, it can be shown [1] that
the pulldown Elmore delay can be expressed as,

A A A
detayP 40w — (Z)(Bay 4 Cep) + (— + —)(Bea + Caz + D) +
z] z] T2

A A A
(—+—+—
z1 T2 z3

)(Beg + BP24 + BPa25 + BP2g + Cp, + E), (2)

where A, B and C are constant coefficients, the resistance, drain
and source capacitance, respectively, of a unit NMOS transistor.
D and E are related to the wire capacitances. Similarly, B?
is the drain capacitance of a unit sized PMOS transistor and
Cy is the load capacitance. Under this model if wire sizes were
considered to be variables also then the form of (2) would remain
similar. Rewriting the expression in (2) we get,

pulldown

A
delay = —(Bzg 4+ Bz3 4+ Cag 4+ Caz + D+ E +
@1

A
BPzy + BPag + BP2g +Cp) + 3AB+ —(Bzg + Caz3 + D+ E +
23

A
BPz4 + BP2g5 4+ BP2g + Cp) + — (BP2q + BP25 +
z3

BPa2g + Cp, + E). (3)

Since A, B, C, D, E, B?, CL are non-negative quantities, the
Elmore delay model admits a simple monotonic decomposition.
The above fact is illustrated in figure 1 where the delay cor-
responding to NMOS transistor N3 is explicitly shown. The
constant terms used in this expression have the same connota-
tion as in (3). We claim that such a DAG model can always
be developed for any complex static CMOS gate consisting of a
series/parallel network of transistors as long as the underlying
delay model admits a simple monotonic decomposition. This is
a reasonable requirement since the reduction in the gate delay
with an increase in its size can be modeled by the function g in

Fig. 2. The DAG corresponding to a circuit consisting of two 3-input
static CMOS nand gates in series.

Definition II.1, and the increase in the gate delay with increas-
ing fanout gate sizes can be modeled by the function q.

In addition, if wire sizing were also to be performed together
with transistor sizing, then we could model the problem by aug-
menting the DAG corresponding to a gate by adding vertices
corresponding to each wire. The edges emanating from and in-
cident on these wires will be similarly constructed as for transis-
tors. The delay attribute of a vertex corresponding to any wire
can also be similarly defined as for that of a vertex correspond-
ing to a transistor. We conclude that modeling the problem of
wire sizing along with transistor sizing may use the same frame-
work as transistor sizing alone, and the approach developed in
this paper can simultaneously handle both. For ease of exposi-
tion, from here onwards, wire sizing will not be considered for
the remainder of the paper.

Note that the DAG corresponding to a static CMOS gate has
at least two disjoint connected components, as shown in fig-
ure 1, corresponding to the pulldown network of NMOS transis-
tors (i.e., vertices N1, N2, N3) and the pullup network of PMOS
transistors (i.e., vertices Py, P», P3) corresponding to the gate.
The portion of the DAG representing the NMOS pulldown net-
works corresponds to falling transitions and the portion of the
DAG representing the PMOS pullup network is related to rising
transitions at the output of the gate. Note that there are several
vertices in the DAG of a gate that only have edges emanating
from them and have no edges terminating on them; we refer to
these vertices as the root vertices of the gate DAG. Also, note
that there are several vertices in the DAG of a given gate that
have only edges terminating on them and no edges emanating
from them; these vertices constitute the leaf vertices of the
gate DAG.

B. A DAG for the Circuit

The entire circuit consisting of static CMOS gates can be
represented with an equivalent DAG, G = (V, E), by connecting
the component DAG’s of individual gates. The construction of
the circuit DAG is as follows, the vertex set V of the circuit DAG
is simply the union of the vertex sets of DAG’s corresponding
to the gates in the circuit. The edge set E of the circuit DAG is
constructed as follows. For every wire connecting the output of
one gate to the input of another there will be a set of edges in the
circuit DAG that go from the NMOS (PMOS) DAG components
of the first gate to the PMOS (NMOS) DAG components of the
second gate. So corresponding to every wire connecting the
output of the first gate to a given NMOS (PMOS) transistor in
the second gate, there will be edges emanating from all the leaf
vertices of the PMOS (NMOS) DAG of the first gate. These
edges terminate on all the root vertices of the NMOS (PMOS)
DAG component of the second gate that are connected to the
given transistor in the second gate. Figure 2 illustrates the
construction of the circuit DAG for a circuit consisting of two

3-input nand gates in series.

C. Two-Phase Optimization

Note that the delay corresponding to a vertex, %, in the circuit
DAG, whose corresponding transistor has a size z;, can always
be expressed as,

D jesviay “t Y

delay(i) = s (4)

4

where S(V(G)) denotes some subset of V (G) that is located in
the neighborhood of the vertex ¢. In particular, this subset con-
sists of the vertices corresponding to all those transistors whose
sizes directly affect the delay of the transistor corresponding to
vertex i. Also, note that all the coefficients aij, b; in (4) are
non-negative. Rearranging (4), we have,

delay(i) - @; — E ajjzj =b;. (5)

JES(V(G))

Denoting a diagonal matrix whose (i,7)" entry is delay(s) by
D, a matrix whose (4,)" entry is a;; by A, a column vector
whose i*" component is b; by B and a column vector whose "

component is z; by X we can rewrite (5) as
(D - A)X = B. (6)

The formulation in (6) can be written as long as the delay

model admits a simple monotonic decomposition. Note that,
as discussed in Appendices A-C, more general delay models are
admissible under the framework developed in this paper.
It can be shown that for strict gate sizing the matrix (D — A)
can be written as an upper triangular matrix. This is due to
the fact that the adjacency matrix of the circuit DAG can be
always written as an upper triangular matrix [14]. On the other
hand it can be shown that for transistor sizing the matrix (D —
A) can be written as a block upper triangular matrix. This
is possible because under the present delay model the delay
component associated with a transistor is independent of the
sizes of the transistors that topologically precede it after we
levelize the gate level circuit netlist. The delay components of
the transistor within a gate may, however, depend on the sizes of
transistors above and below it and belonging to the same gate as
itself. Therefore, if we reorder the matrix (D — A) by having the
rows corresponding to transistors closer to the primary inputs
PI’s higher than the transistors closer to the primary outputs
POQO’s then the matrix (D — A) is guaranteed to be block upper
triangular. The individual block sizes are no more than the
maximum of the sum of the number of transistors in a gate
and the number of transistors in its immediate fanout. We will
henceforth assume that (D — A) can always be represented in
an upper triangular form or block upper triangular form. With
this assumption we can state that if D is a constant matrix,
then as long as (D — A) is invertible, a system of equations
of the form (D — A)X = B can be solved for the variables X
by a backward substitution process beginning from the bottom
row and proceeding upwards and progressively solving for all z;.
From a circuit point of view, this process proceeds in a backward
breadth-first manner beginning with the primary outputs and
proceeding backwards in order of decreasing levels of logic of the
circuit. This elimination process has O(|F|N) computational
complexity, where N is the number of components in the vector
X and |F| is bounded (in gate sizing) by the maximum fanout
of any gate in the circuit. Note that as long as all vertices of
the circuit DAG have a non-zero delay, which is always the case,
the (block) upper triangular matrix (D — A) for (transistor) gate
sizing will always be invertible.

Now assume that we start with some initial sizing solution
X and some delay matrix Dy satisfying (6). We now resize the
transistors slightly so that the new delay matrix is Do + 4D and
the new size vector is Xg + X, so that we then have,

(Do + 6D — A)(Xqg + 5X) = B,

(Do — A)(Xg + 6X) + §D(Xqg + 5X) = B,
B 4 (Dg — A)§X 4 §DXq 4 §D§X = B,
(Do — A)6X =~ —§DXgq,

X ~ —(Dg — 4)~leDXg, (7

where the term § D§X has been ignored, assuming small pertur-
bations in §D and éX. In other words, we make the following
observations:

o For an infinitesimal resizing of the transistors corresponding
to the vertices in the circuit DAG, the vector of infinitesimal
changes in transistor sizes can be represented as a linear vector
function of the infinitesimal changes in transistor delays.

o As a result of (1), we see that the sum of all the components
of §X, which represents the sum of the change in sizes of the
transistors corresponding to all the vertices in the circuit, can be
expressed as a linear function of diagonal entries of the matrix
éD.

It can be shown that since all components of X¢o are positive,
all components of —(Do — A)™'X will be negative. Hence, the
sum of all the components of §X, can be expressed as a linear
function of diagonal entries of the matrix § D, where the coeffi-
cient corresponding to each diagonal element of § D is negative.
While we have discussed an Elmore delay model so far, we can
extend the above discussion to more general delay models as
detailed in Appendix C.

This motivates a two-phase strategy for solving the transis-
tor size optimization problem. In the D-phase, as above, we
assume fixed transistor sizes and redistribute the delay budgets
in such a manner as to minimize the resultant change in transis-
tor sizes. In the W-phase, on the other hand, we try to find the
minimal-sized circuit that satisfies the modified delay budget
obtained after the D-phase. The two-phases are alternated till
convergence is achieved and the delay budgets output by the
D-phase are exactly satisfied by the transistor sizes calculated
by the W-phase.

C.1 D-phase

In the D-phase as mentioned earlier, we map the optimization
problem on to the delay (D) domain by, a) capturing the delay
profile at a given (area, delay) configuration of the circuit, b)
computing the slack for all the circuit elements for the given
delay configuration, c) re-distribute the slack in the circuit by
doing microscopic delay budget reallocation globally over the
whole circuit, d)driving the delay reallocation toward a lower
area circuit by modeling infinitesimal area changes exactly as a
linear function of infinitesimal delay changes.

It is observed that the delay reallocation phase is akin to the
dual of a min-cost network flow optimization problem, which
aids in solving for the D-phase with extremely fast execution
times.

Before proceeding further we first need to develop some ter-
minology. First assume that the circuit has been sized to meet
delay requirements using an algorithm such as TILOS. We now
define three attributes for every vertex in the circuit DAG G.
For a vertex i, these are the arrival time AT (), the required
time RT(z) and the slack, sl(z). Additionally, every edge e;; €
E has the attribute edge-slack, esl(e;;). The entire circuit graph
G has an additional attribute CP(G) that refers to the delay

of the critical path of the corresponding circuit. We will now
define all of these attributes formally.

{ AT(5)

ezternal time of arrival, u € PI,

mazy ¢ fanin (i) (AT () + delay(j)), else

{ CP(G) = mazycy (AT() + delay(i)),
RT(i) = CP(@) — delay(i), u € PO,
RT(i) = min,cfanous(i)RT() — delay(i), else

RT(i) — AT(i),
RT(j) — AT(i) — delay(i).

(8)

{ s1(i)
esl(e;;)

where PI and PO denote respectively the primary inputs and
primary outputs of the circuit. We call a circuit safe when all
vertices 1 € V have sl(¢) > 0 and all edges have esl(e;;) > 0.
The D-phase involves minimally altering the delay budgets of
transistors in the circuit to move towards a feasible minimum
area solution. For this to be possible, we need to capture
the slack (available delay budget) for every transistor and also
present a strategy to alter/redistribute these delay budgets. In
the next section, we will first present an approach to capture the
slack in a circuit in terms of fictitious buffer-like entities called
Fictitious Specific Delay Units (FSDU’s). Next, an approach
called FSDU-displacement will be presented, which redistributes
the delay budgets for every transistor in such a manner that a
lower area solution (from the present solution) is achieved that
is also timing feasible.

Delay Balancing

A given circuit DAG G can be transformed to a function-
ally equivalent circuit DAG G’ by introducing dummy units
of appropriate delay on to each edge in the circuit DAG in
such a manner that for every e;; € E, esl(ei;) = 0 and
CP(G') = CP(G) [15]. This process is known as delay bal-
ancing. For our purposes, we do not explicitly insert physical
delays. Instead, we use the concept of delay balancing as a tool
to capture all the slack in the circuit DAG. This captured slack
is then used for the D-phase optimization. The delay units used
for delay balancing are, therefore, fictitious entities whose only
purpose is to model the slack present in the circuit DAG. We
refer to these fictitious delay units as FSDUs (Fictitious Specific
Delay Units). Figure 3 shows a circuit DAG and figure 4 shows
its delay balanced counterpart; the “square boxes” on the edges
of the circuit in figure 4 represent the FSDUs on that edge.

Starting with a given circuit DAG there are several possible

Critical Path Delay =8

RT()SLG)/AT()
4

Primary Inputs Pt

Fig. 3. An example of a circuit DAG the integer numbers within each
vertex represent its delay and each vertex ¢ has the triplet (RT/SL/AT)
above it.

ways to produce a delay balanced graph. Any such delay bal-
anced graph will from now on be referred to as a delay balanced
configuration.

FSDU-Displacement

We define FSDU-Displacement, a circuit DAG transforma-
tion technique, as a mapping r:V—Z, {Z: the set of integers}
such that the delay of the FSDU on the edge e;; after FSDU-
Displacement, F'SDU" (e;;), is related to the delay of the FSDU

Critical Path Delay = 8 RT(j)/SL()AT() o7

—
(@ a :
(=

VoL ° 6/0/6

000
- ()

Primery Ouput PO

Fig. 4. The circuit DAG in figure 3 after delay balancing. The square
boxed integers on edges represent the FSDUs added to the edges for delay
balancing.

before FSDU-Displacement, F'SDU (e;;), by,
FSDU" (e;5) = FSDU(e5) + r(4) — r(i). (9)

We state the following without proof, the proof can be found
for similar results for retiming in [16].

Theorem II.1: All legal delay balanced configurations for a
given circuit-graph G are FSDU-Displaced versions of each
other.

Theorem II.2: The net change in the delay of any struc-
tural path from a vertex i to another vertex j after FSDU-
Displacement is always r(j) — r(z).

The above theorem gives rise to the following corollary.

Corollary I1.1: If we connect all the leaf vertices correspond-
ing to primary output nodes of a given circuit DAG to a common
dummy vertex O through dummy edges and if we restrict »(O)
to be exactly 0 and also restrict »(I) for every input vertex I
€ PI to be exactly 0, then the critical path of the transformed
circuit DAG after FSDU-displacement remains unaltered.

Fig. 5. Illustration of circuit DAG transformation related with the addi-
tion of a dummy vertex at the output of every vertex.

Before we develop a formal mathematical model, we first modify
the circuit DAG by adding a dummy vertex Dmy(z) of delay
0 units at the output of every vertex i in the circuit DAG.
A dummy edge connects vertex i to its corresponding dummy
vertex Dmy(). All fanout edges that initially originated from
vertex ¢ now originate from Dmy(z). This is done so as to be
able to effectively model min eranout(iyFSDU(i — j), which
represents the maximum delay of the FSDU’s in the fanout
edges of vertex ¢ in the D-phase optimization. Using (7) and
Theorem II.2, it turns out that in the D-phase optimization,
> 0Xi =37 costidD; =). costi(r(Dmy(i)) — r(i)). The re-
lation AD; = r(Dmy(i)) — r(¢) only holds if cost(i) > 0. This
implies that as long as the problem is a mazimization prob-
lem and if cost(:) > 0, then r(Dmy(z)) — r(i) correctly models
MiNje Fanout(i) FSDU(i — j). ! Figure 5 illustrates this circuit
DAG transformation with an example. Now we can summarize
the D-phase as follows:

1See Appendix A for the proof of the fact that cost(i) > 0 for every vertex i.

D-phase

(1) Produce any valid delay balanced configuration of the given
circuit DAG. We use a depth first FSDU insertion heuristic
for this purpose [15].

(2) Now starting from the delay balanced configuration in (1)
above, let
60X = —(Do — A)~DX = —CTdiag(6D) where
CT = — (Do — A)~™'X, all other symbols are as defined earlier
and diag(6D) is a column vector consisting of the diagonal
elements of §D. Note that minimizing E&X; = minimizing
X;. Now, for every verter i let 6D; = r(Dmy(i)) — (i),
which means that the delay of the FSDU at the output of a
vertex is the change in its delay after the D-phase.

(8) To maintain the requirement that 6D will be small,
introduce the following constraints for every vertez.

FSDU(i = Dmy(i)) + 7(Dmy(i)) — r(i) > MINAD(i),

FSDU(i — Dmy(i)) + r(Dmy(i)) — 7(i) < MAXAD (i),
where MINAD(i) and MAXAD(i) bound the change in
delay of vertex i from both sides, i.e., decrease or increase of

vertex delay. The technique used to determine MINAD(i)
and MAXAD(i) is described in Appendiz B.

(4) For every edge e(Dmy(i) — j), introduce the causality

constraint that states that the slack for all edges in the original
DAG will be non-negative after the D-phase.

FSDU" (Dmy(i) = j) = FSDU(Dmy(i) = j) 4+ r(j) — r(Dmy(4)) > 0.

(5) Now solve the following optimization problem, whose dual
is a min-cost network flow problem [17],

Y

over vertices i

minimize

= mazimize

Cj - (r(Dmy(i)) — r(4))

>

over vertices i

subject to :

FSDU(i - Dmy(i)) + r(Dmy(i)) —r(i) > MINADC(i),
FSDU(i - Dmy(i)) + r(Dmy(i)) —r(i) < MAXAD(),

For all edges Dmy(i) — j,

FSDU"(Dmy(i) — j) = FSDU(Dmy(i) — j)
+ r(3) — r(Dmy(i)) > 0. (10)

Note that the D-phase optimization is in the form of the dual
of a minimum cost network flow problem, [11]. Also, the con-
stant terms in the RHS of the constraints in the D-phase can
be integerized by appropriate scaling, i.e., by multiplying every
constant term by some power of 10, and then rounding off the
product. By choosing appropriate powers of 10 arbitrary accu-
racy can be maintained with almost no penalty in computational
requirements. In this way, fast methods devised for integerized
minimum cost network flow approaches [11] can be fruitfully
employed in solving the D-phase optimization problem.

C.2 W-phase

Once the D-phase has computed new delays (delay budgets)
for all the vertices in the circuit DAG, we need to find feasible
sizes for the transistors corresponding to every vertex in the
circuit DAG to satisfy the delay requirements while using up
minimal area. In effect we have to solve the following problem,

Z o

over vertices i

minimize

ZJES(V(G)) @ig=i b

subject to : < delay(i),
T
= E ajjej +b; < delay(i) - =,
JeS(V(@))
minsize < z; < mazsize. (11)

It turns out that due to the non-negativity of ai;, delay(i) and

the coefficients of z; in the objective function, this optimiza-
tion problem can be modeled as a Simple Monotonic Program
(SMP) [12]. This kind of problem can be solved by a constraint
relaxation procedure with worst case complexity of O(|V||E|)
where |E| is the number of constraints and |V| is the number
of variables. The detail of this relaxation procedure are being
omitted for lack of space, but can be found in [12]. In the W-
phase, due to the restrictions on the magnitude of the change
in delay budgets computed in the D-phase, the magnitude of
the change in z;, i.e., dz; will be small. To sum up, the W-
phase finds a set of sizes for the transistors in the circuit that is
a minimum area solution for satisfying the delay requirements
calculated by the D-phase.

D. Putting it All Together

Having, defined the D-phase and W-phase of the optimiza-
tion strategy, we are now in a position to finally describe
MINFLOTRANSIT, our Min-cost Flow based Transistor siz-
ing Tool.

MINFLOTRANSIT

1. Size the circuit to meet delay requirements using
TILOS.

2. Iteratively perform alternately the D-phase and
W-phase optimizations, solving the problems formulated
in (10) and (11) respectively.

3. Stop the iterations when the area improvement after
the W-phase is negligible.

A
™S
L~

~ .
C

Fig. 6. An example illustrating the global perspective taken by MIN-
FLOTRANSIT which TILOS tends to overlook.

We now present an example that qualitatively illustrates the
improvements provided by MINFLOTRANSIT over TILOS.

Example II.1: Figure 6 shows a simple three gate circuit to
be sized. TILOS is a sensitivity based greedy heuristic that
proceeds by bumping up in each pass the size of that tran-
sistor/gate that leads to maximal benefit in speed for a unit
increase in area. Such a transistor/gate is called the transis-
tor/gate with the highest sensitivity. Assume that in figure 6,
both B and C are gates with identical sensitivity and A has
a lower sensitivity. Therefore the paths A — B and A — C
are both critical. TILOS, due to its greedy nature, will bump
up the sizes of B and C in alternate passes, whereas it should
be intuitively clear that sizing up A, even though it has lower
sensitivity may be the better option as it speeds up both paths
A — B and A — C simultaneously. In the D-phase, MIN-
FLOTRANSIT explicitly includes constraints to evaluate the
benefits of altering the sizes of gates A, B and C. It is there-

6—06288 (TILOS)
16288 (MINFLOTRANSIT)

600432 (TILOS)
B—E10432 (MINFLOTRANSIT)

(Area of Ckb/(Area of minimum size Ckt)
(Area of Cki)/(Area of minimum size Ckt)

10 . 1 —f— . .
10 08 06 04 02 10 08 06 04 02
(Delay of Ckt)/(Delay of minimum size Ckt) (Delay of Ckt)/(Dleay of minimum size Ckt)

Fig. 7. Comparative area-delay curves for gate sizing of two ISCAS85
benchmark circuits. The total device area of the circuits after transis-
tor sizing with TILOS and MINFLOTRANSIT is plotted against delay,
normalized with respect to the delay of a minimum sized circuit. Even
though the curves look close the area benefits are actually significant.
For example in the case of ¢6288, for a circuit with 0.5 times the delay of
the minimum sized circuit, the area savings of MINFLOTRANSIT over
TILOS is 14.2%.

fore able to identify whether sizing gate A, in spite of its lower
sensitivity, will be advantageous.

Theorem I1.8: MINFLOTRANSIT produces minimum tran-

sistor sizing for any delay constraints.
Proof: Let us assume that we are in some intermediate itera-
tion at a non-optimal point. We iteratively apply the D-phase,
followed by the W-phase, and it is sufficient to show that the
application of each of these steps causes the objective function
to reduce, while maintaining feasibility. The D-phase uses a
Taylor series approximation to the constraint in Equation (6)
to represent the objective function entirely in terms of the delay
variables. This approximation is valid within a radius of conver-
gence of € around the current point, X, corresponding to some
radius of § around the vector of delays. Therefore, a solution to
the D-phase is a valid solution to the original problem as long
as the allowable delay change is bounded by a quantity that lies
within a d-ball of the current delays. This is achieved forcing
MAXAD(i) and MINAD(3) to be small for all 3.

If the current solution is not optimal, due to the convexity of
the problem [1], [2], there must be another feasible point in the
neighborhood of the current point that has a smaller objective
function value, and this point will be found by the D-phase. In
the W-phase that follows, the solution found in the D-phase is a
feasible solution. Since the W-phase does not limit the change
in the delay or the transistor sizes as greatly as the D-phase, its
solution must have an objective function value that is no larger
than the solution of the D-phase.

Therefore, since the objective function value decreases in each
phase, the procedure is guaranteed to find an optimal solution
to the problem.

III. SIMULATION RESULTS

Simulation results were obtained on all the combinational cir-
cuits in the ISCAS85 benchmark suite, some combinational cir-
cuits from the mcnc91 benchmark suite and also on ripple carry
adders of 32-256 bits. The results shown in this section are for
gate sizing which as mentioned before is a special case of true
transistor sizing. We implemented the TILOS algorithm as de-
scribed in [18]. Starting with all transistors at minimum size, a
bumpsize of 1.1 was used for the initial sizing. Iterative appli-
cation of D-phase and W-phase optimization was then carried
out for optimal transistor sizing. Figure 7 shows the area delay
curve for representative benchmark circuits for both TILOS and

MINFLOTRANSIT. The technology parameters used for simu-
lation were obtained from [19] for 0.13u technology. As can be
seen a clear gain in performance is seen when using MINFLO-
TRANSIT as opposed to using TILOS.

TABLE I
THE AREA SAVINGS IN % oF MINFLOTRANSIT over TILOS 1S LISTED. THE
CPU TIME REQUIRED BY TILOS AND THE EXTRA TIME REQUIRED BY
MINFLOTRANSIT OVER AND ABOVE THAT REQUIRED BY TILOS ARE LISTED.
THE CRITICAL PATH OF A MINIMUM SIZED CIRCUIT IS DENOTED BY Dpin .

Circuit # Gates Area Delay CPU CPU
savings Specs. (TIME) (TIME)
over (TILOS) (OURS)
TILOS
adder32 480 < 1% 0.5Dpmin 2.2s 5s
adder256 3840 < 1% 0.5D ,,5m 262s 608s
cm163a 65 2.1% 0.55D p,im 0.13s 0.32s
cml62a 71 10.4% 0.5D,5n 0.23s 0.96s
parity8 89 37% 0.45D ,,5p 0.68s 2.15s
frgl 177 1.9% 0.7Dpmin 0.55s 1.49s
population 518 6.7% 0.4D,in 57s 179s
pmult8 1431 5% 0.5D im, 637 1476s
alu2 826 2.6% 0.6D 1 in 28s T1s
c432 160 9.4% 0.4D,in 0.5s 4.8s
c499 202 7.2% 0.57D yim 1.47s 11.26s
c880 383 4% % 0.4D 5, 2.7s 8.2s
c1355 546 9.5% 0.4D 5 29s 76s
c1908 880 4.6% 0.4D 5, 36s 84s
<2670 1193 9.1% 0.4D 5, 27s 69s
¢3540 1669 7.7% 04D insize 226s 651s
c5315 2307 2% 0.4Dinsize 90s 201s
c6288 2416 16.5% 0.4Dinsize 1677s 4138s
c7552 3512 3.3% 0.4D,insize 320s 683s

Table I lists the area savings of MINFLOTRANSIT over TI-
LOS and the CPU times required in an Ultrasparc 10 Sun work-
station for sizing the ISCAS85 benchmark circuits. The tabu-
lated results are for sizing solutions where the area penalty is
within 1.5 — 1.75 times that of a minimum sized circuit and all
these correspond to points where the area penalty of sizing is
reasonable. For the adders the improvement in area over TILOS
is marginal thereby suggesting that adders can be easily sized by
using greedy heuristics. This is not surprising since ripple carry
adders have a single dominant critical path which can, possibly,
be sized optimally using a heuristic like TILOS. On the other
hand, however, as can be clearly seen for the ISCAS85 bench-
mark circuits and mcnc benchmark circuits, the area savings
vary from 1.9% — 37%. The overall time required by MINFLO-
TRANSIT is almost always (except in the small circuits c432,
c499) within 2 — 4 times of TILOS. The circuit c6288 shows an
unusually high time requirement for sizing, possibly due to the
fact that this circuit (a type of multiplier) has a large number
of paths, many of them reconvergent. Therefore, a number of
competing paths can become critical at any instance and sizing
this circuit is consequently harder. It is also notable that TI-
LOS performs poorly as compared to MINFLOTRANSIT for
this particular circuit. In all our simulations only a few tens
of iterations were required by MINFLOTRANSIT (except the
steepest portions of the area delay curve where no more than
100 iterations were required).

IV. CONCLUSIONS

We presented a new transistor sizing tool MINFLOTRAN-
SIT that has shown impressive run-time behavior over var-
ious benchmarks in the ISCAS85 benchmark suite. MIN-
FLOTRANSIT is a two-phase iterative-relaxation based tech-
nique. The first, D-phase has a worst case complexity of

O(|V||E|log(log|V])), the second, W-phase has a worst case
complexity of O(|V||E|). The run-time behavior of this tool
is comparable to TILOS but it is guaranteed to produce opti-
mal transistor sizes for meeting the delay constraints. Although
Elmore delay models were used in this paper for illustration,
MINFLOTRANSIT is valid for a larger class of delay models
characterized by the monotonic decomposition property in Def-
inition II.2.

We further demonstrated approaches to extend the paper to
more general classes of delay models with more parametric con-
straints, e.g., input rise time constraints.

Our work does not claim convergence to optimal solution for
a general delay model but only convergence to a local optimum.
Note that this is hardly more remarkable than a gradient descent
based approach or an approach based on Lagrangian relaxation
for piecewise differentiable functions. In fact we believe that
we are only posing gradient descent as the D-phase. And by
taking advantage of the structure of the sizing problem the D-
phase is modeled as a minimum cost network flow optimization
problem. Thus the primary modest contribution of this paper
in our opinion is increasing the speed of gradient descent for
transistor sizing optimization.

APPENDIX A

In this appendix we will show that the elements of the matrix (D—A) ™!
are always non-negative. This will in turn prove the critical assumption in
the D-phase optimization that infinitesimal change in individual transistor
sizes can be expressed as a negative combination of infinitesimal change
in individual transistor delays.

It has already been shown that in the D-phase with infinitesimal shifts
in the delay-budgets the following relation holds,

sX = —(D — 4)"lsDx, (12)
where the terms have their usual meaning. So as long as the elements
of the matrix (D — A)~! are non-negative, we are guaranteed that an
infinitesimal change in the size of any transistor, say z;, in the circuit
is a negative combination of the delay components associated with vari-
ous transistors in the circuit. This is a crucial observation because this
facilitates the modeling of the D-phase as a minimum cost network flow
problem. Recall that the optimization objective in the D-phase which is
minimize 21 z; is equivalent to mazimize i cost;d;.

It is essential that the cost coefficient associated with d;, and hence

with (r(Dummy;) — r(i)) (given by cost(i)) in the objective function be
non-negative. This can be guaranteed if all elements of (D — A)~! are
non-negative. Non-negativity of cost(4) is required in order for the artifice
shown in Fig. 5 to correctly model the minimum of FSDUs available on
all the fanout nets from a given node, i. As pointed out in section II-C.1
the delay component associated with any transistor has a very localized
dependence on the sizes of transistors in its neighborhood. This observa-
tion implies that the matrix (D — A) can be arranged as a block upper
triangular matrix. Therefore, inverting (D — A) amounts to inverting
the individual blocks in a bottom-up manner (note that this has similar
complexity as inverting a truly upper-triangular matrix). As a result as
long as the inverse of the individual blocks can be guaranteed to have
non-negative elements we can ensure that (D — A)~! has non-negative
elements. So we will now try to establish that arbitrary sized individual
blocks of the matrix (D — A) indeed have this property. We will estab-
lish this fact with mathematical induction on the dimension of the square
matrix (D — A). We will first consider a 2 X 2 matrix to establish a base
case.
Consider an inverter where, the size of the NMOS transistor is 1 and that
of the PMOS transistor is 2. In general these sizes will be independent
of each other. For such an inverter driving a fixed load Cr, it can be
shown that the delay component D; associated with the NMOS and the
delay component D» associated with the PMOS are given by relations of
the following form.

Dizg = aleq +agen +c1,
Dozy = a%eq + a2ey + ca, (13)
where the terms a],a},a?,a3 are non-negative constants determined
mainly by the drain capacitance of unit sized NMOS and PMOS transis-

tors, the terms c1, c2 are non-negative constants dependent on the wiring
capacitance and load capacitance driven by the inverter. Note that due

to non-negativity of all the terms in the relation for delay, D1 > ai and
Dy > a2. The matrix (D — A) is given by,

[(D1 —al) —al (19)
—a? (D3 — a3)

The inverse of this matrix is (D — A) ™! given by,

—a2 1
Do agy ay
det(D—A) det(D—A
D=4 38— (15)
1 179

det(D—A) det(D—A)

Now all the terms of (D—A) ™! are non-negative provided det(D—A) > 0.
It will now be shown that det(D — A) = (D1 — a})(D2 — a2) — aja? > 0.
The delay component relations from (13) can be written as

1 1
(D1 —aj)z1 > azza,

2 2
(Dg — a3)zg > ajzq, (16)

Multiplying the last two inequalities together (all terms are non-negative)
we have,

1 2 12
(D1 — a3)(Dg — aj)zyzg > agajzies. a7)

Canceling out z1z2 from both sides we get det(D — A) > 0. We point

out that the above discussion is valid as long as we have a relation of the
form (16), this fact will be employed in Appendix C to extend the results
in this section to general convex delay models.
To illustrate that a 3-dimensional matrix D — A also results in a non-
negative (D — A)~! we can use the facts we just established for 2-D
matrices. This will be useful for us to establish a proof by mathematical
induction that the components of (D — A)~! are always non-negative.
Now consider an instance where three delay components are involved in
the delay relations.

Diwy = ajey +ajzs +azes +c1,
Dozy = a%ml + agmz + agms + c2,

Dgeg = alo; + ades + adeg + c3, (18)

We will show that all the co-factors of the matrix (D — A) are non-
negative which will also prove that the inverse of (D — A) has to have all
non-negative elements. The form of the matrix (D — A) is,

(D1 - a}) -a3 3
(Do — ag) _ag) (19)
-a3 (py —a})

The diagonal co-factors are of the form,

[(P1 = e o3] , (20)
—a2 (D2 — a2)

which has already been shown to be non-negative when we considered an
inverter. The off-diagonal co-factors can be obtained with row, column
permutations of a matrix of the following form (Cj 3),

2 2
—a (Dg — a3)
[_a% .3 3] . (21)

The determinant of this co-factor is (aZa3 + a3(D2 — a3)) which is
non-negative. The remaining co-factors are derived from this form with
row/column permutations those requiring an odd number of permutations
have an offsetting negative sign that makes them non-negative and those
requiring an even number of permutations are evidently non-negative.
This implies that all the co-factors are non-negative and hence all the
elements of the inverse of (D — A) are of the same sign as its determinant.
So either the elements of (D — A)™! are all non-positive or they are all
non-negative. The former is not possible because in that case the relation
X = (D — A)"c would not work with non-negative X and c, therefore
the elements of (D — A)~! are non-negative.

Now we will use induction to prove that for arbitrary dimensions (D —
A)~! with usual definitions has non-negative elements.
Inductive hypothesis: 1) The following n X n matrix, referred to as
form I, has a non-negative determinant,

(D1 —a]) - —a
(22)

2) For even(odd) n the following matrix, referred to as form II, has a
non-positive(non-negative) determinant,

—a% (Dz—ag) —a
(28)
m_1 T~
Inductive step: Assuming the above, we must prove that,
1) The following (n+1) X (n+ 1) matrix has a non-negative determinant,

(P1—a}) oo —all,
. . (24)

n+1 n+1

% %41

2) For even (odd) n + 1, the following matrix has a non-negative(non-
positive) determinant,

—a3 (D2 - a3) —h41
. . . (25)

_ont1 _ n+1l _ n+41l

ay a, an+1

Proof: To prove 1) we compute the determinant by expanding the first
row, for even n 4+ 1 to obtain an expression of the form, (D; — a}) x
(determinant(Form I)) —a} x (determinant(Form II)) + .- — a31+1 X
(determinant(Form IT)). Which due to the non-positive value of an xn
determinant of Form II will have a non-negative value. Similarly, for odd
n+1 the determinant looks like, (D1 —a}) X (determinant(Form I)+a} x
(determinant(FormlII)) + -« - + a:l_H X (determinant(FormlII)) which
again turns out to be non-negative. Hence 1) is proved.

To prove 2) we again expand along the first row and for even (odd) n+1
we can show that the resulting determinant is non-positive (non-negative)
proof is similar to 1).

Hence we have proved that all co-factors of an arbitrary dimensioned
matrix of the form (D — A) are non-negative, it can be shown that the
determinant of (D — A) is always non-negative also which implies that
all the elements of (D — A) ™! are non-negative which implies that in the
D-phase the objective function cost coefficients are all non-negative.

APPENDIX B: ON FEASIBILITY OF THE D-PHASE TO W-PHASE TRANSITION

As might be apparent, the two phases of the transistor sizing algorithm
we describe are inter-dependent on each other in a very subtle manner.
They are related precisely through the delay constraint inequalities of
the D-phase. The relationship is actually hidden in the lower and upper
bounds of these inequalities. The computation of these bounds require
the introduction of a new parameter, a width increment, that is used in
the simple monotonic functional of the delay formulas. An arbitrarily
large value for this width increment may result in the generation of a
D-phase solution that can not be feasibly realized in the W-phase. The
choice of the width increments has therefore got to be judicious. The
trick is to choose small enough values for the allowable delay perturba-
tions around the ambient delay values for transistors in the D-phase such
that the constraint region defined by the inequalities in the D-phase maps
completely on to a feasible region in the solution space of the original siz-
ing problem. Fortunately a certain aspect of the transistor sizing problem
gives us a very practical solution to achieving this objective, which will
be established shortly. First let us refer back to (11) and assume that
the maximum change in the size of any transistor is 6 on either side. If
a transistor is already at the maximum (minimum) size it can have then
we would assume that only an decrement (increment) in size for the tran-
sistor is allowed. Assuming for simplicity that all transistors have sizes
which are at least § under (over) the maximum (minimum) sizes allowed
for the transistor, the maximum value of the delay given by the above
expression can be obtained as,

3. ajj(z; +6) +b;
maazdelchange(i) = i€S(V(G) ,

2; — 8

z:jes(v(cn @ig (25 = O +bi

mindelchange(i) = R

z; + &

minsize < x; < mazsize. (26)

AppEnDIX C

In this appendix, we will extend the results of this paper to more gen-
eral delay models that admit the simple monotonic decomposition prop-
erty in Definition II.2. First, the general transistor sizing problem will be
discussed for convex delay models that admit the simple monotonic de-
composition property in Definition I1.2. Next, more general delay models
that do not require convexity of the delay expression will be discussed.

C1: Convex Delay Models

With standard notations, assume any non-Elmore delay model that
admits the simple monotonic decomposition property in Definition II.2,
giving rise to the following transistor delay(component)-size relations.

P; PEERPE S PR
delay(i) = i(e1 AR
Q;(=;)
ie., delay(i)Q;(=;) = Pi(z1,---» 25,), (27)
where j € S(V(G)), P;, Q; are monotonic increasing (since -1~ is mono-

Qi
tonic decreasing). Now if we assume infinitesimal changes in delay and
the sizes of the transistors, then we have

!
(delay(i) + Adelay(i))(Q;(=;) +82;Q (=;)) = Py(21,...,25,...) +

E szPg(a:l,...,zj,...),

all j,j#i

(28)

where Pij is the partial derivative of P; with respect to z;. We point out

that if delay(i) were convex then the actual delay increment on the LHS
would always be lower-bounded by the linearized increment on the RHS.
This is because the curve corresponding to a convex function always lies
above tangents at arbitrary points along the curve. Canceling out common
terms in (28) and ignoring second-order terms we get,

7 .
delay(i)dz; Q;(z;) = —Adelay(i)Q;(=;) + E sz Pl (21, e, n), (29)
all j,j#i

If we assume those cases where delay(i) is a convex function of the
transistor sizes, then due to the non-negativity of all the terms (except
the first) in the RHS of (29) and due to the fact that LHS in (29) is
always lower bounded by the RHS (due to convexity), the derivations in
Appendix A will still be valid. The LHS > RHS relation implied by
convexity will establish a relation similar to (16). Thereafter, the non-
negativity of the terms P; is all that is required to establish the rest of
the results in Appendix A. We can therefore use the proof in Appendix
A to establish that an infinitesimal change in area of the circuit in the D-
phase can be expressed as a non-negative combination of the infinitesimal
changes in the delay component of transistors in the circuit.

C2: General Non-Convex Delay Models

In practice sometimes the sizing problem is treated as a single size pa-
rameter per gate problem. The transistor sizes within a gate are ganged
together by fixed ratios and their collective size is represented by a single
parameter. The fixed ratio is determined mainly to equalize rise and fall
time delays and to make the task of layout easier and more predictable in
order to preserve the gains from sizing using a coarse area model of the
type used in (1). In such cases, when the delay model admits the simple
monotonic decomposition given by Definition. I1.2, the gate size-delay re-
lations can be expressed in a form similar to (27) and the relations in (28)
and (29) still hold. But as already shown in section II-C the incremental
delay and incremental size relations for gate sizing can be arranged in an
upper-triangular form for strict gate sizing. We also point out the fact
that in (29), Q;, Pj are all non-negative (due to the fact that Q;, P;
are monotonic increasing functions). It is easy to see that by beginning
from the primary output gates (bottom-most rows of the upper triangular
delay/size matrix) and by performing a backward elimination process as
in section II-C, the size increments for all the gates can be expressed as
a non-positive combination of incremental gate delays. This implies that
the incremental change in circuit area can be expressed as a non-positive
combination of incremental gate delays. This in turn implies that the rest
of the discussion in this paper holds and that a MINFLOTRANSIT like
approach will converge for general delay models (not necessarily convex)
that admit simple monotonic decomposition as given by Definition II.2.

APPENDIX D: GENERALIZING MINFLOTRANSIT
D1: General Delay Models and D-phase Feasibility
In general the Area-Delay relation for the transistor sizing problem can

be succinctly represented in the following manner:

F(X,D) = C, (30)

where F is a matrix and X, D have their usual meanings, and C is a
constant vector. Using variational methods the following relationship can
be obtained:

Ag f(X,D)AX + Ap f(X, D)AD = 0,

GAX + HAD =0, (31)

where G = A, f(X,D) and H = Ap are matrices. We can therefore
express either AX as a linear function of AD or vice-versa as follows:

AX = —(@)"'HAD,

AD = —(H)"laax.

Now, as derived in Appendix A the class of delay models used in this
paper have the property that (G)"'HAD is a non-negative matrix. Re-
call that this non-negativity property made it feasible to model the ob-
jective function of the D-phase as a maximization (minimization) prob-
lem with non-positive (non-negative) linear objective function cost coef-
ficients. This coupled with fact that the constraints of the problem were
2-variable difference constraints, allowed us to use minimum cost network-
flow techniques to model the D-phase efficiently. It turns out that as long
as this non-negativity property holds, as will be shown subsequently, we
can always do the following:

1. Given a feasible point in the (D, X) space, using a method based on
back-substitution we can map a set of feasibility requirements on the X
and hence AX variables of the form Q < AX < T to a set of feasibility
constraints of the form R < AD < U.

2. Hence a set of feasibility constraints on the X variables, which is more
lucid in the transistor sizing problem can be readily used to generate
a set of constraints to be applied on the D variables for the D-phase
optimization problem.

3. The result of the D-phase optimization as a result will never be infea-
sible, and hence MINFLOTRANSIT will never return infeasible results
when applied to a sub-optimal point in the (D, X) space.

Now to show that 1) above is true, consider the following set of con-
straints,

X stxmaw:

min

Xmin £ X0+ AX < Xmaz

Xmin — X0 £ AX < Xmaz — Xq;

Xomin — X0 < —()"1HAD < Xmaz — Xg,

where, Xmin (Xmaz) is a vector of minimum (maximum) transistor sizes,
Xo is a vector of ambient transistor sizes, and the rest of the terms have
their regular meaning. Now we can rearrange the above set of inequalities
as follows,

X0 = Xmas < (@)T1HAD < Xo - Xpin- (32)
Now since (G)™'H is a non-negative matrix it is possible to iden-
tify a feasible rectangular box in D-space that is completely contained
within the feasible space for the above set of constraints. This is
done by first solving for Xo — Xmae = (G)"'HAD (ADpin) and for
X0 — Xmin = (G)"*HAD (ADpaz). We can then show, due to non-
negativity of (G)”'H, that the rectangular box (D-space) defined by
ADpin < AD < ADpa.. is a subset of the original constraint region
in the X-space. Note that (G)~'H will in general be a block-triangular
matrix as the infinitesimal size increments of a transistor can only affect
the delay of the gate of which the transistor is a part or gates which are
in a fanin path to that transistor. This property will render the process
of inverting (G) ! H a relatively easy task. In general as long as (G)™'H
is a non-negative matrix the following iterative relaxation procedure will
always converge to a local optimum solution.
GENITERRELAX
1. Start with a initial sized circuit that meets the delay requirements.
2. Use the relation, AX = —G~AD, to drive an optimization problem
identical in form to the D-phase described in relation to MINFLOTRAN-
SIT.
3. Compute the value of X's which satisfy the result of the D-phase.
4. Iterate Steps 2 and 3 till convergence.

Note that the above technique is extremely general in nature and only
requires G~ H to be a non-negative matrix, the Area-Delay relation can
be static or possibly even dynamic (with some obvious restrictions on
smoothness) where an oracle will be queried to compute instances of the
G and H matrices during every iteration of GENITERRELAX. For the
non-negativity restriction on G~ H, all that is required is the following,
if all the transistors were to be infinitesimally resized in such a fashion
that none of them have a decrease in their delays (the transistors fed by
primary input signals are left with a fixed size), then the delay model
should be such that all the transistors necessarily have to either remain
of the same size or go down in size. In other words if even one transistor
were to increase in size then at least one transistors delay has to go down.
This in no way is reflective of the Elmore delay model and is a reasonable
restriction on a fairly large class of delay models.

One additional problem that remains is induction of additional para-
metric constraints (rise-time) etc, in to the sizing framework. This can
be done as follows, assume that these additional constraints (on rise-time
etc,) can be put in the following form,

P(X)< T, (33)
using a similar approach as for the area-delay dependency function we
show the following,

P(Xg)+AxP.AX < T,AxP.AX < T — P(Xp). (34)
As long as Ax P can be constrained to a non-negative (non-positive)
matrix we can express the above constraints as a set of simple constraints
on the AX vector which can be translated as before on to a set of simple
constraints on the AD vector. In this manner we will be able to include
rise-time and other similar constraints in to the sizing framework.

D2: The Area Constrained Transistor Sizing Problem

It turns out that many a time Area and not Performance is the guiding
impetus in the transistor sizing problem. In such cases a hard-limit is put
on the area of the circuit, say Ay, and the designer’s job is to find the
fastest circuit that meets the area constraint.

The techniques developed in this paper can be be easily adapted to
solve this problem in polynomial time.

1. Use MINFLOTRANSIT to design the fastest possible circuit with no
hard limited area constraints, except the constraint on individual tran-
sistor sizes. Set the delay of the resulting circuit to be D,, set D; = 0.
Set the area to A.. If A, < Ay output the circuit as the solution else
perform 2).

2. If A. & Am, then output the circuit as the solution else If A, ; Am,
then set D, = (D, + D;)/2 and perform 3) else if Ac < Ay then set
D; = (Dy + D;)/2 and perform 3).

3. Perform MINFLOTRANSIT once more but this time use a critical
path requirement of (D, + D;)/2, this results in a D — phase where most
of the transistors will have a non-negative slack. Set the resulting area to
A. and return to step 2).

The above technique will converge after at most log2(Dma) iterations,
where D,, ., is the delay of the fastest circuit sized most aggressively.

D3: What if the Initial Sizer Fails ¢

Sometimes the delay requirements are such that no greedy initial sizer
can even return a feasible circuit. In such instances, as stated presently
MINFLOTRANSIT does not have an initial starting point. The failure of
the initial sizer can be due to a couple of reasons:

1. The delay requirements are unrealistic or even infeasible.

2. The initial sizer is restrictive.

In such cases we can do the following:

1. Size the circuit for the fastest circuit possible using the initial sizer.
2. Now operate MINFLOTRANSIT in a creep mode, whereby in each
iteration the D-phase operates with a overall negative slack requirement.
This is done by connecting all the Primary output gates to a Dummy
output node and keeping a infinitesimally negative slack requirement on
all the nets incident on the Dummy output node.

3. Continue performing MINFLOTRANSIT till either i) the circuit
achieves the required delay or MINFLOTRANSIT fails due to infeasi-
bility.

In case MINFLOTRANSIT fails then due to the result in the last sec-
tion we are assured that the initial delay requirement was infeasible.

REFERENCES

J. P. Fishburn and A. E. Dunlop, “TILOS: A Posynomial Programming
Approach to Transistor Sizing,” in Proceedings of the 1985 International
Conference on Computer-Aided Design, November 1985, pp. 326-328.

S.S Sapatnekar, V. B. Rao, P. M. Vaidya, and S. M. Kang, “An Exact
Solution to the Transistor Sizing Problem for CMOS Circuits Using Convex

(1]

Optimization.,” IEEE Transactions on Computer-Aided Design, vol. 12, no.
11, pp. 1621-1634, November 1993.

J.-M. Shyu, A. L. Sangiovanni-Vincentelli, J.P. Fishburn, and A.E. Dun-
lop, “Optimization-based Transistor Sizing,” IEEE Journal on Solid State
Circuits, vol. 23, no. 2, pp. 400-409, april 1988.

D. P. Marple, “Performance Optimization of Digital VLSI Circuits,” Tech-
nical Report CSL-TR-86-308, Stanford University, October 1986.

D. P. Marple, “Transistor Size Optimization in the Tailor Layout System,”
in Proceedings of the 26th ACM/IEEE Design Automation Conference, June
1989, pp. 43-48.

H. Y. Chen and S. M. Kang, “icoach: A circuit optimization aid for cmos
high-performance circuits,” Intergration, the VLSI Journal, vol. 10, no. 2,
pp. 185-212, January 1991.

Z. Dai and K. Asada, “MOSIZ: A Two-Step Transistor Sizing Algorithm
based on Optimal Timing Assignment Method for Multi-Stage Complex
Gates,” in Proceedings of the 1989 Custom Integrated Circuits Conference,
May 1989, pp. 17.3.1-17.3.4.

C.-P. Chen, C. N Chu, and D. F. Wong, “Fast and Exact Simultaneous
Gate and Wire Sizing by Lagrangian Relaxation,” in Proceedings of the 1998

(7]

(8]

10

[10]

[11]

[12]

[13]
[14]

[15]

[16]
[17]

[18]

[19]

IEEE/ACM International Conference on Computer-Aided Design, November
1998, pp. 617-624.

A. R. Conn, P. K. Coulman, R. A. Haring, G. L. Morrill, C. Visweshwariah,
and C. W. Wu, “JiffyTune: Circuit Optimization Using Time-Domain
Sensitivities,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 17, no. 12, pp. 1292-1309, December 1998.

J. Grodstein, E. Lehman, H. Harkness, B. Grundmann, and Y. Watanabe,
“A delay model for logic synthesis of continuously sized networks,” in
Proceedings of the 1995 International Conference on Computer-Aided Design,
November 1995, pp. 458-462.

A. V. Goldberg, M. D. Grigoriadis, and R. E. Tarjan, “Use of Dynamic
Trees in a Network Simplex Algorithm for the Maximum Flow Problem,”
Mathematical Programming, vol. 50, no. 3, pp. 277-290, June 1991.

M. C. Papaefthymiou, “Asymptotically Efficient Retiming under Setup and
Hold Constraints,” Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design, pp. 288-295, Nov. 1998.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to algorithms,
McGraw-Hill, New York, NY, 1990.

G. Strang, Linear Algebra and its Applications, Harcourt Brace Jovanovich,
Publishers, San Diego, CA, 1988.

V. Sundararajan and K. K. Parhi, “Low Power Gate Resizing Using Buffer-
Redistribution,” in Proceedings of the Twentieth Anniversary Conference on
Advanced Research in VLSI, March 1999, pp. 170-184.

C. E. Leiserson and J. B. Saxe, “Optimizing Synchronous Systems,” Jour-
nal of VLSI and Computer Systems, vol. 1, no. 1, pp. 11-67, 1983.

V. Chvatal, Linear Programming, W. H. Freeman and Company, New York,
NY, 1983.

A. E. Dunlop, J. P. Fishburn, D. D. Hill, and D. D. Shugard, “Experiments
Using Automatic Physical Design Techniques for Optimizing Circuit Per-
formance,” in Proceedings of the 32nd Midwest Symposium on Circuits and
Systems, Urbana, IL, August 1989, pp. 216-220.

J. Cong, “Challenges and Opportunities for Design Innovations in Nanome-
ter Technologies,”
1997.

Technical Report, Semiconductor Research Corporation,

