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Abstract

In this paper, we propose a new approach for VLSI interconnect global routing that can optimize

both congestion and delay, which are often competing objectives. Our approach provides a general

framework that may use any single-net routing algorithm and any delay model in global routing. It is

based on the observation that there are several routing topology flexibilities that can be exploited for

congestion reduction under timing constraints. These flexibilities are expressed through the concepts

of a soft edge and a slideable Steiner node. Starting with an initial solution where timing driven

routing is performed on each net without regard to congestion constraints, this algorithm hierarchi-

cally bisects a routing region and assigns soft edges to the cell boundaries along the bisector line.

The assignment is achieved through a network flow formulation so that the amount of timing slack

used to reduce congestions is adaptive to the congestion distributions. Finally, a timing-constrained

rip-up-and-reroute process is performed to alleviate the residual congestions. Experimental results

on benchmark circuits are quite promising and the run time is between 0.02 second and 0.15 second

per two pin net.

1 Introduction

As interconnect is becoming one of the dominant factors affecting VLSI performance in deep submicron

era, the requirements on the quality of interconnect routing are becoming stricter, and the routing
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problem is consequently growing more difficult to solve. Most commonly, the routing problem is solved

in two separate stages: global routing and detailed routing. In global routing, a given set of global nets

are routed coarsely, in an area that is conceptually divided into small regions called routing cells. For

each net, a routing tree is specified only in terms of the cells through which it passes. The number of

allowable routes across a boundary between two neighboring cells is limited. One fundamental goal of

global routing is to route all the nets without overflow, i.e., the number of wires across each boundary

does not exceed its supply. This problem is NP-complete even if each net has only two pins. Since

minimizing congestion is very hard to achieve and is essential for global routing, it has long been a focus

of research [1–13] in global routing. Most of these works belong to one or a combination of the following

genres: the sequential approach, hierarchical methods, linear programming or multicommodity flow

based algorithms, and rip-up-and-reroute techniques.

In the sequential approach, the nets are routed one after another. In [1], for each net, a Steiner

tree on the grid graph that minimizes the maximum edge weight is sought to minimize the congestion,

with the weights being proportional to the density of wires in each routing cell. For any sequential

approach, it is hard to decide which net ordering is better than others [14], i.e., each ordering has its

own weakness. As a solution to avoid this ordering problem, the hierarchical method [2–4] recursively

splits the routing region into successively smaller parts. At each hierarchical level, all of the nets are

routed simultaneously (often through linear programming) and refined in the next hierarchical level

until the lowest level of the hierarchy is reached. Sometimes the whole global routing is formulated

and solved through linear programming followed by a randomized rounding [5]. Another method is

the application of multicommodity flow model [6–8], in which the fractional solutions are rounded to

obtain the routing solutions. For global routing on standard cell designs, the work of [9] proposed an

iterative deletion technique to avoid the net ordering problem. The works of [10–12] first route each

net independently, then rip up the wires in congested areas and reroute them to spread out the routing

density. The rip-up-and-reroute technique is very practical and popular in industrial applications.

When interconnect becomes a performance bottleneck in deep submicron technology, merely mini-

mizing congestion is not adequate. In later works [15–19], interconnect delays are explicitly considered

during global routing. In [15], each net is initially routed in SERT-C [20], after which the congested

area is ripped up and rerouted by locally applying a multicommodity flow algorithm. In [16], beginning
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with a set of routing trees satisfying timing constraints for each net, a multicommodity flow method is

applied to choose a single routing tree for each net, such that the congestion is minimized. At places

where overflow occurs, the wires are ripped up and rerouted through maze routing in which the timing

objective is combined with wirelength and congestion. The work of [17] is similar to [16] except that

path-based timing constraints are satisfied instead of net-based timing constraints. For global routing

on standard cell designs, the work of [18,19] incorporates the timing issue with an iterative deletion tech-

nique. In [21], timing constraints are combined with a top-down hierarchical bisection and assignment

method for FPGA routing where the switch delay dominates and wire delays are neglected.

In global routing, congestion and delay are often competing objectives. In order to avoid congestion,

some wires must make detours, and the signal delay may consequently suffer. In this paper, we propose

a new approach to global routing such that both congestion and timing objectives can be optimized at

the same time. One key observation is that there are several routing topology flexibilities that can be

traded into congestion reduction while ensuring that timing constraints are satisfied. These flexibilities

include the use of: (1) soft edges, (2) slideable Steiner nodes, and (3) edge elongation, all of which are

described later in this paper.

In our algorithm flow, each net is initially routed individually to satisfy its timing constraints, and

these routes are used to obtain the timing-constrained routing flexibilities. Next, these flexibilities are

traded into congestion reduction through a hierarchical bisection and assignment process followed by

a timing-constrained rip-up-and-rerouting. The hierarchical bisection and assignment process here is

similar to the works in [21–23]. However, due to interdependence of the timing slack consumption

among the nets, the assignment is not straightforward as in [21–23]. We propose a network flow

formulation so that the timing slack consumptions are adaptive to the congestion distributions in the

assignment. We further extend the model to be a generalized network flow problem, in order to exploit

the flexibility from slideable Steiner nodes. Finally, the timing-constrained rip-up-and-reroute process is

performed to overcome any inabilities of the hierarchical approach in satisfying congestion constraints.

This method has the advantage that it does not depend on any net ordering. Moreover, it provides

a general framework that can accommodate any single-net routing scheme and can be applied on any

delay model, since the timing performance of any initial routing solution can be preserved in subsequent

stages.
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The remainder of the paper is as follows. Section 2 introduces background knowledge for this work,

and Section 3 briefly shows an overview of our algorithm. The network flow based assignment algorithm

is described in Section 4 and the computational complexity of the hierarchical bisection and assignment

algorithm is analyzed in Section 5. The timing-constrained rip-up-and-rerouting method is introduced

in Section 6. Experiments are presented in Section 7, and we conclude in Section 8.

2 Preliminaries

2.1 Problem background and congestion metrics
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Figure 1: Tessellation in global routing.

We are given a set of nets N = {N 1, N2, ...}, with each net N i being defined by a set of pins V i =

{vi
0, v

i
1, ...}, where the source or driver is denoted as vi

0. We consider routing in two layers, one for

horizontal wires and the other for vertical wires. As in conventional global routing, we tessellate the

entire routing region into an array of uniform rectangular cells, as shown in the dashed lines in Fig 1.

We represent this tessellation as a grid graph G(VG, EG), where VG = {g1, g2, ...} corresponds to the set

of grid cells, and a grid edge bk ∈ EG corresponds to the boundary between two adjacent grid cells. We

will refer to a grid edge simply as a boundary. The number of wires that are allowed to cross a boundary

is limited by an upper bound, which is called the supply of the boundary and expressed as s(b). During

the routing, the number of wires that are routed across a boundary b is designated as the demand d(b).

The overflow fov(b) at boundary b is max(d(b)−s(b), 0). The demand density for a boundary b is defined

as D(b) = d(b)/s(b). In Figure 1, if the supply for each boundary is 2, there is an overflow of 1 on the
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thickened boundary and the corresponding demand density is 1.5. We use the metrics of the maximum

demand density Dmax = maxb∈EG
{D(b)} and the total overflow Fov =

∑

∀b∈EG
fov(b) to evaluate the

congestion reduction.

2.2 Soft edges

The concept of a soft edge is proposed in [24] for single net routing and buffer insertion with location

restrictions. We will show that this concept can also be exploited as a routing flexibility under timing

constraints in multi-net global routing.

A routing tree T is described by a set of nodes V = {v0, v1, v2...} and a set of edges E = {e1, e2...}.

The location for a node vi is specified by its coordinates xi and yi. An edge in E is uniquely identified

by the node pair (vi, vj) or the notation eij interchangeably, where vi is the upstream end of this edge,

i.e., vi is closer to the source node and vj is closer to the leaf nodes of the tree.
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Figure 2: Routing with soft edges.

Routing in the rectilinear space requires that each edge has a fixed orientation, either horizontal or

vertical. For example, when we consider the connection between v0 and v1 in Figure 2(a), or v0 and v3

in Figure 2(b), we usually choose an upper L-shaped or a lower L-shaped connection, both of which are

indicated in the dotted lines. In each case, a bend (degree-two Steiner) node is induced, for example, v4

or v′4 may be induced in Figure 2(b). Since there are many uncertainties at the global routing stage, i.e.,

the detailed routes are not determined, the specifications on delays need to capture the nature of the

delay functions without being completely exact. In this spirit, these two routes and many multi-bend

monotone routes connecting v0 and v3 can be regarded to have same delay performance, if the extra

delay from a small number of vias can be neglected for the same reason.1 However, these routes may

1Later in our algorithm, we will penalize the use of excessive of vias.
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have different influences on the congestion distribution when we consider multiple nets in global routing.

Before these different influences become clear, it is better to keep the flexibilities on routes rather than

to embed them into the rectilinear space prematurely. Based on this observation, we may connect v0

and v3 with a soft edge, which is defined as follows.

Definition 1: A soft edge is an edge connecting two nodes vi, vj ∈ V , such that: 1. xi 6= xj and yi 6= yj ,

2. its edge length lij is fixed, 3. the precise edge route between vi and vj is not determined.

We will refer to the traditional edges in a rectilinear tree with fixed orientations as solid edges. The

soft edge connection between v0 and v3 is shown as a solid curve in Figure 2(b). By keeping edge e03

soft, we can maintain the flexibility on routes connecting v0 and v3 until we consider congestion in

global routing with other nets. In Figure 2(c), in the presence of another net, a Z-shaped route for e03

is chosen to reduce congestion without hurting the delay.

In fact, the concept of soft edge is also useful in single-net routing. Consider the process of construct-

ing the Steiner minimum tree in Figure 2(b) in a manner similar to Prim’s minimum spanning tree

algorithm. If we begin by connecting sink v1 to source v0, and arbitrarily choose the upper-L connec-

tion, the Steiner minimum tree will not be reached. Instead of fixing the edge orientation immediately,

we can use a soft edge e01, as shown in Figure 2(a). In order to minimize wirelength, when we consider

connecting v2 to the routing tree, we choose the closest connection (CC) point between v2 and e01. The

closest connection (CC) point between a node vk and an edge eij is defined by its coordinates xCC and

yCC such that xCC = median(xi, xj , xk) and yCC = median(yi, yj , yk). In Figure 2(b), Steiner node v3

is introduced at the CC point and the Steiner minimum tree is obtained. The concept of soft edges is

especially useful for nets with a large number of pins, where the decision-making process is much more

complicated.

2.3 Delay properties and slideable Steiner nodes

To measure the signal delay of an interconnect, we employ the Elmore delay model. Although occasional

large errors make Elmore delay unsuitable for critical nets [25], it has a role in global routing because

of its fidelity [20] and simplicity, and is a reasonable model considering that the routing in global stage

is coarse and the number of nets may be very large. The works of [20,26] describe delay properties with
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respect to connection location along a maximal segment2. The work in [24] shows that these properties

hold for soft edges and we will briefly describe them as follows.
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Figure 3: A general case, node vk is to be connected to edge eij .

For a general form of a partially constructed routing tree, shown in Figure 3(a), let us consider

the process of obtaining an optimal connection between node vk and edge eij . The closest connection

(CC) point between a node vk and an edge eij is defined by its coordinates xCC and yCC such that

xCC = median(xi, xj , xk) and yCC = median(yi, yj , yk). The dashed lines are other nodes and edges of

this routing tree, and CC represents the closest connection point between vk and eij . Any connection

that is downstream of CC cannot lead to an optimal solution [20]. More specifically, we wish to search

for an optimal connection point within the bounding box defined by vi and CC. Suppose we connect

vk to eij at point v′(x′, y′), as indicated in Figure 3(b). Let z be the Manhattan distance from v′ to vi,

i.e., z = |x′− xi|+ |y′− yi|. If the delay at an arbitrary sink va is t(va) and the its required arrival time

is RAT (va), then the delay slack s(va) = RAT (va)− t(va). We can obtain the following conclusion3.

Lemma 1: Under the Elmore delay model, the delay slack at any sink in the routing tree is a convex

function with respect to z.

For the example in Figure 3, if only sink vj and sink vk are timing critical, we depict their delay

slack functions in Figure 4. The timing slack S(T i) for a routing tree T i on the net N i is the minimum

delay slack among all the sinks in this net, this is illustrated by the thickened contour in Figure 4. If

the objective is to minimize wire cost subject to timing constraints, the optimal connection (Steiner)

point here is a point with a non-negative net timing slack, lying as close to CC as possible; for this

particular example, this corresponds to z′. As in this example, the optimal connection point is, in

2A maximal segment is a maximal set of consecutive edges that are either all horizontal or all vertical.
3A detailed derivation is available in [24].
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Figure 4: Delay slack function vs. distance z of connection point. Here we overload CC as its Manhattan
distance to vi.

general, likely to be a non-Hanan point. The work of [26] showed this advantage of using non-Hanan

points and proposed the MVERT algorithm to perform non-Hanan optimization globally for a routing

tree. Based on properties similar to Lemma 1, MVERT finds the optimal connection point through a

quasi-binary search and obtains significant wire cost reductions.

A careful observation tells us that there are often many Steiner node locations for a specific value of

z. The set of locations for a given value of z form a locus as illustrated by the thickened segment in

Figure 3(b). When we slide the Steiner node v′ along this locus, the lengths of its incident edges are

preserved and so is the delay at each sink. Similar to the rationale for soft edges, we only specify this

locus instead of a point for this Steiner node and call it as slideable Steiner node (SSN). This s similar

to the merging segment in the deferred-merge embedding algorithm [27] for zero skew clock net routing.

The concept of a slideable Steiner node provides extra flexibility for the routes of its incident edges and

can again be used to reduce the congestion in global routing without degrading timing performance or

area.

3 Algorithm overview

This algorithm includes three phases: (1) performance driven routing for each net, (2)HBA: hierarchical

bisecting of routing regions and assigning soft edges to boundaries along the bisector, and (3) TRR:

timing-constrained rip-up-and-reroute.

In phase 1, each net is routed to meet its timing constraints without considering congestion. Any

single-net performance driven routing method, e.g., P-tree [28], RATS tree [29] or MVERT [26], can
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be applied here. Besides satisfying timing constraints, each routing tree should be soft, i.e., should not

contain any degree-two Steiner node. This can be achieved through utilizing soft edges during routing

as in the example of Figure 2 or replacing L-shaped connections in the results with soft edges. Thus, at

the end of phase 1, timing-constrained routing trees are generated along with topology flexibilities to be

exploited in the subsequent phases. For a net with k sinks, the computational complexity of MVERT

is about O(k4) [26].
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Figure 5: An example of bisection.

In phase 2, a routing region is recursively bisected into subregions in a top-down manner. At the

topmost level, the whole routing region is bisected into left(upper) and right(lower) halves by a bisector

line which is formed by a column(row) of consecutive vertical(horizontal) grid cell boundaries. For

example, in Figure 5, the thickened bisector line is composed of three boundaries, b1, b2 and b3. Each

soft edge that intersects this bisector is assigned to a boundary. After the assignment, a pseudo-pin is

inserted into the soft edge at the assigned boundary, and therefore this soft edge is split into two new

soft edges that belong to two separate subregions. One assignment for the example in Figure 5 is shown

in Figure 6. In the next hierarchical level, bisections and assignments are applied on the left(upper)

and right(lower) half region. This process is repeated until the subregion is a single grid cell or a pair

of neighboring grid cells. Thus, at the end of this process, the route for each soft edge is specified to

the detailed level of grid cells it goes through.

When we make a bisection, we always choose a direction to make the region as close to a square as

possible. For example, if a region has more rows (columns) than columns (rows), we will bisect along
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the horizontal (vertical) direction. At each direction, the bisection could be at different locations. We

choose a location such that the ratio of the number of crossing soft edges to the total capacity along the

bisector line is the maximum, i.e., we make bisection at the most congested place. Since our hierarchical

approach proceeds in a top-down manner, more favor is given to the higher hierarchical level and we

try to solve the most difficult part at a higher level. Similar bisection strategy is employed in the work

of [22]. Although quadrisection as in [4] is better at handling congestion, integrating it with timing

constraints is very difficult.
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Figure 6: An assignment result from network flow solution.

The crucial part is to determine how to assign the soft edges to the boundaries on the bisector line.

The basic goal is to assign all of the soft edges without exceeding any boundary supply and without

causing any delay violations. The absence of delay violation implies that the delay slack for each net is

non-negative. In order to make the assignment feasible, sometimes it is necessary to allow some wires

to detour, which inevitably increases delay, i.e., some timing slack is consumed to reduce congestion. In

addition to ensuring absence of delay violations, it is naturally desirable that the consumption of the

timing slack is minimized, since the timing slack may be needed in the subsequent levels of bisection

and assignment. These objectives are achieved through a min-cost network flow formulation. Because

of the involvement of timing issues, this formulation is not as straightforward as that in [21–23]. We

run a min-cost max-flow algorithm [30] to solve this network flow problem. The min-cost flow algorithm

we employed in practice is the capacity scaling algorithm [30], which can give an optimal solution in a

pseudo-polynomial time.
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The hierarchical bisection and assignment in phase 2 is a method of divide-and-conquer that has

the advantage of simplifying the problem nature. In this global routing approach, it reduces a two-

dimensional problem into one dimension. The price that this simplification inevitably pays is on con-

gestion reduction, since a decision at a higher hierarchical level may overlook the needs at a lower level.

In phase 2, any soft edge that could not be assigned in the network solution is temporarily assigned to

a boundary such that the maximum demand density is minimized and no delay violation is incurred.

These residual overflows will be cleaned in phase 3.

The third phase is a timing-constrained rip-up-and-reroute process. It is similar to traditional rip-

up-and-reroute except that a constraint on edge length is imposed to ensure no timing violation and the

location of each slideable Steiner node (SSN) is readjusted to minimize the congestion. It rips up the

edges on a set of most congested boundaries and reroutes them through maze routing. The cost in maze

routing is defined as the summation of the square of demand densities over all boundaries that a soft

edge passes through, and these densities are dynamically updated. The edge length can be elongated

to the extent that no delay violation is incurred. The procedure for transforming timing slack into an

edge length slack is described in section 6.

4 Network flow based assignment algorithm

4.1 Basic network formulation

After one bisection, the assignment problem is formulated as:

Assignment problem: Given a bisector line B composed of a set of consecutive boundaries {b1, b2, ...},

and a set of soft edges EX = {ei
jl|ei

jl intersects B}, assign each soft edge to a boundary bk ∈ B such

that there is no overflow on any boundary bk ∈ B and no delay violation on any routing tree T i which

has at least one soft edge ei
jl ∈ EX , and the timing slack consumption is minimized.

We solve this problem through a formulation of the network flow problem and applying a min-cost

max-flow algorithm on it. The network GF (VF , AF ) is a directed graph consisting of a set of vertices

VF and arcs AF . The vertex set VF includes all boundaries in B and soft edges in EX , plus a source

s and target t. For the bisection in Figure 5, its corresponding network is illustrated in Figure 7. We

do not use slideable Steiner nodes (SSN) at this moment for simplicity and only e3
03 in T 3 is included

in the network. The usage of SSN will be introduced in section 4.3. There are three types of arcs: (1)
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Figure 7: Network formulation of the example in Figure 5 without considering SSN. The number on
each arc is its capacity.

from source s to every boundary vertex, (2) from some boundary vertices to some soft edge vertices, (3)

from every soft edge vertex to the target t. Each arc has a cost and a capacity associated with it. For

each type-1 arc, its cost is 0 and its capacity is the corresponding boundary supply. In this example,

we assume that each boundary has a supply of 2. For each type-2 arc, its capacity is 1 and its cost will

be defined later. For each type-3 arc, its capacity is 1 and its cost is 0.

(a) (b) (c)

Figure 8: Relative positions of a boundary and a soft edge.

An arc from a boundary vertex to a soft edge vertex implies a candidate assignment between them.

Not every pair of boundary and soft edge vertices is automatically qualified for constructing a type-2

arc between them. For any boundary and any soft edge, there are three relative positions between them

as shown in Figure 8. In Figure 8(a), the boundary lies entirely within (the bounding box of) the soft

edge. If we choose an assignment of the soft edge to this boundary, there will be no change in the length
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of the soft edge, and two vias are induced. If a boundary lies partially within the bounding box of a

soft edge, as in Figure 8(b), we have an L-intersection between the boundary and the soft edge, where

no change in the soft edge length is required and one via is induced. In either of these two cases, i.e.,

if a boundary is within or has an L-intersection with a soft edge, we can always set up an arc between

them without affecting the delay. These arcs are called basic arcs, and they are the solid type-2 arcs

in Figure 7. The third situation is shown in Figure 8 (c), where the soft edge does not intersect with

the boundary. In this case, an assignment on this pair will require a wire detour, and we need to check

whether or not this may cause any delay violation. An arc can be constructed for such a pair only

if the assignment on this pair will not cause any delay violation. For the example in Figure 5, if the

timing slack of T 2 remains non-negative when the soft edge e2
01 goes through boundary b3, then an arc

(a dashed line) between them is constructed in Figure 7. We call such a construction as a soft edge

expansion and each expansion implies a timing slack consumption.

We categorize the trees across the bisector line B into single-crossing trees and multi-crossing trees,

which are the trees that cross B only once (such as T 2 in Figure 5) and more than once (such as T 1

in Figure 5), respectively. Initially, we construct all the basic arcs for all the soft edges in EX and

perform an expansion for all the soft edges that belong to single-crossing trees. The expansions of edges

in multi-crossing trees will be discussed in the next section.

The cost of a type-2 arc is defined according to the timing slack of its corresponding tree, since one

major objective is to minimize timing slack consumption. If the timing slack of tree T i is Sold(T
i) before

the assignment, and is Snew(T
i) if its soft edge ei

jl is assigned to boundary bk, then we define the arc

cost as:

cost(bk, e
i
jl) = (Sold(T

i)− Snew(T
i) + 1)2. (1)

It can be seen that if a soft edge intersects with a boundary entirely or partially, its corresponding

type-2 arc has a cost of unity, otherwise, the cost is larger than one. As a secondary objective, we hope

to reduce the number of vias in the wiring. Therefore, for the situation in Figure 8(b), we reduce its

cost by a small user-specified offset θ, 0 < θ < 1. In our implementation, we let θ = 0.5.
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4.2 Construction of arcs for multi-crossing trees

Generally speaking, adding a type-2 arc between a boundary vertex and a soft edge vertex may increase

the likelihood of obtaining a feasible network flow solution. Hence, a soft edge expansion is usually

desired as long as no delay violation is incurred. One issue that was not discussed in the last section

is the procedure for those soft edges that belong to multi-crossing trees, such as T 1 in Figure 5. The

difficulty here is that the timing slack computations for the soft edges are correlated. For some specified

timing constraints, whether a soft edge can be expanded, or how far it can be expanded, depends on

whether other crossing edges in the same tree are expanded, and how far they have been expanded. For

example, in Figure 5, the expansion of e1
41 depends on whether e1

23 has been expanded and how far, i.e.,

to b2 or to b1. In fact, these soft edges compete with each other on a common timing slack resource,

which must be allocated properly. A uniform allocation may overlook local congestion distribution, and

result in some unnecessary expansions while some necessary expansion is not performed.

We solve this difficulty by identifying the necessary expansions through the min-cut method. It

is well known that the max-flow equals the forward capacity of the s − t min-cut in a network flow

problem [31]. In the beginning, we run a max-flow algorithm on the partially constructed network

to obtain an s − t min-cut (X, X̄), s ∈ X, t ∈ X̄. The forward capacity of this cut is denoted by

Umin(X, X̄). If Umin(X, X̄) ≥ |EX |, then it is guaranteed that every soft edge can be assigned to a

boundary without any overflow, and thus, no more expansion is necessary. Otherwise, the maximum

feasible flow is less than the number of soft edges to be assigned, thus we need to increase the capacity of

the min-cut through additional soft edge expansions. In the example for Figure 5, before the expansion

for multi-crossing trees, the min-cut is indicated in the dashed curve in Figure 7, where the vertices

in X are in the shaded region and vertices in X̄ are unshaded. We can see that the forward capacity

Umin(X, X̄) = 4 while there are 5 soft edges that need to be assigned, thus, we need to expand some

soft edge(s) from the multi-crossing tree T 1 if possible.

The min-cut result shows us not only whether more expansions are necessary but also the congestion

distribution information or where to make the expansion. Every forward arc in the min-cut must be

saturated [31], e.g., (s, b3), (e
1
41, t) and (e2

01, t) are saturated. If a soft edge vertex ei
jl is in X, e.g., e1

41 in

Figure 5, its downstream arc must be saturated and therefore, it can always be assigned to a boundary
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without inducing overflow, i.e., it is not in a congested area. On the other hand, if a boundary vertex bk

is in X̄ (and not all of its downstream arcs are saturated), e.g., b3 in Figure 5, its upstream arc must be

saturated and the soft edges corresponding to its downstream vertices are located in a congested area.

Adding an arc from a boundary vertex bk ∈ X to a soft edge vertex ei
jl ∈ X̄ matches a soft edge in a

congested area to an uncongested boundary.

Lemma 2: The necessary and sufficient condition to increase the max-flow fmax of a network is to add

a forward arc between X and X̄ for every min-cut (X, X̄) with Umin(X, X̄) = fmax.

We make a sweep among all the soft edges in multi-crossing trees and pick at most one soft edge

from each tree to expand in order to increase the capacity of min-cut. More precisely speaking, for each

multi-crossing tree T i, from all the bk ∈ X and ei
jl ∈ X̄ pairs, we choose one with minimum cost to

add an arc between them if no delay violation is induced. After one iteration of expansions, we run the

max-flow min-cut algorithm again to repeat this process until Umin(X, X̄) ≥ |EX | or no more feasible

arc can be found. Note that the timing slack computation in a later iteration of expansions should

account for any wire detour in other soft edges of the same tree in previous expansions. In the example

in Figure 7, we can make an expansion between b2 ∈ X and e1
23 ∈ X̄ if no delay violation is induced,

and then the network problem becomes feasible.

The iterative min-cut and expansion technique makes the allocation of timing slack in multi-crossing

trees adaptive to the congestion distribution, and expansions are made only when necessary, without

waste.

4.3 Utilization of slideable Steiner nodes (SSN)

In phase 1, if we use the MVERT algorithm together with soft edges, we can have a slideable Steiner

node that provides extra flexibility in routing. The appealing feature of SSN is that when we slide

it along its locus, the timing performance is preserved. i.e., no timing slack is consumed. Again, we

integrate this flexibility into the formulation of the network flow problem so that it can be exploited in

a unified network flow solution.

The positions of a SSN within a grid cell do not affect wire congestion distributions, hence we can

consider one arbitrary position for a SSN within a grid cell. For each SSN whose locus intersects with

B, we consider only two candidate positions, each on a different side of the bisector line B, such as v3
3
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Figure 9: Network formulation considering SSN.

and v3
3′

in Figure 5. We need to consider candidate positions on both sides of B, since they result in

remarkably different intersections between their incident soft edges and the bisector line B. On each

side of B, we only consider the grid cell that has a boundary in B such that this boundary intersects

the locus of the SSN, since the SSN position in this grid cell can provide the maximum overlap between

its incident soft edge(s) and B. For example, in Figure 5, e3
3′2

intersects with two boundaries b2 and

b3, while e3
3′′2

would intersect only with b2. It is evident that a larger overlap implies a larger number

of basic arcs which are preferred as they will not consume timing slacks. It is possible to include

SSN locations in other grid cells, such as v3
3′′

in Figure 5, into the generalized network flow model.

However, their incident soft edges has less overlap on B which implies less timing-conserved flexibility

and including them will increase the size of the network flow model. For v3
3 and v3

3′
, all three associated

soft edges e3
3′1

, e3
3′2

and e3
03 are included in the vertices in the network as shown in Figure 9. Obviously,

e3
03 cannot be assigned simultaneously with e3

3′1
or e3

3′2
. This exclusiveness constraint can be satisfied

through adding a pseudo-vertex p and formulating a generalized network flow model [30], where each

arc has a gain factor associated with it. For example, the amount of flow will reduce 50% after passing

through an arc with gain factor of 0.5. We solve this min-cost flow problem using the Fleischer-Wayne

algorithm [32], which is currently the fastest approximation algorithm for the generalized network flow

model.

After the assignment, only one of the candidate SSN positions is selected. The locus of the SSN is
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truncated at the intersection with B, and the part where the selected position located would be retained,

as shown in Figure 6.

4.4 Post processing

s2

s4

s1

s3

T1

T2

0

12

2’

b1

b2

b3

Figure 10: Two options of routing T1 may have different impact on the congestions along the four thick
dashed segments, even when both of them satisfy the congestion constraints along the vertical bisector
line.

In our top-down hierarchical approach, the assignment at each hierarchical level is performed along

one dimension (either horizontal or vertical). An assignment along one direction at one hierarchical level

may be unfavorable to the congestion along the other direction at a lower hierarchical level. In order to

alleviate this weakness, we apply simple postprocessing on each network flow solution. After performing

the min-cost network algorithm, each soft edge is assigned to a grid cell boundary. Sometimes there

are multiple assignment solutions (corresponding to degenerate solutions) that all satisfy congestion

constraint at the same cost in terms of consumption on timing slack and the number of vias. The

network flow algorithm can provide only one of the solutions, even though they may imply different

impacts to congestion at the subsequent lower hierarchical level. For example, the assignment of T1

across the vertical bisector line in Figure 10 may affect the congestions along the four thick dashed

segments. We define the density over a segment as the ratio of the number of intersecting wires to the

total number of tracks along this segment. For example, if there are 2 wiring tracks across each grid cell

boundary and we let the route of T1 pass through b1 in Figure 10, then the density over segment s1 will

be 0.5. We define the cost over a segment in the same way as we define the boundary cost in maze routing
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in Section 6. The summation of the cost, over all segments that a route passes through, is employed as

a secondary cost in the post processing, while the cost defined in the network flow formulation is treated

as the primary cost. In Figure 10, the secondary cost for assigning T1 to b3 is the summation of the

cost over segments s2 and s4. In the post processing, we reassign each soft edge to another boundary

when there is a reduction in the secondary cost and no degradation in either the primary cost or the

congestion along the bisector line. The complete assignment algorithm is summarized in Figure 11.

Algorithm: Assignment

Input: Bisector line B
Soft edges EX intersects B
Routing trees T i that has soft edge in EX

Output: Assignment of soft edges to boundaries in B

1. Set vertices and type-1, type-3 arcs in network
2. Set basic type-2 arcs
3. For each single-crossing tree
4. Do soft edge expansion
5. Min-cut (X, X̄)← max-flow algorithm
6. While max-flow < |EX |
7. For each multi-crossing tree T j

8. ∀ pairs from bk ∈ B,∈ X to e ∈ T j ,∈ X̄
Insert arc between min cost pair

9. Min-cut (X, X̄)← max-flow algorithm
10. Run (generalized) min-cost max-flow algorithm
11. Truncate locus of SSN
12. Do post processing
13. Make assignment according to flow result

Figure 11: Algorithm of assignment.

5 Computational complexity of the hierarchical bisection and assign-

ment algorithm

We will roughly analyze the complexity of the assignment algorithm at each hierarchical level and then

give the complexity of the whole Hierarchical Bisection and Assignment (HBA) algorithm.

The assignment algorithm consists of the dynamic network construction stage and the min-cost flow

algorithm stage. The dynamic network construction is composed by several iterations of max-flow

algorithm whose complexity is dominated by the min-cost flow algorithm. The number of iterations of

the max-flow algorithm is bounded by the number of cell boundaries along the cut line, because each
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soft edge is expanded to cover at least one more boundary in each iteration. Thus, the complexity of

the assignment algorithm is dominated by the complexity of the min-cost flow algorithm. If there is

Slideable Steiner Nodes(SSN) involved in, we will use the Fleischer-Wayne min-cost flow algorithm [32]

for the generalized network. Otherwise, we will use the capacity scaling min-cost flow algorithm [30]

for the conventional network, which is faster than the Fleischer-Wayne algorithm.

For a network with |V | vertices and |A| arcs, the capacity scaling algorithm has a complexity of

O((|A| logU) · (|A| + |V | · log |V |)) [30], where U is the maximum arc capacity. If there are k cell

boundaries along the bisector line and l soft edges across the bisector line, |V | is bounded by O(k + l)

and |A| is bounded by O(k · l). Thus, the capacity scaling algorithm has a complexity of O((k · l · logU) ·

(k · l + (k + l) · log(k + l))).

The Fleischer-Wayne algorithm is an ε−approximate algorithm4 with complexity of O(ε−2 ·|A| log |A|·

(|A| + |V | · log |A|) · (log ε−1 + log log(UB/LB))) [32], where UB and LB is the upper bound and the

lower bound of the total cost of a max-flow solution. If the cost upper bound for each arc is C, then

UB = C · |A|. Since each soft edge is assigned to at most one cell boundary, the cost lower bound LB

approximately equals l. Thus, the complexity of the Fleischer-Wayne algorithm is O(ε−2 · k · l log(kl) ·

(kl + (k + l) · log(kl)) · (log ε−1 + log log(Ck))).

For a grid graph with m grid cells, the number of bisections is bounded by m and the number of cell

boundaries k along each bisector line is bounded by
√
m assuming that the number of rows roughly

equals the number of columns. Usually the number of soft edges for a routing tree is bounded by a

constant times the number of pins, hence, the number of soft edges across a bisector line is bounded by

n which is the total number of pins for a circuit. Then we can conclude:

Theorem 1: The Hierarchical Bisection and Assignment(HBA) algorithm without using the Slide-

able Steiner Nodes(SSN) has a complexity of O((m3/2 ·n · logU) · (m1/2 ·n+(m1/2 +n) · log(m1/2 +n)))

for a circuit with n pins on a grid graph with m grid cells and the maximum wire capacity across a cell

boundary to be U .

Theorem 2: The Hierarchical Bisection and Assignment(HBA) algorithm using the ε−approximate

the Fleischer-Wayne algorithm has a complexity of O(ε−2 · m1/2 · n log(mn) · (m1/2n + (m1/2 + n) ·

log(mn)) · (log ε−1 + log log(Cm))), for a circuit with n pins on a grid graph with m grid cells and the

4An ε−approximate algorithm can provide at least (1− ε) times the maximal flow with at most the optimal cost.
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maximum arc cost in the network to be C.

Note that the above bounds are very loose bounds, since only on the topmost hierarchical level the

values of k and l are close to
√
m and n, respectively, and the actual values of k and l are usually much

smaller on lower hierarchical levels.

6 Timing-constrained rip-up-and-reroute

v’

v

v

v

0

i

j

v’k

vk

Figure 12: Elongation for edge eij .

The last phase of our method is the Timing-constrained Rip-up-and-Reroute (TRR) process. For each

cell boundary with wiring overflow, we rip up every wire across this boundary and reroute it through

maze routing. For each wire, we rip up the part corresponding to the soft edge. For example, in Figure 1,

we rip up edge (v0, v3) for tree T
3 across the thickened boundary. In the maze routing, we define the cost

across a boundary b to be D2(b) if D(b) < 1; otherwise KD2(b), where K is any large number greater

than Dmax. Such quadratic cost can give a much heavier penalty to the congested path in a continuous

manner. Similar cost definition is also employed in the work of [33] and a good discussion on the cost

definition in maze routing can be found in [19]. We keep an arbitrary constant boundary ordering and

repeat this process until there is no wire overflow or no improvement on congestion. On each boundary

with wiring overflow, the rip-up-and-reroute also follows an arbitrary constant net ordering. Because

of the iterative nature, the net ordering is not important. A net rerouted earlier in an iteration may

have a result poorer than those rerouted later in the same iteration, since its rerouting is based on a

poorer routings of other nets. Therefore, it should be rerouted earlier in the next iteration to make

larger corrections. This explains why we use a constant net ordering [11].

In the timing-constrained rip-up-and-reroute process, we also exploit the advantage from the slideable

Steiner nodes (SSN). For tree T 3 in Figure 5, we can slide the SSN v3
3 along its locus to find a better
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rerouting solution. For each SSN, we rip up all of its incident edges ( corresponding the soft edges after

phase 1 ), and reroute them at the same time for different SSN locations on its locus. For the example in

Figure 5, we test the locations at v3
3, v

3
3′
and v3

3”
, and finally choose a location giving the least rerouting

cost defined above. Note that we do not allow any edge stretch here for the sake of simplicity.

In TRR method, we need to transform the delay constraints into physical constraints on edge length,

i.e., we need to compute the maximum allowed elongation δij for routing edge eij such that no delay

violation is caused. We use Cj to represent the load capacitance seen from node vj . The subtree rooted

at vi is denoted as Ti. For the interconnect wire, the resistance and capacitance per unit length is r̂ and

ĉ, respectively. The length of a routing path from driver v0 to a node vi ∈ V is denoted as p0,i, and the

length of the common path for two nodes vi, vj ∈ V from the driver is expressed as p0,ij . For example,

in Fig 12, p0,ik is the path length from v0 to v′. For any sink vk ∈ V , we can compute the maximum δij

such that the delay slack s(vk) is non-negative. If vk /∈ Ti, i.e., vk is not downstream of vi, as shown in

Figure 12, then

δij =
s(vk)

(Rd + r̂p0,ik)ĉ
(2)

where Rd is the driver resistance, since the elongation of eij affects only the load capacitance seen from

v′. If vk ∈ Ti, such as v′k in Figure 12, δij satisfies the following equation:

s(vk) = (Rd + r̂p0,i)ĉδij +
1

2
r̂ĉ(2lijδij + δ2

ij) + r̂δijCj , (3)

where lij is the original length of edge eij . This equation can be solved to obtain the δij . In the case

of double roots for this equation, we choose the one where the slope of function is negative, since the

delay slack should be monotonically decreasing with respect to the allowed elongation. We compute δij

for all the sinks in the routing tree and choose the minimum value as a safe value. In the case where a

delay without closed form expression is employed, the actual delay need to queried each time a detour

may occur in the maze routing.

The Slideable Steiner Nodes(SSN) can be exploited in TRR as well. For an SSN, we rip up the three

incident soft edges all together and compute the minimal congestion paths to the locus of the SSN at

each grid cell. For the example in Figure 5, we rip up edges e3
03, e

3
31 and e3

32. Then, a maze routing

search is performed from nodes v3
3, v

3
3′
and v3

3′′
simultaneously toward nodes v3

0, v
3
1 and v3

2. Note that v3
3,
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v3
3′

and v3
3′′

are the three candidate locations for the SSN and moving any of them within its grid cell

will not affect congestion. We choose one of the candidate locations based on the total cost of the three

paths connected to it in the maze routing. For example, the cost of choosing v3
3′

is the summation of

the following paths found in maze routing: (v3
0, v

3
3′
), (v3

3′
, v3

1) and (v3
3′
, v3

2). We finally select a candidate

location with the minimum total paths cost and route its incident soft edges according the paths found

by the maze routing.

7 Experimental results

We implemented our algorithm in C++ and performed experiments on an Sun Ultra-10 workstation

with 2Gb of memory. The experiments are performed on ten benchmark circuits provided by the VLSI

CAD Lab at UCLA. These circuit’s characteristics are summarized in Table 1. The experiments aim

to test the effect of the proposed algorithm on both timing and congestion. Traditional rip-up-and-

reroute(RR) and timing-constrained rip-up-and-reroute(TRR) methods are tested together with our

algorithm(HBA+TRR) on the same set of circuits.

Table 1: Benchmark circuits.
Circuit # modules # nets # pins grid

a9c3 147 1148 2674 45 × 42

ac3 27 200 609 48 × 46

ami33 33 112 480 50 × 46

ami49 49 368 861 45 × 45

apte 9 77 218 40 × 47

hc7 77 430 1748 49 × 56

hp 11 68 255 38 × 42

playout 62 1294 2957 37 × 32

xc5 59 975 3124 45 × 41

xerox 10 171 561 40 × 38

The results are listed in Table 2. The initial routing trees are obtained through MVERT [26] algo-

rithm. In the implementation of MVERT, we replace the SERT [20] algorithm in the initial routing

by the AHHK [34] algorithm which can give similar routing tree performance at a faster speed. As a

reasonable way of specifying timing constraints, after constructing the AHHK trees, we randomly assign

a positive slack to each sink as a timing constraint. The subsequent non-Hanan optimization stage in

MVERT will keep the routing tree to satisfy the timing constraints and minimize its wirelength at the

same time. The second column in Table 2 gives the number of soft edges |E| generated by the MVERT
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algorithm.

Table 2: Experimental results for RR(unconstrained rip-up-and-reroute), TRR(timing-constrained rip-
up-and-reroute) and HBA+TRR without/with using SSN. In the results of RR, Fov = 0, Dmax = 1 for
all the circuits except that Fov = 1, Dmax = 1.13 on xerox.

RR TRR HBA+TRR(noSSN) HBA+TRR(SSN)

Circuit |E| #neg slack(ps) Fov Dmax Fov Dmax CPU(s) Fov Dmax CPU(s)

a9c3 1727 191 -40345 11 1.12 10 1.12 216 4 1.06 261

ac3 499 105 -18448 25 1.29 2 1.14 12 2 1.14 16

ami33 393 32 -12130 5 1.60 1 1.20 8 1 1.20 11

ami49 570 156 -31771 24 1.22 0 1.00 20 0 1.00 26

apte 163 32 -9986 11 1.71 0 1.00 3 0 1.00 3

hc7 1623 155 -47274 11 1.33 5 1.22 36 3 1.22 63

hp 232 27 -6667 7 1.17 1 1.17 2 1 1.17 5

playout 1816 337 -31211 20 1.26 0 1.00 257 0 1.00 265

xc5 2390 174 -19813 32 1.14 0 1.00 151 0 1.00 177

xerox 437 61 -11391 6 1.25 4 1.13 9 3 1.13 14

The congestion results are expressed in terms of total overflow Fov and the maximum demand density

Dmax. In order to see the impact of exploiting SSNs, two versions of our algorithm (HBA+TRR) are

tested. The results without using SSNs are listed in column 7, 8 and 9 of Table 2 while the results

exploiting SSNs are in column 10, 11 and 12. The SSNs are exploited through the Fleischer-Wayne

algorithm [32], which is a relatively computationally expensive method. The value of ε in the Fleischer-

Wayne algorithm determines the tradeoff of runtime and the solution quality of the generalized network

flow problem. However, we found that the final routing quality is not sensitive to the value of ε in

our experiment. Therefore, we empirically let ε = 0.2, which is a relatively large value so that the

Fleischer-Wayne algorithm can converge at a reasonable speed. Another implementation strategy is

to enable the the Fleischer-Wayne algorithm only at lower hierarchical level, i.e., we will not exploit

SSNs at higher hierarchical levels. Since a decision at a higher hierarchical level may be unfavorable

to subsequent lower levels, it is not worthwhile to invest computational resources on the expensive

Fleischer-Wayne algorithm. On the other hand, exploiting SSNs at lower hierarchical levels will yield

a more definite impact on final solution quality. Because a top-down approach is inherently in favor to

higher hierarchical levels, it is reasonable to provide SSNs as additional leverage to lower hierarchical

levels as a compensation. Moreover, it is more economical to apply the Fleischer-Wayne algorithm to

lower hierarchical levels where the problem size is smaller. Based on our experience, we enable the

Fleischer-Wayne algorithm only when k · l < 1000, where k is the number of cell boundaries along a
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bisector line and l is the number of wires across the bisector line.

Comparing the results from with and without exploiting SSNs, we can see that SSNs help to improve

the congestion quality in a few circuits (a9c3, hc7 and xerox). Several conditions need to be satisfied

to let the SSNs taking effect: (1) The existence of SSNs depends on timing constraints and cannot be

guaranteed. (2) The locus of an existing SSN should intersect the bisector line. (3) The SSN should be

in a congested region so that sliding its location makes a difference. If it is not in a congested region,

its location will not affect the congestion result. (4) Even in a congested region, the original location

of an SSN must be at an inferior point that can be improved. It is common that one of these four

conditions is not satisfied, so that enabling the use of SSNs does not make difference on congestion

results. The extra CPU time from exploiting SSNs is limited due to our careful application strategy on

the Fleischer-Wayne algorithm.

The timing-constrained rip-up-and-reroute(TRR) method is a naive combination of timing constraints

with rip-up-and-reroute in an effort to minimize the congestion subject to the timing constraints. Note

that the SSNs are not exploited in the TRR here. The congestion results of TRR are in column 5 and

column 6. We can observe that our approach always gives significant lower congestion in terms of both

total overflow and the maximum demand density. Since the rip-up-and-reroute is good at congestion

reduction only in a local region and lacks a global view, it is more likely to get stuck in a deadlock and

fail to find a better solution under timing constraints. On the other hand, the hierarchical approach is

better at a global planning level, and therefore, a combination of these two complementary approaches

can yield a good result on congestion reductions subject to timing constraints.

For reference, we also performed the rip-up-and-reroute (RR) on the same circuits without imposing

timing constraints during the congestion reduction process. The unconstrained approach is able to

eliminate the wiring overflow for almost every circuit except xerox. Obviously, the congestions from

RR are always better than the timing-constrained approaches. In order to see how much we may lose

on timing performance if we ignore it in congestion reduction, we computed the number of nets with

negative slack and the worst slack among all of the nets from the results of RR and listed them in column

3 and 4 in Table 2. We can see that every circuit has a very high negative slack and up to half of the

nets could have timing violations for some circuits. Our proposed timing-constrained method results in

no timing violations at all. The congestion results from our method is not sensitive to small changes
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on timing constraints. However, if we relax the timing constraints sufficiently, we can reach congestion

results similar to those from RR, i.e., results with less congestions. Since our approach strictly obeys

the timing constraints, the change on wiring capacities will not affect the timing performance.

Table 3: Runtime in seconds for three phases of the algorithm and the maximum number of iterations
on max-flow algorithm in each network construction in Phase 2.

Circuit Phase 1: runtime Phase 2: runtime Phase 2: #iter Phase 3: runtime

a9c3 < 1 247 3 11

ac3 < 1 13 2 1

ami33 < 1 8 3 < 1

ami49 < 1 22 4 < 1

apte < 1 3 0 < 1

hc7 < 1 56 5 2

hp < 1 3 2 < 1

playout < 1 261 1 3

xc5 1 172 2 3

xerox < 1 9 4 1

The total runtime for three phases of our algorithm (with the exploitation of SSNs enabled) on

each circuit are listed in the rightmost column in Table 2. In Table 3, we decompose the runtime for

each phase. As we can see, Phase 2-HBA is the dominating part of the run time. In Phase 2, the

adaptive network construction process includes several iterations of max-flow algorithm. In the column

4 of Table 3, we listed the maximum number of iterations among all of the network constructions.

Since each circuit has different number of nets and the number of pins on one net may be between

two and several dozens, it would be more interesting to evaluate the average runtime on each 2-pin

net as a normalized comparison. It is conceivable that the formulation of soft edges is equivalent to

a decomposition to 2-pin nets. Based on this data, the average runtime is found to be between 0.02

second and 0.15 second per two pin net 5.

8 Conclusion and future work

In this work, we have proposed a new approach to timing-constrained global routing. We formalize

the routing tree topology flexibilities under timing constraints through the concepts of a soft edge

and a slideable Steiner node, and trade these flexibilities into congestion reduction while the timing

constraints are satisfied. Experimental results show that the traditional rip-up-and-reroute method

5The worst runtime is from a9c3, which has 261 seconds runtime on 1727 soft edges(1727 2-pin nets), and has an average
runtime of 0.15 second/2-pin-net.
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may cause significant delay violations and is poor on congestion when timing constraints are imposed

directly. Our proposed algorithm can achieve good congestion results while satisfying timing constraints.

One limitation of our work is that only local timing-constrained routing flexibilities are employed

compared with the global flexibilities used in [17]. A combination of the global and local flexibilities is

expected to yield more timing-constrained congestion reduction. We assume that the timing constraints

for each net is given and the consumption of the positive slack on each net will not cause timing violation

along any path in the timing graph. Obviously this assumption depends on a good slack budgeting for

each net along a timing path. If we can utilize a path-based slack directly, we will be able to avoid the

slack budgeting and potentially obtain more routing flexibilities as in [17]. Therefore, including global

flexibilities and path-based timing constraints into our current method will be a good direction of future

research.
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