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Abstract

With the rapid scaling of IC technology, buffer insertion has become an increasingly critical optimization technique

in high performance design. The problem of finding a buffered Steiner tree with optimal delay characteristics has

been an active area of research, and excellent solutions exist for most instances. However, there exists a class of

real “difficult” instances which are characterized by a large number of sinks (e.g., 20-100), large variations in sink

criticalities, non-uniform sink distribution, and varying polarity requirements. Existing techniques are either

inefficient, wasteful of buffering resources, or unable to find a high-quality solution. We propose C-Tree, a two-level

construction that first clusters sinks with common characteristics together, constructs low-level Steiner trees for

each cluster, then performs a timing-driven Steiner construction on the top-level clustering. We show that this

hierarchical approach can achieve higher quality solutions with fewer resources compared to traditional timing-

driven Steiner trees.

1.  Introduction

It is now widely accepted that interconnect is becoming increasingly dominant over transistor and logic

performance in the deep submicron regime. Buffer insertion is now a fundamental technology used in modern

VLSI design methodologies (see Cong et al. [10] for a survey). Cong [9] illustrates that as gate delays decrease

with increasing chip dimensions, the number of buffers required quickly rises. He expects that close to 800,000

buffers will be required for 50 nanometer technologies. It is critical to automate the entire interconnect

optimization process to efficiently achieve timing closure.

Several works have studied the problem of inserting buffers to reduce the delay on signal nets. Closed form

solutions for two-pin nets have been proposed in [1][6][8][13]. van Ginneken’s dynamic programming algorithm

[22] has become a classic in the field. Given a fixed Steiner tree topology, his algorithm finds the optimal buffer

placement on the topology under the Elmore delay model for a single buffer type and simple gate delay model.

Several extensions to this work have been proposed (e.g., [2][3][18][20][21]). Together, these enhancements make

the van Ginneken buffer insertion framework very powerful as it can incorporate slew, noise, and capacitance
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constraints, a range of buffer and inverter types, and higher order gate and interconnect delay models, while

retaining optimality under many of these variations. Most recently, research on buffer insertion has focused on

accommodating various types of blockage constraints [12][16][17].

Clearly, the primary shortcoming with the van Ginneken style of buffer insertion is that it is limited by the

given Steiner topology. Thus, both Okamoto and Cong [21] and Lillis et al. [20] have combined buffer insertion

with a Steiner tree constructions, the former with A-Tree [11] and the latter with P-Tree [18]. Later, in [12], the

work of [21] was extended to handle fixed buffer locations and wiring blockages.

Observe that the simultaneous approach is not necessarily any better than the two-step approach of first

constructing a Steiner tree, then running van Ginneken style buffer insertion. An optimal solution can always be

realized using the two-step approach if one uses the “right” Steiner tree (i.e., the tree resulting from ripping buffers

out of the optimal solution) since the buffer insertion step is optimal. Of course, finding the right tree is difficult

since the buffer insertion objective cannot be directly optimized. We believe if one tries to construct a “buffer-

aware” Steiner tree, i.e., a tree with topology that anticipates good potential buffer locations, that the two-

step approach can be as effective (and potentially more efficient) than the simultaneous approach.1

For the majority of the nets in a design, finding the right Steiner tree is easy (assuming no blockages or buffer

resource constraints). For two-pin nets a direct connection is optimal, and there are a small number of possible

topologies for five sinks or less. The purpose of our work is to focus on the most difficult nets for which finding the

appropriate Steiner topology is not at all obvious. These nets will typically have more than 15 sinks, varying

degrees of sink criticalities, and differing sink polarity constraints. Optimizing these nets effectively is often

critical, as large high-fanout nets are more likely to be in a critical path because they are inherently slow.

Of course, a good heuristic for finding the right Steiner tree must take into account potential buffering.

Consider the 4-sink example in Figure 1(a) where only one of the sinks is critical. The unbuffered tree (a) has

minimum wire length, yet inserting buffers (b) would require three buffers to decouple the three non-critical sinks,

while the buffered tree in (c) required but one decoupling buffer. Thus, the tree in (c) uses fewer resources, and

further may actually result in a lower delay to the critical sink since the driver in (c) drives a smaller capacitive load

than in (b). One can identify this topology by first clustering the non-critical sinks together and forcing the

topology to route everything within a cluster as a separate sub-tree. If there are multiple critical sinks (d), then a

totally different topology which groups the critical sinks together in the same sub-tree likely yields the best

1 None of the existing simultaneous tree and buffering approaches can handle the types of constraints that a van Ginneken style
framework can (like slew constraints and higher-order delay modeling). One could use the simultaneous approach (with its
simpler assumptions and modeling) first to uncover the routing tree topology and then pass this result, with the buffers deleted,
to the more sophisticated buffer insertion algorithm that uses a fixed routing topology.



 3

solution. This tree would be identifiable if the critical sinks and non-critical sinks were clustered into two separate

clusters and sub-trees were constructed for each cluster. The Steiner algorithm must be aware of opportunities to

manipulate the topology to allow potential off-loading of non-critical sinks.

Figure 1 Example where (a) the tree with less wire length yields (b) an inferior buffered tree
than (c) the tree with more wire length. The tree in (b) requires three buffers to decouple the
load, while the tree in (c) requires just one. If instead, two sinks are critical than the best buff-

ered topology (d) would group these critical sinks into the same subtree.

However, the crux of the problem with current buffer-tree technology is that it cannot adequately handle

polarity constraints. During early synthesis, fanout trees are built to repower and distribute a signal and/or its

complement to a set of sinks without knowledge of the layout of the net. Once the net is placed, the tree is often

grossly suboptimal. At this stage, one can rip out the fanout and rebuild it using physical design information.

However, ripping out the complete fanout tree of buffers and inverters may leave sinks with opposing polarity

requirements.

Figure 2 shows a net with five sinks with normal polarity (indicated by a plus) and five with negative polarity

(indicated by a minus). The tree in (a) requires a minimum of five inverters simply to ensure that polarity

constraints are satisfied, while the tree in (b) requires just one. This solution can be identified by clustering the

positive and negative sinks into two disjoint clusters and creating separate sub-trees for the sinks in each cluster.

Notice that it is fairly easy to reduce the wire length in (b) while preserving the topology, which actually yields a

self-overlapping tree. Existing timing-driven Steiner tree constructions (e.g., [5][10][18]) cannot find this topology.

In general, forming one tree connecting negative sinks and one connecting positive sinks will minimize the number

(a)

(c)

critical

critical

(b) critical

(d) critical

critical
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of buffers but waste wire length. Ideally, one would like to find a tree construction that balances both whirling and

buffering resources.

Figure 2 Example of how polarity constraints affect topology. The tree in (a) requires at least
five inverters to satisfy polarity constraints while the tree in (b) requires just one.

The purpose of this work is to study Steiner tree constructions for particularly difficult instances to optimize

the buffered tree resulting from van Ginneken style buffer insertion. We propose the C-Tree heuristic that first

clusters sinks based on spatial, temporal, and polarity locality. A sub-tree is then formed within each cluster, and

finally, the trees are connected using a timing-driven Steiner at the top level. We show that this two-level approach

is not only more efficient than the existing state-of-the art, but also generates higher quality solutions while using

fewer buffers.

The remainder of the paper is as follows. Section 2 presents notation and our problem formulation. Section 3

presents our proposed algorithm, and Section 4 presents experimental comparisons. We conclude in Section 5.

2.  Preliminaries

We are given a net consisting of pins, where is the unique source and

are the sinks. Let and denote the 2-dimensional coordinates of pin , and let denote

the required arrival time for a sink . Each sink has a capacitance and a polarity constraint ,

where for a normal sink and for an inverted sink. The constraint requires

the inversion of the signal from to , and prohibits the inversion of the signal. A rectilinear Steiner

tree has a set of nodes where is the set of intermediate 2-dimensional Steiner points and a

set of edges such that each edge in is either horizontal or vertical. We also assume that wire resistance and

(a)
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+ + ++ +-- - - -
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capacitance parasitics are given to permit interconnect delay calculation for a particular geometric topology.

Given a Steiner tree , we say that a buffered Steiner tree is constructed from if (i)

there exists a set of nodes (corresponding to buffers) such that , (ii) each edge in is either in

or is contained2 within some edge in and (iii) is a rectilinear Steiner tree. Consequently, one can obtain

the original tree by contracting with respect to all nodes in . In other words, a buffered Steiner tree

which can be constructed from must have the same wiring topology; buffers can only be inserted on the edges in

. Running a van Ginneken style buffer insertion algorithm on is guaranteed to yield such a tree . Let

be the cost of the wiring and buffering resources used by . For example, could be a linear

combination of the total buffer area used in  and the wire length of .

Each Steiner tree (with or without buffers) has a unique path from to a sink . For each node , let

denote the particular buffer type (size, inverting, etc.) chosen from a buffer library that is located at . Let

be the delay from to within . The delay can be computed using a variety of techniques.

For the purposes of this discussion, we adopt the Elmore delay model [14] for wires and a switch-level linear

model for gates. This formulation is by no means restricted to these models (see e.g., [3]). The slack for a tree is

given by .

The obvious objective function for buffer insertion is to maximize for a buffered tree . This can

clearly waste resources as several additional buffers may be used to garner only a few extra picoseconds of

performance. Another alternative is to find the fewest buffers such that . The problem with this

formulation is often a zero slack solution is not achievable, yet it is still in the designer’s interest to reduce the slack

of critical nets, even if zero slack is not achievable. Instead of addressing either objective, one can generate a set of

solutions that trade-off maximizing the worst slack with the number of inserted buffers (or total buffer area). This

can be done with a van Ginneken style algorithm (such as Lillis et al. [19]) or within a simultaneous optimization

[20]. Thus, our problem statement is as follows:

Buffered Steiner Tree Problem: Given a net , a buffer library , and unit interconnect parasitics for the

technology, find a single Steiner tree over so that the family of buffered Steiner trees constructed from

by applying a van Ginneken style algorithm using satisfies polarity constraints and is dominant. We say a family

is dominant if for every buffered tree , there exists a tree in such that and

.

The problem is formulated in such a way that it might be possible that no optimal tree exists because a

2 An edge connecting points and is contained within an edge connecting points and if
 and .
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dominant family may require multiple topologies. The purpose of this type of formulation is not to restrict the

algorithm to a particular buffer resource or timing constraint, but rather to allow the designer (or a post-processor)

to find a solution within the family that is the most appropriate for the particular design.

3.  The C-Tree Algorithm

3.1  Overview

We call our Steiner construction C-Tree, for “Clustered tree” which emphasizes the clustering step, as

opposed to the underlying timing-driven Steiner tree heuristic. The fundamental idea behind C-Tree is to construct

the tree in two levels.3 C-Tree first clusters sinks with similar characteristics (criticality, polarity and distance). The

purpose of this step is to potentially isolate positive sinks from negative ones and non-critical sinks from critical

ones. The algorithm then constructs low-level Steiner trees over each of these clusters. Finally, a top-level timing-

driven Steiner tree is computed where each cluster is treated as a sink. The top-level tree is then merged with the

low-level trees to yield a solution for the entire net.

Figure 3  High-level description of the C-Tree framework.

Figure 3 presents a more detailed description of the C-Tree framework. We assume the existence of two

generic subroutines, Clustering and TimingDrivenSteiner, which are described later. However, one could plug in a

variety of implementations to achieve the clustering and routing functionalities within the C-Tree framework.

Step 1 invokes Clustering, which takes the sinks of a net as input and outputs a set of clusters

. The net corresponding to the top-level tree is also initialized to contain the source. Step 2

3 Note that the C-Tree approach easily extends to multilevel clustering. We present the following discussion using two levels
for simplicity.

C-Tree Steiner Algorithm (N, k)

Input:  ≡ Net to be routed

≡ Number of clusters

Output: ≡ Routing tree over

1. . Set .

2. for  to  do

3. Find a tapping point  for cluster .

4. Add  to  and label  as the source.

5. Let .

6. Set , , and add  to .

7. Compute .

8. Combine all edges and nodes of  into tree .

N s0 s1 … sn, , ,{ }=
k
T N

N1 N2 … N k, , ,{ } Clustering N s0–( )= N0 s0{ }=
i 1= k

tpi N i

t pi N i tpi

T i TimingDrivenSteiner N i( )=
RAT tpi( ) slack T i( )= cap tpi( ) cap T i( )= tpi N0

T 0 TimingDrivenSteiner N0( )=
T 0 T 1 … T k, , , T

N1 N2 … N k, , ,{ } N0
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looks through the clusters, and in Step 3, a tapping point is computed for cluster . The tapping point

represents the source for the tree to be computed over and also the point where the top level tree will

connect to . Although there are several possible ways to compute the tapping point, we choose to be a point

on the bounding box of closest to . If lies within the bounding box, the tapping point is instead itself.

Once the tapping point is chosen it is added to in Step 4 as the source node, and then TimingDrivenSteiner is

called on to yield a tree in Step 5. Step 6 then propagates the required arrival time up the sub-tree computed

for to the tapping point. The capacitance for the sub-tree is also updated at the tapping point. After these

operations have been done for all the tapping points, consists of plus the tapping points which serve as

sinks. Step 7 computes the top-level Steiner tree for this instance, and Step 8 merges all the Steiner trees into a

single solution.

Figure 4  Example execution of the two-level Steiner algorithm.

Figure 4 illustrates an example execution of the algorithm. In (a), a clustering of the sinks is performed. Note

that in the example the clustering is geometric, but due to varying timing and polarity constraints, clusters certainly

could overlap each other. In (b), the tapping point is shown for each cluster as a black circle, and the Steiner trees

are then computed for each cluster. In (c), the top-level Steiner tree which connects the source to the tapping points

tpi N i

T i N i T 0

T i tpi

N i s0 s0 s0

N i

N i T i

T i

N0 s0 k

(a) (b)

(c) (d)
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is computed, and in (d) the tapping points are removed and the existing Steiner edges merged to yield a single tree

for the entire net. The clear advantage of this approach is that van Ginneken style buffer insertion can insert buffers

to either drive, decouple, or reverse polarity of any particular cluster. Of course, the algorithm is sensitive to the

actual clustering algorithm used, which we now describe.

3.2  Clustering Distance Metric

The key to clustering any set of data is to devise a dissimilarity or distance metric between pairs of points. The

sinks that we are clustering are characterized by three types of information: spatial (coordinates in the plane),

temporal (required arrival times), and polarity. We seek to define a distance metric that incorporates all of these

elements. To do this, we first define spatial, temporal and polarity metrics, then combine them using appropriate

scaling into a single distance metric.

Appropriate spatial and polarity metrics are fairly straightforward. For two sinks and , let

denote the spatial (Manhattan) distance between two sinks, and let

denote the polarity distance. The polarity distance has value zero when sinks

have the same polarity and one otherwise.

Finding a temporal metric is trickier. First, is not the only indicator of sink criticality. If two sinks and

have the same yet is much further from the source than , then is more critical since it will be much

harder to achieve the over the longer distance. An estimate of the achievable delay to must be incorporated

to reflect the distance from the source. If one assumes an optimally buffered direct connection from to , with

sub-trees decoupled by buffers with negligible input capacitance, then the achievable delay is equivalent to the

formula for optimal buffer insertion on a two-pin net. We use the formula from [1] to denote , the

potentially achievable delay from to . Let be the potentially achievable

slack for . Now  gives a better indicator of the criticality of  than .

Yet, a form like still does not capture the desired behavior. For example, assume that the

achievable slack values for three sinks are given by , , and . Sink

is most critical while and are both non-critical. Thus, intuitively is more similar to than to ,

despite the 8 ns difference between and . A temporal metric needs to capture that. Let denote the

criticality of , where if is the most critical sink and as . In other

words, the criticality of a sink is one if it is most critical and zero if it is totally uncritical; otherwise it lies

somewhere in between zero and one. We propose the following measure of criticality:

si s j

sDist si s j,( ) x si( ) x s j( )– y si( ) y s j( )–+=

pDist si s j,( ) pol si( ) pol s j( )–=

RAT si

s j RAT si s j si
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s0 si
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si AS si( ) si RAT si( )

AS si( ) AS s j( )–

AS s1( ) 1ns–= AS s2( ) 2ns= AS s3( ) 10ns=

s1 s2 s3 s2 s3 s1

s2 s3 crit si( )

si crit si( ) 1= si crit si( ) 0→ AS si( ) ∞→
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 where  and (1)

Here and are the minimum and average values over all sinks and is a user parameter.

One can see that indeed is one when and zero as goes to infinity. For a sink

with average achievable slack ( ), then is about 0.135 when .4 This average

sink will have a criticality much closer to that of a sink with infinite as opposed to minimum .We can now

define temporal distance as the difference in criticalities, i.e., .

If two sinks and are both extremely non-critical, but have different achievable slacks, their temporal

distance will be practically zero. For example, assume that , , , and the two sinks

have achievable slacks of  and . The respective criticalities are  and , so .

Both temporal and polarity distances are on a zero to one scale, so we wish to scale spatial distance to make

combining the terms easier for the complete distance metric. Let

be the spatial diameter of the set of sinks. The scaled distance between two sinks can be expressed as .

Our complete distance metric is a linear combination of the spatial, temporal, and polarity distances:

. (2)

The parameter lies between and and trades off between spatial and temporal distance. In our

experiments, we use based on empirical studies. Observe that the distance between two sinks with the

same polarity will always be less than or equal to the distance between two sinks with opposite polarity. This

occurs because two sinks with the same polarity have their distance bounded above by one, while two sinks with

opposite polarity have their distance bounded below by one. This property ensures that polarity takes precedence

over spatial and temporal distance in determining dissimilarity, which is important to avoiding the behavior shown

in Figure 2(a).

3.3  Clustering

For clustering sinks5, we adopt the K-Center heuristic [15] which seeks to minimize the maximum radius

(distance to the cluster center) over all clusters. K-Center is just one of several potential clustering methods (e.g.,

bottom-up matching and complete-linkage) that could be used to achieve the purpose of grouping sinks with

common characteristics. K-Center iteratively identifies points that are furthest away; which are called cluster seeds.

4 In our experiments, we found using  generates good results, and this is what is used in Section 4.
5 One could modify the sink clustering algorithm to forbid the bounding box of a cluster to intersect the source node. We did

not notice any appreciable change in results with this variation, but it may be worth more detailed investigation.
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The remaining points are clustered to their closest seed. Let be the

diameter of any set of points . For geometric instances, K-Center guarantees that the maximum diameter of any

cluster is within a factor of two of the optimal solution [15].

The complete description of the K-Center algorithm is shown in Figure 5. Step 1 picks a random sink , then

identifies the sink furthest away from , which will lie on the periphery of the data set. This step identifies as

the first cluster seed, which are all contained in the set . Steps 2-5 iteratively find -way clusterings for

until the ratio of the diameter of the largest current cluster to the diameter of falls below the threshold . Step 3

identifies the next seed which is furthest away from already identified seeds. Steps 4-5 then form a clustering by

assigning each sink to the cluster corresponding to its closest seed. After the diameter threshold is reached in Step

2, Step 6 returns the final clustering. The procedure has  time complexity.

Figure 5 K-Center clustering algorithm over a set of sinks S.

Figure 6  16 point example illustrating the K-center algorithm.
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ŝ S W⁄∈ d min dist s ŝ,( ) s W∈{ }=

W W ŝ{ }∪=
W w1 w2 … w W, , ,{ } N1 N2 … N W, , ,{ } W

N i wi{ }= 1 i W≤ ≤
s S W⁄∈

wi W∈ dist s wi,( ) s N i
N1 N2 … N k, , ,{ }

s

s

w3

w4

w2

w1

w3

w4

w2

w1

(a) (b) (c)



 11

Figure 6 illustrates an example of the K-center algorithm applied to a 2-dimensional data set with 16 points,

where . In (a) a random point is chosen and then the point which is furthest from is identified. In (b),

this is relabeled as , a cluster seed. The order that the four seeds were identified are indicated by the subscripts:

is furthest from , is furthest from both and , and is the furthest point from , , and .

In (c), each point is mapped to its closest seed, revealing four clusters.

3.4  Timing-Driven Steiner Tree Construction

For the timing-driven Steiner tree construction, we adopt the Prim-Dijkstra trade-off method from [5]. The

algorithm trades off between Prim’s minimum spanning tree algorithm and Dijkstra’s shortest path tree algorithm

via a parameter which lies between and . The justification behind this approach is that Prim’s algorithm

yields minimum wire length (for a spanning tree), while Dijkstra’s results in minimum tree radius. A trade-off

captures the desirable properties behind both approaches.

Our implementation is as follows. We run the Prim-Dijkstra algorithm for for the

clusters and the top-level tree. After each spanning tree construction, we run a post-processing algorithm to remove

overlapping edges and generate a Steiner tree. Of the five constructions, the tree which minimizes 6 is

selected. A second post-processing step is then invoked to reduce delay further. In this step, each sink is in turn

visited, the connection from the sink to the existing tree is ripped up and alternative connections to the tree are

attempted. Any connection which either decreases wire length or improves slack is preserved.

Certainly, alternative timing-driven Steiner tree algorithms could be used instead. In fact, we tried using the P-

TreeA algorithm [20] which generates the tree with the best timing properties such that it has minimum wire length

and obeys a given sink permutation. We found that this would sometimes yield trees with large radius and hence

poor timing characteristics. P-TreeAT overcomes this problem but uses significantly more run-time. We chose the

Prim-Dijkstra algorithm because it is simple to implement, it is efficient and scalable, and it outperformed the

critical sink constructions of [7] in separate experiments.

4.  Experimental Results

For our experiments, we identified 12 difficult nets on various industrial designs. The polarity characteristics

and timing constraints for the nets are summarized in Table 1.7

6 Note that for the clusters, no driver exists. We choose a mid-level buffer from the technology to use as a phantom driver for
the slack calculation.

7 The polarity constraints were actually randomly assigned for these test cases, yet it does represent the difficulties we have
seen for actual We have been able to extract the actual polarity constraints from real industrial nets/designs, but were unable
to generate the results in time for the original submission deadline. This data will be included in any subsequent revision.

k 4= s ŝ s

w1

w2 w1 w3 w1 w2 w4 w1 w2 w3

c 0 1

c 0.0 0.25 0.5 0.75 1.0, , , ,=

T slack T( )
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We compare C-Tree to both the P-Tree [20] and Prim-Dijkstra [5] timing-driven Steiner constructions. P-Tree

was shown to yield better timing results than either the SERT [7] or A-Tree [11] constructions. P-Tree actually

consists of two algorithms: P-TreeA seeks to minimize area (or wire length when there is no wire sizing), while P-

TreeAT generates a family of solutions that trade off between area and timing. The Prim-Dijkstra algorithm is

equivalent to “flat” C-Tree when the number of clusters equals the number of sinks. For each tree generated we run

van Ginneken style buffer insertion using a library of five non-inverting and two inverting buffers to generate a

family of solutions. We also compare to a buffered P-Tree (BP-Tree) which simultaneously inserts buffers and

performs the Steiner routing. Like P-Tree, BP-Tree also has two modes which we suffix with either N (normal) or F

(fast).

Table 1 Polarity and temporal characteristics of the 12 nets used for
experimentation.

4.1  Algorithm Comparisons

The results are summarized in Table 2 and Table 3. The results are split into two tables since the data could not

fit into a single table. Comparisons for each net are shown in several rows. The first two rows contain results for P-

TreeAT and P-TreeA, except for the three largest nets for which P-TreeAT ran out of memory (on a 2Gb machine).

The next row contains results for buffered P-tree in normal mode except for the largest net (also because it ran out

of memory). The first C-Tree row uses the number of clusters equal to the number of sinks, giving the results for

“flat” C-Tree. Results are also presented for C-Tree for a decreasing number of clusters to show the trade-off for

using a different number of clusters. For each algorithm, we present the following in the two tables:

• slack to the most critical sink (ps) and wire length of the tree before the buffer insertion optimization

step,

Net
Name

Sinks RAT

+ - Total min max

mcu 8 10 18 6195 6596

n107 7 10 17 1902 2560

n313 9 10 19 1233 6704

n869 11 10 21 1054 6390

n873 10 10 20 730 6656

poi3 10 10 20 52 6707

n189 15 14 29 610 6650

n786 18 14 32 97 6704

n870 24 19 43 739 6589

big1 40 48 88 1974 159565

big2 38 41 79 104 65838

big3 34 29 63 1097 40675
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• three of the family of solutions generated by the buffer insertion algorithm. The Min Opt solution is the

solution with the minimum number of buffers required to fix polarity constraints. The Full Opt solution

is the one which yields the maximum slack, regardless of the buffers used, and Mid Opt reflects a solu-

tion in between the Min and Full solutions. Although the problem formulation seeks to evaluate the

entire family, the three solutions give a reasonable picture of the trade-off curve generated by the fam-

ily.

• the slack to the most critical sink and wire length after a post-processing step on the Full Opt buffered

solution. Potentially a tree with significantly extra wire length was used to guide the buffer insertion.

Once buffers are inserted, some of this additional wire length may be eliminated via small changes in

the route. Our algorithm sought to reduce wire length as long as it did not increase slack while main-

taining the locations and topology from the Full Opt buffered tree.

• the total CPU time for the entire process (tree construction, buffer insertion, and post-processing).

Runtimes are reported for a Sun Sparc Ultra-60 with 2Gb of memory.

We make several observations.

• For the solution in the family with highest slack, C-Tree was able to find solutions with slacks at least

as high as P-TreeA, P-TreeAT or flat C-Tree for at least one clustering (except for n873 for which C-

Tree’s slack was inferior by one ps). Sometimes the C-Tree slacks were significantly better (e.g., n869,

n870, and big1), but most of the time the highest slacks were fairly indistinguishable among the algo-

rithms.

• For the solution in the family with highest slack, C-Tree found a better solution than BP-Tree for 7 of

the 12 nets. Overall, the differences in delay were fairly small, with C-Tree’s best solution averaging

29 ps improvement over BP-Tree’s best solution.

• The more clusters used by C-Tree, the fewer the number of buffers are needed to fix polarity con-

straints. With two clusters, one buffer is always sufficient to fix polarity, which shows C-Tree handles

the case in Figure 2. However, fewer clusters results in additional wire length. Indeed, the extreme case

of two clusters causes almost double the wire length since two low-level trees are being routed over the

same geometric space, one to the positive and one to the negative polarity sinks. When the number of

clusters is small, the wire length does increase significantly. Depending on the requirements of the

user, the number of clusters can be used within C-Tree to trade-off wire length with buffer area. Figure

7 illustrates this trade-off for six of the nets. Wire length generally decreases as the number of buffers

especially, when only a few buffers are used. For any number of clusters greater than , C-Tree wasn 2⁄
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able to obtain slack comparable to that of the best approach. Thus, any number of clusters between,

say,  and  are reasonable choices for optimizing the timing.

Figure 7 The trade-off between the number of buffers inserted and wire length for different
degrees of clustering within C-Tree.

• The post-processing step did not affect slack much at all, but occasionally reduced wire length (e.g.,

for big3).

• BP-Tree and P-Tree AT are clearly the most inefficient algorithms, as runtimes were over 100 times

that of C-Tree for n870 and they could not complete all of the test cases. P-TreeA is slightly more inef-

ficient than the Prim-Dijkstra approach, but C-Tree is actually the fastest of the three constructions. For

example, for big1 (the largest net), C-Tree alone took under 0.2 seconds to run for each of the cluster-

ings reported in Table 3, while flat C-Tree took 0.6 seconds. For C-Tree, the dynamic programming

buffer insertion algorithm dominates the runtime of the entire flow.

• For the larger nets, P-TreeA, BP-Tree and flat C-Tree required many more buffers to find a feasible

solution than C-Tree. For example, P-Tree required 32, 27 and 27 buffers to satisfy polarity constraints

for big1, big2, and big3, respectively while BP-Tree required 99, 20, and 19 buffers (BP-Tree in fast

mode is much more wasteful in buffering resources). Via clustering, C-Tree could generally find a

solution with slack at least as high as P-Tree with 4, 6, and 9 buffers, respectively. For n870, C-Tree

with 4 clusters found a solution with 7 buffers and slack 250 ps, which is 128 ps more than the best

result found by P-TreeAT (which needs at least 17 buffers to satisfy constraints). For big1, a 5 cluster

C-Tree solution with five buffers has slack 1653 ps, which is over 400 ps better than best slacks

obtained by P-Tree or flat C-Tree.
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Table 2 Algorithm comparisons for the first six nets.

Net
Name Algorithm #

Clusts
Before Opt Min Opt Mid Opt Full Opt Post Process

CPU
slack wire bufs slack bufs slack bufs slack slack wire

mcu

P-TreeAT 1 5948 3758 4 5877 8 5994 11 5999 5999 3758 1.1
P-TreeA 1 5910 3298 5 5697 8 5778 11 5782 5810 4453 0.4

BP-TreeN 1 --- --- 5 5961 7 5976 9 5988 --- --- 61.5
C-Tree 18 5943 3743 6 5995 9 6013 11 6014 6014 3743 0.2
C-Tree 10 5940 3635 4 5887 7 6015 10 6018 6018 3576 0.2
C-Tree 5 5884 5174 2 5863 6 6028 10 6032 6032 5084 0.3
C-Tree 2 5881 5380 1 5865 5 6028 8 6033 6034 5277 0.3

n107

P-TreeAT 1 1678 1091 5 1825 8 1835 11 1837 1837 1091 1.9
P-TreeA 1 1678 1086 5 1825 8 1833 11 1835 1835 1098 0.2

BP-TreeN 1 --- --- 5 1831 7 1848 9 1864 --- ---
C-Tree 17 1678 1086 5 1825 7 1831 8 1832 1832 1091 0.1
C-Tree 11 1665 1265 5 1824 10 1871 11 1872 1872 1141 0.2
C-Tree 4 1604 2065 2 1808 4 1863 5 1865 1866 1900 0.2
C-Tree 2 1625 1781 1 1759 3 1863 4 1865 1866 1755 0.1

n313

P-TreeAT 1 646 5290 8 1161 9 1207 10 1212 1212 5285 1.2
P-TreeA 1 647 5285 8 1161 9 1207 10 1212 1212 5285 0.5

BP-TreeN 1 --- --- 5 1062 6 1223 6 1223 --- ---
C-Tree 19 646 5280 8 1059 9 1151 10 1202 1202 5280 0.2
C-Tree 14 608 5748 8 1170 9 1212 10 1218 1218 5742 0.2
C-Tree 6 222 10475 4 962 6 1197 7 1203 1203 9028 0.4
C-Tree 2 301 9541 1 759 3 1200 4 1206 1206 9541 0.3

n869

P-TreeAT 1 127 4241 8 185 13 310 17 315 315 4236 4.0
P-TreeA 1 131 4213 7 284 11 380 15 387 387 4213 0.9

BP-TreeN 1 --- --- 5 319 8 529 11 552 --- ---
C-Tree 21 130 4213 7 280 10 376 12 378 473 4451 0.5
C-Tree 6 113 4337 3 468 6 558 9 578 578 4337 0.7
C-Tree 4 91 4533 2 451 6 573 10 582 582 4533 1.0
C-Tree 2 -114 8083 1 156 4 595 7 610 610 8083 1.7

n873

P-TreeAT 1 -788 4358 7 213 9 494 11 547 547 4293 2.6
P-TreeA 1 -780 4321 7 204 9 494 11 547 547 4272 0.4

BP-TreeN 1 --- --- 7 151 9 541 10 566 --- --- 62.1
C-Tree 20 -769 4272 7 201 9 488 12 536 536 4272 0.2
C-Tree 11 -822 4512 6 194 8 491 11 537 537 4301 0.3
C-Tree 5 -993 5328 2 -92 5 520 9 528 539 5180 0.3
C-Tree 2 -1036 5703 1 -17 4 529 7 546 546 5703 0.4

poi3

P-TreeAT 1 -727 6010 10 -418 12 38 13 40 40 6008 2.0
P-TreeA 1 -727 6008 10 -418 12 36 13 38 38 6008 1.1

BP-TreeN 1 --- --- 7 -441 9 38 10 40 --- --- 748.1
C-Tree 20 -713 5852 8 36 9 43 9 43 43 6030 0.7
C-Tree 11 -775 6550 5 36 6 43 6 43 43 6248 0.8
C-Tree 4 -860 7501 2 18 3 25 4 31 31 6087 1.2
C-Tree 2 -1155 10823 1 -544 3 16 5 26 26 10823 1.0
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Table 3 Algorithm comparisons for the second set of nets.

Net
Name Algorithm #

Clusts
Before Opt Min Opt Mid Opt Full Opt Post Process

CPU
slack wire bufs slack bufs slack bufs slack slack wire

n189

P-TreeAT 1 -1235 4963 10 217 12 514 14 560 560 4953 33.8
P-TreeA 1 -1229 4935 11 112 15 486 25 493 494 5033 2.3

BP-TreeN 1 --- --- 8 -98 10 419 12 472 --- --- 511.4
C-Tree 29 -1230 4937 9 200 12 491 15 510 510 4937 0.5
C-Tree 16 -1271 5134 8 166 10 468 12 533 533 5112 0.5
C-Tree 10 -1519 6314 5 -277 8 538 10 548 548 5576 0.6
C-Tree 4 -1858 7937 1 -1037 4 503 7 545 549 7744 0.8
C-Tree 2 -1824 7772 1 -880 3 531 6 574 578 7582 0.6

n786

P-TreeAT 1 -816 4958 9 -496 11 56 13 82 83 4896 118.4
P-TreeA 1 -807 4859 11 -494 13 58 15 82 82 4859 3.2

BP-TreeN 1 --- --- 9 -422 11 79 13 84 --- --- 784.1
C-Tree 32 -807 4859 13 -501 16 50 19 67 67 4859 0.9
C-Tree 15 -847 5308 6 -505 8 51 10 82 82 4971 0.8
C-Tree 7 -884 5718 3 -505 5 67 7 82 82 5294 0.7
C-Tree 4 -885 5736 2 -640 4 54 6 83 83 5702 1.1
C-Tree 2 -1199 9252 1 -619 4 61 6 70 70 9255 1.3

n870

P-TreeAT 1 -2587 4136 18 8 19 84 19 84 122 4119 193.3
P-TreeA 1 -2567 4089 17 49 18 98 19 99 99 4089 4.1

BP-TreeN 1 --- --- 13 97 17 288 21 295 --- --- 860.5
C-Tree 43 -2677 4061 18 -186 22 -104 26 -101 -101 4061 1.4
C-Tree 17 -2677 4347 7 133 11 245 15 254 254 4297 1.3
C-Tree 9 -2727 4464 6 132 8 241 11 258 258 4386 0.9
C-Tree 4 -2751 4546 3 33 7 250 10 267 267 4546 1.4
C-Tree 2 -3749 7688 1 -1965 5 348 9 355 355 7688 1.5

big1

P-TreeA 1 -932 14734 32 830 40 1083 48 1106 1228 16368 14.9
BP-TreeF 1 --- --- 99 1381 98 1479 97 1555 --- --- 308.5

C-Tree 88 -162 15798 33 1267 35 1412 37 1416 1416 15798 5.3
C-Tree 30 -844 23866 19 1090 21 1570 23 1595 1595 22230 7.0
C-Tree 12 -1358 30021 6 236 9 1659 12 1682 1682 25550 3.7
C-Tree 5 -1319 27224 1 -330 5 1653 8 1685 1685 27134 7.5
C-Tree 2 -982 25985 1 10 4 1660 7 1690 1692 25811 8.7

big2

P-TreeA 1 -1263 8899 27 -461 32 -71 38 -44 -44 8899 4.0
BP-TreeN 1 --- --- 20 -201 25 -29 29 -12 --- --- 494.6

C-Tree 79 -1258 9018 26 -303 29 -257 31 -255 -142 9226 3.7
C-Tree 28 -1682 13995 15 -704 22 -74 29 -68 -68 12340 3.2
C-Tree 12 -1781 15117 6 -890 12 -64 18 -34 -34 14691 2.6
C-Tree 6 -1862 16179 1 -1188 6 -41 13 -33 -32 16119 3.2
C-Tree 2 -1614 13199 1 -1118 7 -62 12 -51 -51 13199 3.1

big3

P-TreeA 1 -23 6907 27 867 31 1012 34 1021 1022 6907 1.9
BP-TreeN 1 --- --- 19 570 22 1048 25 1055 --- --- 199.6

C-Tree 63 0 6966 23 631 26 1024 28 1027 1027 6966 1.8
C-Tree 21 -282 10300 11 652 14 1013 17 1021 1022 9422 1.5
C-Tree 10 -375 11225 6 433 10 1019 14 1038 1038 10819 1.2
C-Tree 4 -317 10616 1 224 5 981 11 1020 1028 10522 1.8
C-Tree 2 -264 9965 1 278 5 992 9 1028 1028 9962 0.9
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4.2  Variations

It may seem a bit surprising that there is little slack differentiation among the algorithms. The reason for this

might be that a single critical sink dominates the slack value. For example, in net n313, the minimum RAT is 1233

ps, which is also an upper bound on the slack. From Table 2, observe that a majority of the full opt solutions obtain

slack value of over 1200 ps, which is close to optimum. Thus, for this net the critical sink must lie close to the

source which makes it an easy to obtain a good slack result (though still hard to potentially minimize resources).

To reduce the impact of this effect, we ran the same experiments on the four largest nets, with an RAT value of

zero for every sink. This serves to isolate the effects of polarity on the difficulty of the instances. The results are

summarized in Table 4. Here the advantages of C-Tree are magnified, especially for net n870. C-Tree obtains

slacks as low as -511 compared to -1408 for P-Tree and -1808 for flat C-Tree. From looking at the topology of the

solutions, we observed that P-Tree and flat C-tree contain chains of inverters that alternately drive positive and

negative sinks over a short distance. These chains cause the huge difference in delays. C-Tree avoids these chains

by clustering according to polarity. The other three nets also show large improvements for C-Tree.

Table 4 Experimental results with all sink RAT values set to zero.

Net
Name Algorithm #

Clusts
Before Opt Min Opt Mid Opt Full Opt Post Process

slack wire bufs slack bufs slack bufs slack slack wire

n870

P-TreeA 1 -3319 4089 17 -1409 23 -1349 29 -1345 -1345 4089
C-Tree 43 -3307 4062 18 -1896 22 -1812 27 -1808 -1808 4062
C-Tree 17 -3431 4356 10 -1064 18 -731 26 -721 -721 4356
C-Tree 8 -3515 4560 5 -805 7 -664 10 -608 -608 4555
C-Tree 4 -3500 4546 3 -798 4 -683 6 -597 -597 4546
C-Tree 2 -4522 7689 1 -2710 3 -562 5 -516 -511 5964

big1

P-TreeA 1 -3065 14734 32 -1461 43 -1222 53 -1206 -1186 16104
C-Tree 88 -2650 16068 31 -1021 41 -916 51 -904 -904 16068
C-Tree 37 -3385 24043 22 -1233 34 -619 46 -609 -608 22996
C-Tree 14 -3640 26833 8 -1124 14 -576 21 -508 -498 26650
C-Tree 5 -3570 26737 2 -1957 9 -540 16 -508 -500 26394
C-Tree 2 -3426 27629 1 -1975 9 -536 24 -502 -501 27545

big2

P-TreeA 1 -1577 8899 28 -1144 36 -617 48 -607 -606 9002
C-Tree 79 -1471 8960 28 -626 36 -562 45 -556 -556 8960
C-Tree 31 -1864 13292 18 -937 30 -453 42 -448 -447 12619
C-Tree 12 -2074 16134 7 -1041 10 -401 16 -351 -351 15977
C-Tree 7 -2167 17089 3 -1270 8 -372 14 -351 -349 17219
C-Tree 2 -1811 13267 1 -1163 4 -364 8 -348 -348 13267

big3

P-TreeA 1 -1204 6907 26 -839 35 -554 43 -545 -545 6907
C-Tree 63 -1175 6794 26 -807 30 -660 40 -658 -658 6794
C-Tree 22 -1440 9879 10 -625 16 -373 22 -357 -353 9160
C-Tree 11 -1609 11911 6 -834 10 -341 15 -326 -326 11645
C-Tree 7 -1548 11254 4 -852 8 -354 12 -327 -327 11249
C-Tree 2 -1436 10098 1 -981 2 -322 2 -322 -322 9967
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Finally, we ran the same experiments using the original RAT values but setting all sinks to positive polarity. In

this case, we observed very little difference among the algorithms. Thus, at least for this suite of test cases, the case

of Figure 1 is not nearly as critical as the case in Figure 2. It is the polarity differences that make these instances

difficult

4.3  Choosing the Right Number of Clusters

There clearly are trade-offs between the number of clusters and resource utilization. Typically as the number

of clusters decreases, the number of buffers also decreases, wire length increases and the slack generally improves.

However, it is difficult to know a priori what the right number of clusters will be in advance. Intuitively the amount

clustering performed should increase with the number of sinks of a net. The larger a net, the more susceptible it is

to wasting buffering resources as in Figure 2.

Even two instances with the same number of sinks could require different clustering solutions. For example,

one instance could have sinks spread far apart, while another could have natural clusters of sinks. In this example,

we would want the latter instance to have fewer clusters. Thus, for the following experiments, we modified the

stopping criteria of Figure 3 to instead stop when the diameter of the largest cluster falls below a certain threshold

(where the diameter of cluster is ). Since the distance metric is scaled for every

instance, we can use constant values of the diameter threshold over a variety of instances. For example, if

, every cluster will have zero diameter which means every sink is in its own cluster (corresponding to flat C-

Tree). If , this will create two clusters if there are sinks with opposite polarities and one sink otherwise. We

examine various diameter thresholds between zero and one to try to grasp the appropriate diameter value for a

given number of sinks.

In the following experiments, we ran C-Tree on 387 large nets in an industrial test case with 274K cells. We

grouped the nets into six categories according to their number of sinks: 10-19, 20-29, 30-49, 50-74, and 75-100.

For the nets in each category we ran C-Tree with various diameter thresholds and compared the results to the

methodology’s existing minimum Steiner tree based construction (called ESS). We measure the total improvement

in slack over all the nets in nanoseconds, the number of buffers inserted, and the total wire length in design

millimeters. The results are shown in Table 5.

N max dist si s j,( ) si s j, N∈||{ }

D

D 0=

D 1=
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Table 5 Comparisons of slack improvement (versus ESS), buffering and wiring
resources for various groups of nets and eight different C-Tree diameter thresholds.

The number of nets in each class is shown in parentheses in the first column.

From the table one can see that the number of buffers decreases while wire length generally increases as the

diameter threshold increases. Further, the trend is more pronounced for the larger nets. Where it is harder to find a

trend is in terms of slack improvement, namely which diameter threshold yields the best slack result. From the data

we still do not see a clear trend. Since many modern designs are wire congested, we believe it is better to keep the

diameter threshold relatively low (e.g., below 0.1) for most classes of instances so that the wire does not increase

by more than 5 to 10% over the ESS (e.g., minimum wire length). However, if a net is the bottleneck for the design,

lying in the most critical path, we would recommend running C-Tree followed by buffer insertion for three or four

different diameter threshold values and picking the one which yields the best timing. Designs that are more area

constrained would clearly benefit from using higher diameter threshold values.

5.  Conclusion

We have identified a class of buffered Steiner tree instances for which existing algorithms are inadequate.

These instances have a large number of sinks and varying temporal and polarity constraints. We proposed a two-

level clustering based heuristic called C-Tree for these instance types. Our clustering heuristic utilizes a new

distance metric that combines spatial, temporal, and polarity characteristics. Experiments on industrial nets show

Net
Category Measurement ESS

Diameter Threshold
0.0 0.05 0.1 0.15 0.2 0.3 0.5 0.75

5-9 (66)
Slack improvement 0 280 375 378 359 378 329 322 372

Buffers 133 138 136 132 130 136 134 131 130
Wire length 15.9 16.1 16.2 16.4 16.5 16.7 17.0 17.4 19.1

10-19 (70)
Slack improvement 0 3908 3584 3684 4301 4509 4603 4687 4676

Buffers 354 336 351 334 325 307 291 286 256
Wire length 58.3 64.8 62.7 64.0 68.2 70.0 70.5 70.8 69.8

20-29 (139)
Slack improvement 0 1062 1215 1464 1857 1941 1806 2490 2517

Buffers 495 495 496 455 449 414 365 318 255
Wire length 42.3 42.9 46.1 49.4 51.5 53.0 55.0 54.2 52.0

30-49 (45)
Slack improvement 0 437 473 729 650 693 817 855 895

Buffers 191 193 185 176 160 166 153 134 121
Wire length 14.2 14.4 15.7 16.8 17.3 17.7 18.1 17.9 17.7

50-74 (37)
Slack improvement 0 1826 2430 2589 2662 2754 2868 2370 2189

Buffers 579 552 472 405 371 375 349 318 323
Wire length 102.9 107.8 123.9 133.1 134.3 137.0 154.8 160.7 162.6

75-100 (30)
Slack improvement 0 3173 3416 3697 3836 3977 4140 3854 3758

Buffers 354 306 255 255 243 241 207 202 189
Wire length 66.9 72.2 81.1 86.2 88.1 90.1 98.5 95.3 93.8
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that C-Tree is able to obtain results with slack equal to or better than previous approaches while using fewer

buffers. Compared to simultaneous buffer insertion and Steiner tree construction, C-Tree obtains better slack on

average while using significantly less CPU time (and buffering resources). By adjusting the number of clusters, C-

Tree can trade-off between buffering and wiring resources, though we are still hoping to be able to identify

clustering stopping criteria to automatically identify the “sweet spot” in the resource/performance trade-off. We

hope that this work stimulates more research on these types of problems.

While experimenting with industrial designs, we have found that while performing placement driven synthesis

on ASIC designs that there exist nets with several hundred sinks that require optimization. Further, excellent

solution quality is critical as these nets often lie on a negative slack path because the net itself has such poor delay

characteristics. We believe issues like alternative tree constructions within clusters, different mechanisms for

locating the tapping point, multilevel instead of two-level clustering, and alternative distance functions could

improve our approach. We also need to identify more difficult instances for which different approaches can

distinguish themselves.

In addition, we plan to extend this approach to handle blockages by incorporating the method outlined in [4].

This approach does localized re-routing for an existing Steiner tree to minimize blockage overlaps without

significantly increasing wire length. In our two-step approach, it would be applied after C-Tree but before applying

van Ginneken style buffer insertion. We also are interested in constructing routes that seek regions with lower

congestion so that inserting a buffer in these regions would be less of a squeeze for an existing placement.
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