
Algorithms for Non-Hanan-based Optimization for VLSI

Interconnect under a Higher Order AWE Model

Jiang Hu and Sachin S. Sapatnekar

jhu@mountains.ee.umn.edu and sachin@mountains.ee.umn.edu

Department of Electrical and Computer Engineering

University of Minnesota

Minneapolis, MN 55455, USA

Tel: 612-625-0025, Fax: 612-625-4583

Abstract

To improve the performance of critical nets where both timing and wire resources are stringent,

we integrate bu�er insertion and driver sizing separately with non-Hanan optimization and propose

two algorithms: BINO (simultaneous Bu�er Insertion and Non-Hanan Optimization) and FAR-DS

(Full-plane AWE Routing with Driver Sizing). For BINO, we consider the realistic situation that

bu�er locations are restricted to a limited set of available spaces after cell placement. The objective

of BINO is to minimize a weighted sum of wire and bu�er costs subject to timing constraints. To

achieve this objective, we suggest a greedy algorithm that considers two operations independently:

iterative bu�er insertion and iterative bu�er deletion. Both are conducted simultaneously with non-

Hanan optimization until the improvement is exhausted. For FAR-DS, we investigate the curvature

property of the sink delay as a function of both connection location and driver stage ratio in a two-

dimensional space. The objective of FAR-DS is to minimize a weighted sum of wire and driver cost

while ensuring that the timing constraints are satis�ed. Based on the curvature property, we search

for the optimal solution in the continuous two-dimensional space. In both BINO and FAR-DS, a

fourth order AWE delay model is employed to assure the quality of optimization. Experiments of

BINO and FAR-DS on both IC and MCM technologies showed signi�cant cost reductions compared

with SERT and MVERT in addition to making the interconnect to satisfy timing constraints.

1 Introduction

As the VLSI technology develops into the deep sub-micron era, the interconnect resistance is no longer

negligible and its performance plays a critical role to the whole circuit. As the result, many e�orts [1{18]

have been carried out in recent years to improve the interconnect performance. According to the

classi�cation in [1], these works have evolved along three major aspects: the delay model, the objective

formulation and the solution space. The progress on each of these aspects will be briey reviewed as

follows.

When the interconnect resistance was not signi�cant, it could be simply modeled as a lumped capaci-

tance that is proportional to the wire length. Therefore, in early research, the interconnect performance

criterion was purely geometric and focused on wire length based objectives such as reducing the routing

radius and the total wire length. As wires have become longer and thinner, this geometric evaluation

no longer su�ces to reduce interconnect delay as resistive e�ects become signi�cant. A more elaborate

delay model is necessary to augment wire length considerations in performance evaluation. The Elmore

delay [19] model has been widely used due to its simplicity and high �delity [2]. Its simplicity not

only removes the need for large amount of computation, but also provides a platform on which many

theoretical properties can be derived and exploited. One major Elmore delay based routing method,

SERT [2], grows the routing tree in a greedy fashion to minimize the source-sink delay. Another Elmore

delay application, the P-tree algorithm [3], �rst searches for a good permutation of the sinks and then

limits the solution space to the topologies induced by this permutation. In later work, the drawbacks of

Elmore model have been addressed and second [5] and third order [6] models have been applied. Most

recently, the work in [1] suggested a table lookup method to remedy the de�ciencies of the Elmore delay

model.

With regard to the objective formulation, the total wire length (area) and delay are usually the

major targets. Minimizing total wire length can reduce the cost, power consumption and improve

the routability. All of these advantages lead to the use of area minimization as a common baseline

for objective formulations. For delay reduction, there are many forms in which the objective may be

stated, including minimizing either a weighted sum of sink delays, or the maximum delay, or the critical

sink delay. As a more appropriate formulation, the research in [5,9,10] focuses on satisfying the timing

speci�cation in an e�ort to trade o� the unnecessary delay reduction into area minimization.

2

The solution space of nodes in the routing tree has long been restricted to the Hanan grid since it

simpli�es the problem nature, and it can be proven that optimal solutions lie only on Hanan grid points

if the unconstrained objective is to minimize the wire length or a weighted sum of sink delay. However,

if we formulate the objective so as to satisfy the timing constraints, the optimal Steiner points are very

likely to lie at the non-Hanan grid points, as indicated in [10]. The work of [10] developed the MVERT

algorithm, which exploits the piecewise concavity of delay violation functions to search for the optimal

Steiner points. Its experimental results showed that expanding the solution space to non-Hanan points

can signi�cantly reduce the wire cost.

In this paper, we continue the e�ort of non-Hanan optimization to deal with the condition where

both timing and wire resources are stringent. We integrate bu�er insertion and driver sizing with non-

Hanan optimization in separate formulations to further improve the interconnect performance. These

two approaches resemble each other in term of their algorithmic skeleton, although the nature of the

problems is di�erent.

Bu�er insertion is a promising technique [12{17] that is essential for large nets. Most of the methods

in [12{17] are implemented through dynamic programming in a bottom-up fashion. However, all of

these methods have been restricted to only Hanan grid routing. Moreover, each of these approaches

neglects the e�ects of restrictions on the bu�er locations, i.e., it is assumed that bu�ers can be inserted

in any arbitrary position as long as they can improve the interconnect performance. In real situations,

this is not always permissible because the optimal bu�er location may already have been occupied by

other cells and it is undesirable to disturb the placement. Most recently, the work of [18] takes the

restrictions to bu�er locations into consideration and suggests an exact algorithm for two-pin nets. The

problem environment we consider here is a limited set of bu�er spaces where bu�ers are to be inserted

into the interconnect after the placement stage. The concept of soft edge is employed to increase the

possibility that a bu�er space is exploited. We guide each move in the optimization in a greedy fashion

and conduct bu�er insertion and non-Hanan optimization (BINO) simultaneously and iteratively until

no further improvements are possible.

Another e�ort in our work is simultaneous driver sizing and non-Hanan optimization (FAR-DS).

We have investigated the curvature properties of the delay as a function of the connection location

and driver stage ratio in a two-dimensional space under the Elmore delay model. Though the Elmore

3

model may be poor for speci�c points, it still provides a valid prediction of qualitative properties [2].

According to the solution region properties, we suggest two search schemes to �nd the optimal solution

in the objective that can minimize a weighted sum of the wire cost and the driver cost, while satisfying

the timing constraints. In both FAR-DS and BINO, we use a fourth order AWE delay model [21] to

assure the integrity of the optimization.

This paper is organized as follows. In section 2, we will introduce the concept of a soft edge, review

some background on non-Hanan optimization and the motivation for using a fourth order AWE model.

Section 3 will describe the problem environment and formulation of BINO (simultaneous Bu�er Insertion

and Non-Hanan Optimization). The problem properties and formulation of FAR-DS (Full-plane AWE

Routing with Driver Sizing) will be investigated in section 4. Section 5 will present the algorithms for

BINO and FAR-DS, followed by a complexity analysis in section 6. Finally, the experimental results

will be discussed in section 7.

A list of notational terms used in this work is listed below:

� qi: required arrival time for sink vi.

� ti: the calculated delay for sink vi in the routing tree.

� ui: delay violation of sink vi, given by ui = ti � qi.

� W : total wire length for a routing tree.

� Cg: gate capacitance of minimum sized driver.

� Cd: drain capacitance of minimum sized driver.

� P : a set of given bu�er spaces.

� m: number of bu�er spaces.

� B: the set of bu�ers inserted in the tree.

� r: resistance per unit length for interconnect.

� c: capacitance per unit length for interconnect.

4

� R0: resistance of minimum sized driver.

� �: stage ratio for cascaded drivers.

� h: number of stage for cascaded drivers.

� n: number of sinks.

� : weighting factor for total wire capacitance.

� CC: the closest connection point between a node and an edge.

� lij : Manhattan distance between two nodes vi and vj .

� Tk: a subtree rooted at node vk.

2 Preliminaries

2.1 Soft edges

v

v

(c)

v v

0

3

1

2 v

v

v

(d)

v

0

1

23

upper-L

lower-L

(a)

v

v0

1

v2

(b)

v

v

v

0

1

2

Figure 1: Routing with soft edges.

A routing tree T is described by a set of nodes V = fv0; v1; v2:::g and a set of edges E = fe1; e2:::g.

Generally, we refer to v0 as the source. The location for a node vi is speci�ed by its coordinates xi and

5

yi, and an edge in E is uniquely identi�ed by the node pair (vi; vj). The edge length is given by the

Manhattan distance between the two nodes, which is jxi � xj j+ jyi � yjj.

Since a routing tree is built in rectilinear space, each edge must be either horizontal or vertical. We

introduce another type of edge, a soft edge, whose orientation is not speci�ed until the tree construction

and optimization are completed. The concept of soft edge will be explained through a simple example

in Figure 1. In this example, a source v0 and two sinks v1 and v2 are given, and a minimum Steiner

tree is to be constructed on this node set by adding one node to the tree at a time. We may begin

by connecting v1 to v0. In rectilinear space, there are two L-shaped connection options, shown by the

dashed lines in Figure 1 (a); one bend is required for each connection. These two options will provide

di�erent results when v2 is connected to the tree, and a lower-L connection for v1 is obviously better

in this example, since it provides a shorter wire length. However, when the number of sinks is large,

it may be very hard to see which option is better. As suggested in [2], the decision can be deferred

until all the sinks are joined into the tree, and we can connect v0 and v1 by a soft edge that is formally

de�ned as follows.

De�nition 1: A soft edge is an edge connecting two nodes vi; vj 2 V , such that:

1. xi 6= xj and yi 6= yj,

2. its edge length lij = jxi � xjj+ jyi � yjj,

3. the edge route between vi and vj is not determined.

The soft edge connection between v0 and v1 is shown in Figure 1(b). We will refer to the traditional

edges in rectilinear tree with �xed orientations as solid edges. The sink v2 is connected to the routing

tree at the closest connection (CC) point, de�ned below, between v2 and edge (v0; v1).

De�nition 2: The closest connection (CC) point between a node vk and an edge (vi; vj) is de�ned by

its coordinates xCC and yCC such that: xCC = median(xi; xj; xk) and yCC = median(yi; yj ; yk).

Note that in de�nition 2, the edge (vi; vj) can be either a soft edge or a solid edge.

If the CC point does not coincide with either of vi; vj and vk, a Steiner node is introduced at the CC

point. In the example of Figure 1, Steiner node v3 is introduced. After this connection has been made,

edge (v3; v1) and (v3; v2) are solid edges. Since all of the sinks have been joined to the routing tree, we

can convert the soft edge (v0; v3) in Figure 1 (c) into an L-shaped connection, as shown in Figure 1 (d).

The advantage of using soft edges is that it provides a set of exible connection choices for subsequent

6

routing steps and avoids premature decisions. In section 3, we will show that the use of soft edges also

has some advantages that aid our bu�er insertion algorithm.

2.2 Background on non-Hanan optimization

v

v

v

CC

v

0

i

j

k

v’

Figure 2: A general situation where node vk is to be connected to an edge (vi; vj).

The concavity property exploited in non-Hanan optimization [10] depends on the concept of maximal

segment [2], which requires the assignment of a de�nite orientation (horizontal or vertical) for each edge.

Although by de�nition, the orientation for a soft edge is not �xed, the concavity property continues

to hold for a soft edge, and we can extend the philosophy of non-Hanan optimization to general edges

including both solid and soft edges.

For a general form of a routing tree, shown in Figure 2, let us consider the process of obtaining an

optimal connection between node vk and edge (vi; vj). Note that vi; vj and vk can either be a sink, or a

Steiner node with a degree of at least three. The dashed lines are other nodes and edges of this routing

tree, and CC represents the closest connection point between vk and (vi; vj). It can be easily seen that

any connection that is downstream of CC cannot give an optimal solution [2]. More speci�cally, we

wish to search for an optimal connection point within the bounding box de�ned by vi and CC.

Suppose we connect vk to (vi; vj) at point v
0(x0; y0). Let z be the Manhattan distance from v0 to vi,

i.e.,

z = jx0 � xij+ jy
0 � yij (1)

For convenience, we overload CC as its Manhattan distance to vi. We can obtain the following

conclusion, whose derivation is given in the appendix:

7

Theorem 1: Under the Elmore delay model, the delay violation at any sink in the routing tree is a

concave function with respect to z.

Corollary 1: Under the Elmore delay model, for any interval [zl; zr] � [0; CC], if the delay violation

at a sink is positive when the connection point is either at zl or zr, then the delay violation at this sink

is positive when the connect point is at any location in this interval.

0

Delay violation

z
CCz*

sink 2

sink 1

Figure 3: Delay violation function vs. Manhattan distance z of connection point.

In Figure 3, the delay violation functions of a two-sink net are depicted. If the objective is to minimize

wire cost subject to timing constraints, the optimal connection (Steiner) point here is a point with a

non-positive maximum delay violation, lying as close to CC as possible; for this particular example,

this corresponds to z�. As in this example, the optimal connection point is, in general, likely to be a

non-Hanan point.

The work of [10] showed this advantage of using non-Hanan points and proposed the MVERT (Max-

imum delay Violation Elmore Routing Tree) algorithm to perform the non-Hanan optimization globally

for an interconnect routing tree. Based on properties similar to Corollary 1, MVERT �nds the optimal

connection point through a quasi-binary-search and obtains signi�cant wire cost reductions. In fact,

non-Hanan optimization can also help interconnect to meet timing constraints besides a�ecting wire

cost reductions. In the example of Figure 3, it is probable that only non-Hanan points can satisfy the

timing constraints for both sinks.

Non-Hanan optimization on soft edges requires additional speci�cations, since the search on delay

violation functions only provides an optimal Manhattan distance z and this does not, in general yield

a unique point. For simplicity, we choose x0 and y0 both to be proportional to z. For example, if

8

z = 0:3CC, we will choose x0 = 0:3xCC and y0 = 0:3yCC .

2.3 The motivation for using fourth order AWE

As interconnect wires become increasingly thinner and longer, the interconnect resistance may over-

shadow the driver resistance. Consequently, the downstream capacitance is shielded to the driver

resistance by the interconnect resistance. This e�ect is called resistive shielding [23]. The Elmore delay

does not correctly take the resistive shielding e�ect into account and tends to overestimate the delay.

This error can be remarkably large, especially for the stub situation (i.e., when a sink that is close to

the source co-exists with a much longer wire), where the Elmore delay can be several times larger than

the actual delay.

(0, 0)

(-500, 400)
(70, 300)

(400, -200)

(800, 300)

(5000, 7000)

Figure 4: A routing tree on which Elmore delay gives large errors.

Table 1: A comparison of the Elmore and the 4th order AWE delays with SPICE
Dist. SPICE Elmore Error 4th AWE Error

370 13.6 52.5 286% 12.8 -6%

600 9.5 39.8 319% 8.9 -6%

900 10.7 40.5 279% 10.5 -2%

1100 26.2 77.4 195% 25.5 -3%

12000 283.2 257.5 -9% 282.4 -0.3%

Table 1 shows an example of a net with �ve sinks to illustrate the inaccuracy of the Elmore delay.

The routing topology of this net is illustrated in Figure 4. The load capacitance is the same for each

sink. The delays at all sinks are computed using the Elmore formula, fourth order AWE and a SPICE

transmission line model, and the percentage errors relative to SPICE are calculated. The Manhattan

distance from each sink to the source are also listed for reference. We can see that the error of Elmore

9

delay can be over 300% and the delay from fourth AWE is clearly superior. In fact, as the minimum

feature size shrinks, this trend will become more and more severe.

0

Delay violation

z
CCz*

AWE

Elmore

Figure 5: An example where using the Elmore delay and a higher order AWE delay may result in a
di�erent connection choice.

To see how this will a�ect non-Hanan routing, consider the graph in Figure 5. The graph plots the

delay violation function against the location of the connection point, z, as pictured in Figure 3. The

dotted curve indicates the Elmore delay while the solid curve represents the fourth order AWE result.

The solution corresponds to the point closest to CC where the delay violation function is negative or

zero. For the Elmore delay, which overestimates the delay near the source, no solution is found, whereas

an actual solution exists and corresponds to z�.

On the other hand, we have observed that the Elmore model tends to under-estimate delay at sinks

far from the source1. This may lead to the opposite error, as can be seen in the last row of Table 1.

This under-estimation may result in over-reduction of cost while the timing constraints have not been

satis�ed yet. On the whole, a higher order model is greatly superior to the Elmore model in handling

non-Hanan points.

The reason that we choose fourth order instead of a second or third order model is that a second

order yields less accuracy and for many examples that we tried, and we found that the third order model

induces positive poles more often. The additional computation cost of fourth order AWE as compared

to a second order model is minor.

In the computation of fourth order AWE delay, we �rst use the RICE algorithm [22] to obtain the

1The Elmore delay is theoretically proven to be an upper bound on the delay of an RC network in [24]. However, in
practice, greater accuracies are obtainable by multiplying the Elmore delay formula of [20] by a factor of ln 2, and we refer
this quantity as the \Elmore delay" in our discussion, and this may be either optimistic or pessimistic.

10

moments. We solve the denominator of Pad�e approximation result, which is a fourth order polyno-

mial, using a closed-form formula to obtain the poles. After an inverse Laplace transformation, the

time-domain exponential functions are expanded about the Elmore delay to fourth order Taylor series

polynomials. A closed-form solution to a fourth order polynomial exists and may be used to calculate

the delay value. Since the Elmore delay may be far o� from correct value, sometimes the expansion

about Elmore delay may still cause signi�cant error, though it is much smaller than the error from the

Elmore delay. We restrict such error by another iteration with expansion about the result from the �rst

iteration. This process is iterated until convergence, and we found that we always converged within

three iterations. This method is related to the Newton-Raphson root-�nding method: the Newton-

Raphson method uses a �rst order Taylor series in each iteration, and our method uses a fourth order

expansion instead.

3 The problem environment and problem formulation for BINO

v

v

v

(d)(c)

(a) (b)

v

v

v

v v

v

vv

v v

v

v
v

2 2

3

3
3

1

1

00

1

2

1

b

2

b

1

2

0

5v

4v

1b
2

0

b

5v

4v

3

Figure 6: Bu�er spaces, the territory box and their applications in bu�er insertion.

11

The BINO algorithm is applied in a post-placement scenario where bu�er insertion is possible, but it is

preferable to do so in regions that are left unoccupied by any cells, so as not to disturb the placement.

For MCM technology, a bu�er location is desired to be within a chip and close to its chip bond pads,

because it is not cost e�ective to insert a bu�er either on the substrate between chips or within a chip

but far from any bond pad. The input to BINO then includes a set of pre-de�ned available bu�er spaces

scattered in the routing region. These bu�er spaces are represented by small squares, as demonstrated

by the dark grey areas b1 and b2 in Figure 6 (a). It is assumed that only one bu�er can be inserted in

each space and the center of the bu�er must lie within the square. Larger bu�er spaces can easily be

expressed as a union of small spaces.

Intuitively, a bu�er space is considered for bu�er insertion only when a routing path passes through

it, since no extra wire cost is incurred under this condition. However, even if no path passes through

a bu�er space, it may be worthwhile for the wire to make small detour to increase the possibility of

exploiting a bu�er space. Based on this idea, we de�ne a territory box for an edge as follows:

De�nition 3: For an edge (vi; vj), its territory box is a rectangle speci�ed by lower-left corner point

(xmin; ymin) and upper-right corner point (xmax; ymax), such that:

xmin = min(xi; xj)� �,

ymin = min(yi; yj)� �,

xmax = max(xi; xj) + �,

ymax = max(yi; yj) + �,

where � is a small amount of o�set.

The idea of a territory box is demonstrated by the light grey regions in Figure 6(b). Note that the

territory box for the soft edge (v0; v3) is larger than for any solid edges between v0 and v3. The rule that

we will follow is as follows: a bu�er space is considered for bu�er insertion in an edge only when there

is an overlap between this bu�er space and the territory box of this edge. In the example of Figure 6,

bu�er space b1 overlaps with the territory box of edge (v0; v3) and b2 overlaps with the territory box of

(v3; v2); therefore, we can insert bu�ers v4 and v5 as in Figure 6(c). After the non-Hanan optimization

following the bu�er insertion, the wire slack in Figure 6 (c) may be removed and the tree shown in

Figure 6(d) may be obtained.

This example shows that the use of soft edges can greatly increase the possibility of overlap as

12

compared to using predetermined L-shaped connection composed of two solid edges.

We consider both inverting and non-inverting type bu�ers in our work. The inverting type bu�er is

simply an inverter and the non-inverting type bu�er is composed by a pair of cascaded inverters. The

inverter model is same as the driver model in section 4.1 and has a medium driver size.

v v

v v

v v

(a) (b)

v* v*

0 0

1 1

2 2

Figure 7: An example that bu�er insertion can reduce wire cost further in non-Hanan optimization.

The motivation for combining bu�er insertion with non-Hanan optimization can be illustrated by the

example in Figure 7. As discussed in section 2.2, in order to reduce wire cost, it is desired to move

the connection point as close to CC as possible, i.e., to maximize z. However, the value of z may be

capped by the constraint of non-positive delay violation as illustrated in Figure 7(a). The utility of

bu�er insertion is to relax this timing constraint, if possible, so as to achieve further wire cost reduction

as in Figure 7(b).

We state the problem formulation as follows:

Given a source v0, a set of sinks V = fv1; v2:::vng, timing speci�cations Q = fq1; q2; :::; qng for all sinks

and a set of available bu�er spaces P = fp1; p2; :::; pmg, construct a Steiner routing tree and choose a

subset Biv � P and Bni � P on which inverting and non-inverting bu�ers are inserted, respectively,

such that the following problem is solved:

minimize cW + (1�)(Cgb + Cdb)(jBiv j+ 2jBnij)

subject to: maxvi2V (ui) � 0

for a speci�c 0 � � 1

(2)

where Cgb and Cdb are the gate and drain capacitance of an inverting bu�er, and is the weighting

13

factor for the wire cost. The purpose of including c, Cgb and Cdb in the objective function is to normalize

the wire and the bu�er cost into comparable quantities.

4 Problem formulation and properties for FAR-DS

4.1 Problem formulation for FAR-DS

D
D

C C
D D

R

(a) (b)

0 1
2

h

g d

0

Figure 8: Cascaded drivers and driver model.

We consider the situation where the signal net is driven by a series of cascaded drivers D0;D1;D2::::Dh

as in Figure 8(a). The driver D0 is minimum sized and will not be changed in driver sizing. The

driver model that we will use is shown in Figure 8 (b). The interconnect delay among these drivers are

neglected. The driver sizing problem is to choose optimal number of driver stages h and the proper size

for each driver. It is known that for optimal solution, the ratio of driver size at one stage to its previous

stage is uniform and no less than 1. We refer to this uniform ratio as the stage ratio �.

The objective of FAR-DS is to minimize the cost of the routing tree, subject to a timing constraint

at each sink. In contrast with [10], we extend the cost here to include both wire cost and driver cost,

i.e., we perform topology optimization and driver sizing simultaneously. The rationale behind this is

to permit the driver to share the task of delay optimization with the interconnect by sizing it, thereby

obtaining a better result than optimizing the driver size and interconnect topology separately.

We formally state the problem formulation as follows:

Given a source v0, a set of sinks V = fv1; v2:::vng, timing speci�cations Q = fq1; q2; :::qng for all sinks,

and stage ratio bound �max, construct a Steiner routing tree and �nd �, h such that:

minimize cW + (1�)(Cg + Cd)
Ph

j=1 �
j

subject to: maxvi2V (ui) � 0

and 1 � � � �max:

(3)

14

The second term in the objective function is from the total driver capacitance. The objective function

can be interpreted as a minimization of the total wire length and total driver capacitance. The parameter

 is a user-speci�ed weighting factor.

4.2 Properties of solution regions for FAR-DS

For a general connection of a node and its downstream subtree to a partial tree, as illustrated in Figure

2, where a node vk is to be connected to an edge (vi; vj), we investigate the properties of the delay

violation function with respect to z and � in a two dimensional space. The delay from the cascaded

drivers is given by:

TD = hR0(Cd + �Cg) (4)

We can combine the interconnect delay with TD to obtain a general form of the delay violation of

any sink ui as a function of the connection position z and �, under the Elmore model as:

ui = f(z; �) = �a2rcz
2 +

R0(Ct � cz)

�h
+ a1z +R0Cgh�+ a0 (5)

where

a2 = 0 or 1; 0 � z � CC < Ct
c ; 1 � � � �max; (6)

with a0 and a1 being constants. The parameter Ct is the total load capacitance seen by the driver in

the last stage when vk is connected to vi directly. A derivation of the above results is described in the

appendix.

When � is �xed, ui = f(z) is a quadratic function of z and the coe�cient of the second order term

is non-positive. Therefore we can obtain the following result:

Property 1: ui = f(z; �) is a concave function for a constant value of �.

If we keep z constant, there are also properties that will help the search for the optimal solution.

These properties can be found by investigating the partial derivatives of ui with respect to � as follows:

15

@ui
@�

= �R0(Ct � cz)h��h�1 +R0Cgh (7)

@2ui
@2�

= R0(Ct � cz)h(h + 1)��h�2 (8)

Since Ct > cz, @2ui
@2� > 0 is always true, thus we have the following property:

Property 2: ui = f(z; �) is convex function for a constant value of z.

If we let @ui
@� = 0, we can obtain a curve de�ned as follows:

� = h+1

s
Ct � cz

Cg
(9)

Property 3: f(z; �) has minimum value along the curve de�ned by equation (9) .

This property is especially useful in solution search, since it predicts the bottom of the valley shaped

delay violation function surface in the two-dimensional space of z and �. One observation is that the

curve in equation (9) is independent of which sink is considered, i.e., equation (9) de�nes the bottom

of valley for the delay violation functions of all the sinks. We call the curve de�ned by equation (9) the

valley curve for delay violations.

In equation (9), when z is at CC, the numerator reaches the minimum and becomes the total load

capacitance seen by the driver in the last stage when vk is connected to CC. Obviously, this total load

capacitance is always greater than the minimum gate capacitance, Cg, of a driver. This fact provides

the following property:

Property 4: If 0 � z � CC, then � = h+1

q
Ct�cz
Cg

> 1.

If we substitute equation (9) into equation (5), we can obtain another important conclusion:

Property 5: ui = f(z; �) is a concave function of z along the curve de�ned by equation (9).

This valley curve also sets a border for di�erent monotone properties with respect to � as follows:

Property 6: For a speci�c z, f(z; �) is a monotone increasing function of � when � � h+1

q
Ct�cz
Cg

.

Property 7: For a speci�c z, f(z; �) is a monotone decreasing function of � when � � h+1

q
Ct�cz
Cg

.

These properties are derived from Elmore delays. Though the Elmore delay may have large errors

for speci�c points, its qualitative �delity is still true [2] and can serve as good strategic guide. Our

16

experimental results also support this assertion.

5 Algorithms

Algorithm: Non-Hanan Optimization(T)

Input: Routing tree T (V;E)
Output: Optimized routing tree T 0

1. T 0 = T
2. Sort all the nodes in descending order of distance to source
3. For each vk 2 V; k 6= 0
4. Disjoin vk and its subtree Tk from T
5. For each edge (vi; vj) 2 TnTk
6. Reconnect vk to (vi; vj) at optimal location
7. If 9 improvement compared to T 0

8. T 0 = T

Figure 9: The non-Hanan optimization algorithm.

Both BINO and FAR-DS consist of two phases. Phase I is the routing tree construction process, which

is the same for BINO and FAR-DS. This procedure is called SART (Steiner AWE Routing Tree), and

is similar to SERT except that the Elmore model is replaced by a fourth order AWE model.

In SART, starting with a single source, a partial routing tree is grown in a greedy fashion. In each

growing step, a previously unconnected sink is selected and connected to an edge in the partial tree

such that the maximum delay is minimized.

Phase II of BINO and FAR-DS are di�erent, but share a similarity in the non-Hanan optimization

framework. For reference, the outline of the non-Hanan optimization algorithm is shown in Figure

9 [10]. In this framework, all of the sinks are sorted in the descending order of Manhattan distance

from source. Then each node vk and its downstream subtree Tk are disconnected and reconnected back

to the routing tree. The routing tree without Tk is represented by TnTk. In the search for the best

reconnection point, vk and Tk are connected to each edge in TnTk tentatively at the local optimal point.

The connection point is selected to be the choice that gives the largest improvement according to the

objective.

For two routing trees T1 and T2 on the same signal net, if T1 cannot meet timing constraints and T2

can result in a smaller maximum delay violation among all sinks, this implies an improvement from T2

in spite of any cost increase. If T1 can satisfy all the timing constraints, T2 provides improvement only

17

when it reduces cost and satis�es the timing constraints.

Algorithm: BINO IterativeBu�erInsertion

Input: SART T (V;E)
Set of bu�er spaces P

Output: Bu�ered and non-Hanan optimized routing tree T

1. While P 6= ; and 9 improvement.
2. For each p 2 P
3. For each edge (vi; vj) 2 E
4. If p overlaps with the territory box of (vi; vj)
5. Insert a bu�er into (vi; vj) at p tentatively
6. Assign inverting/non-inverting type 8 bu�ers 2 T
7. Perform non-Hanan optimization for T (Figure 9)
8. Insert bu�er at pbest, which gives the largest improvement
9. P P � pbest

Figure 10: BINO, iterative bu�er insertion algorithm.

In BINO, the non-Hanan optimization framework is embedded in a greedy bu�er insertion scheme

illustrated by Figure 10. On each bu�er space, we insert a bu�er tentatively and conduct non-Hanan

optimization. After all of the bu�er spaces have been tested, the solution that can provide the largest

improvement is chosen as the �nal decision. This process is repeated iteratively until there is no

improvement or no bu�er space left. The optimal solution of assigning inverting or non-inverting type

to each bu�er (line 6 in Figure 10) can be achieved through dynamic programming.

(c)

(a) (b)

(d)

Figure 11: Iterative bu�er insertion vs. iterative bu�er deletion.

Since we only insert one bu�er in each iteration, the ability to obtain an optimal bu�er insertion

solution is hindered, as shown by the single-sink example in Figure 11. It is well known that optimal

bu�er locations often distribute evenly along an interconnect path [15]. Therefore, for the net in Figure

11, the optimal solution may be as shown in Figure 11 (d). If we insert only one bu�er in an iteration,

18

the �rst iteration is likely to result in the scenario shown in Figure 11 (b) and the optimal solution

cannot be reached.

In order to alleviate the above di�culty, we supplement the method with an iterative bu�er deletion

procedure using a method similar to [7], that is described in Figure 12. In this scheme, we �rst insert

bu�ers at all spaces that overlap with any edges. Then we delete one bu�er in each iteration in a greedy

fashion similar to iterative bu�er insertion. Since this proceeds in the opposite direction as compared to

the iterative bu�er insertion, it plays a complementary role. For the example in Figure 11, the iterative

bu�er deletion starts with (c) and can naturally result in the optimal solution in (d). On the other

hand, if the optimal solution is (b), iterative bu�er deletion is worse than iterative bu�er insertion.

In our work, we perform both iterative bu�er insertion and iterative bu�er deletion independently

for a net and choose the better of the two results.

Algorithm: BINO IterativeBu�erDeletion

Input: SART T (V;E)
Set of bu�er spaces P

Output: Bu�ered and non-Hanan optimized routing tree T

1. B ;
2. For each p 2 P
3. For each edge (vi; vj) 2 E
4. If p overlaps with the territory box of (vi; vj)
5. Insert bu�er b into (vi; vj) at p
6. B B [b
7. Assign inverting/non-inverting type 8b 2 B
8. While B 6= ; and 9 improvement.
9. For each bu�er b 2 B
10. Remove b from T tentatively
11. Assign inverting/non-inverting type 8b 2 B
12. Perform non-Hanan optimization for T (Figure 9)
13. Remove bu�er bbest, which gives the largest improvement
14. B B � bbest

Figure 12: BINO, iterative bu�er deletion algorithm.

In Phase II of FAR-DS, a two-dimensional search replaces the role of the quasi-binary-search in

MVERT, which is line 6 in Figure 9, to �nd an optimal connection point and driver size simultaneously.

When we reconnect a node vk to an edge (vi; vj), we look for a 3-tuple (z; �; h) such that the objective

function of problem (3) is minimized while the maximum delay violations for all sinks are non-positive.

19

(1+)/2

S

S S

S

0 0

1

0

0 0

ρ

1

z

ρ

ρρ

1

0 CC

valley curve
a

b

ρ

1

0 CC

a

b

ρ

g

max

maxρmax

ρ

objective objective

maxρ

CC

(a)

(d)(c)

(b)

valley curve

ρ

1

0 CC

a

bρ

g a
objectivevalley curve valley curve

b

g
ρ

1

0

g objective

g

S

z

z
z

S

z

0

0

1

0

0

1

z

z

0 0

0

1

0

Figure 13: Solution search scheme for FAR-DS.

We vary h between 1 and hmax and search an optimal (z; �) pair in a two dimensional plane for a �xed

h value.

For this case, cW = Ct � cz and the objective (3) can be translated to:

minimize g = �cz + (1�)(Cg + Cd)
Ph

j=1 �
j

subject to: maxvi2V (ui) � 0

and 0 � z � CC; 1 � � � �max:

(10)

For a speci�c value of g, the objective function above corresponds a curve in the (z; �) plane, as the

objective curves shown in Figure 13. The objective (10) can be interpreted as to �nd a point in (z; �)

plane such that the constraints in (10) are satis�ed at this point and the point is on a objective curve

as low as possible.

We will illustrate the optimal solution search scheme through the Figure 13. The solution search can

be restricted within the rectangle bounded by 0 � z � CC and 1 � � � �max. Consider the valley curve

de�ned by equation (9). This curve is always above � = 1 in the interval 0 � z � CC, according to

20

Property 4. One common scenario is that this valley curve intersects with upper border of the rectangle

at a point a and with the right border at b, as in Figure 13 (a). From Property 3 and Property 7, we

can say that in the rectangle de�ned above, ui reaches its minimum on the segment � = �max to the

left of a, and on valley curve speci�ed by equation (9) to the right of a. These two segments can be

integrated into a single function:

� = min(�max;
h+1

s
Ct � cz

Cg
); 0 � z � CC (11)

which is the thickened line in Figure 13 (a). Note that equation (11) is valid even when the valley curve

does not intersect the rectangle, or if the set of points on the segment to the left of a is empty. This

function provides us with a convenient way to check for the existence of a solution within the rectangle.

From Property 3 and Property 7, if no solution that satis�es all constraints exists on the curve de�ned

by equation (11), then we can say that no solution exists within the rectangle. According to Property

1 and Property 5, ui is a concave function on the curve (11), both to the left and to the right of point

a. Thus, we can apply the quasi-binary-search technique in [10] to search for the rightmost solution

on this curve that satis�es all constraints. If such a solution exists, we call it the zero order solution,

designated as S0(z0; �0) in Figure 13(a).

After the zero order solution has been found, the region can be further re�ned to search for the

optimal solution. This is demonstrated in the shaded region in Figure 13 (a). The region z > z0 can be

excluded, since no feasible point exists on the valley curve in this region. An objective function curve

is drawn through S0, which satis�es:

g0 = �cz0 + (1�)(Cg + Cd)
hX

j=1

�j0 (12)

We can eliminate the region that lies above this curve, because the value of g at all points above this

line exceeds g0. The remainder of the search space is the sector con�ned by the objective function curve

de�ned by (12), by z = z0 and by � = 1, which is indicated by the shaded region in Figure 13(a).

The search within this sector also proceeds in a binary search fashion, by starting from the middle

segment de�ned by �1 = (1 + �0)=2, which is the thickened segment in Figure 13 (b). On this segment,

Property 1 holds and a quasi-binary-search can again be applied to obtain the rightmost solution on it,

21

Algorithm: FAR-DS ReconnectVSearch

Input: Routing tree TnTk
Subtree Tk
Node vk
Edge (vi; vj)

Output: Optimal connection between vk and (vi; vj), � and h

1. For h = 1; h � hmax; h++;
2. Search solution along valley curve de�ned by equation(11)
3. If no solution found
4. Return
5. Else
6. S0(z0; �0) rightmost solution
7. SearchSector(S0; 1)

Function: SearchSector(Stop; �base)

F1. Obtain curve gtop = �cztop + (1�)(Cg + Cd)
Ph

j=1 �
j
top

F2. �mid = (�top + �base)=2
F3. Smid(zmid; �mid) intersection between curve gtop and � = �mid

F4. Search solution along � = �mid between zmid and ztop by quasi-binary-search
F5. If no solution found
F6. If �mid � �base < resolution
F7. Return no solution
F8. Else
F9. Return SearchSector(Stop; �mid) and SearchSector(Smid; �base)
F10. Else
F11. If �mid � �base < resolution
F12. Return rightmost solution
F13. Else
F14. Smid(zmid; �mid) rightmost solution

F15. Obtain curve gmid = �czmid + (1�)(Cg + Cd)
Ph

j=1 �
j
mid

F16. Stop(ztop; �top) intersection between curve gmid and z = ztop
F17. Return SearchSector(Stop; �mid) and SearchSector(Smid; �base)

Figure 14: FAR-DS, reconnection and driver sizing in valley-guided search.

namely, S1(z1; �1); we refer to this as the �rst order solution. After the �rst order solution has been

found, the previously described solution re�nement technique can be used to obtain two new smaller

sectors shown by the shaded regions in Figure 13 (c) where the optimal solution will be searched. Even

if there is no solution on this segment, the search region can be re�ned to the two sectors like in (d).

We call this solution search scheme as valley-guided search (V-search), and describe it in Figure 14.

The above is the method to search optimal (z; �) for a speci�c h. The optimal h is found by a sweep

from h = 1 to h = hmax and the above search is carried out for each h value. The value of hmax is given

22

by [26]:

hmax =

�
ln(Ct=Cg)

ln��

�
; (13)

ln�� = 1 +
Cd

Cg��
(14)

Since the use of valley curve increases the dependency of the solution on the Elmore delay model, and

we use a higher order AWE model to evaluate the delays for every sink in our algorithm, it is possible

that the discrepancy between Elmore model prediction and the actual AWE evaluation may give rise

to a suboptimal solution.

We suggest an alternative search method called the iterative search (I-search) scheme that does not

depend on Elmore model quantitatively and illustrate it in Figure 15. In this method, we begin with

an initial � and perform non-Hanan optimization to obtain an optimal z for this value of �. Next, this

z is �xed and an optimal � is searched and so on. This process is repeated until there is no further

improvement. From Property 6, we know that the delay violation function ui is a convex function

along � direction, thus, we cannot apply the quasi-binary-search suggested by [10] along � direction.

We perform the search in a manner between binary search and linear search. If the maximum delay

violation is non-positive for a speci�c value of �, we continue to search a better solution at a smaller �

value, otherwise, we must search at both larger and smaller values.

Algorithm: FAR-DS ReconnectISearch

Input: Routing tree TnTk
Subtree Tk
Node vk
Edge (vi; vj)

Output: Optimal connection between vk and (vi; vj), � and h

1. For h = 1; h � hmax; h++
2. � initial guess
3. While 9 improvement
4. Search zbest which gives best improvement while � is �xed
5. z zbest
6. Search �best which gives best improvement while z is �xed
7. � �best

Figure 15: FAR-DS, reconnection and driver sizing in iterative search.

23

6 Complexity analysis

From [11], the computation cost for MVERT is O(n4 + n4 � L�). The �rst term corresponds to the

Phase I in MVERT, which is a variation of SERT. The parameter L is the maximum length over all

edges and � represents the resolution for the quasi-binary-search in the Phase II of MVERT. Since the

quasi-binary-search may fall into a linear search in the worst case, there is no logarithmic term here.

Although we use the fourth order AWE instead of Elmore in BINO, as the number of traversals or

iterations is �xed, the complexity for each delay calculation remains O(n). Thus the cost for Phase I

(SART) in BINO is O(n4). In Phase II of BINO, there are two layers of iterations outside of each non-

Hanan optimization, each of which is upper-bounded by the number of bu�er spaces. The combination

of the total cost is O(m2 �n4 � L�). This conclusion is true for both iterative bu�er insertion and iterative

deletion.

The complexity of FAR-DS is same as MVERT in the outer loops. The di�erence is at the computation

cost of reconnection part (line 6 of Fig. 9), where FAR-DS performs a search in the entire (z; �) space.

The computation factor from searching along the � direction is bounded by (�max � 1)=� , where �

is the resolution on �. Since the h value is swept from 1 to hmax, the complexity of FAR-DS is

O(hmax � n
4 � L� �

�max

�).

The above results only provide a loose bound, because the worst case for the quasi-binary-search

along the z direction is almost impossible in practice. Therefore, the computation cost in average case

is one order lower than the above theoretic results.

7 Experimental results

The experiments are emphasized to test the improvement from our algorithms in terms of both timing

and cost objectives de�ned in the problem formulation. Each signal net is randomly generated and are

tested for BINO and two FAR-DS algorithms, as well as SERT and MEVRT for comparisons. In order

to obtain a more general conclusion, we include both IC and MCM technology in the experiments and

the number of sinks ranges from 5 to 20. To form a common base for comparisons with FAR-DS, we use

cascaded drivers also in SERT, MVERT and BINO, and choose h = 1 and � = 2:5, which can provide a

middle level of driving ability. For all of the timing results, driver and wire delays are calculated from

RC and a fourth order AWE model, respectively.

24

The experimental results are shown in Table 2 and Table 3 for IC and MCM technology, respectively.

The parameters for MCM are from [2]. The IC parameters correspond to 0.18 �m technology and are

scaled from the data in [2]. The bu�er space locations for BINO are generated randomly. The area

of each bu�er space is chosen to be 100�m� 100�m for IC and 200�m � 200�m for MCM. According

to our experiments, the variations of delay from the change of a bu�er position within a bu�er space

is small and can be neglected. The o�set � for the territory box of an edge is set to be half of the

bu�er space size. In experiment for FAR-DS, the value of �max was chosen as 4 for both IC and MCM

technology. Since we consider the situation where the interconnect resources are more stringent, the

weighting factor for wire cost is chosen to be 0:7 for both BINO and FAR-DS.

In Table 2 and Table 3, the left-most column is the number of sinks for each test. The parameterW is

the total wire length and the umax is the maximum delay violation. The column labeled m corresponds

to the number of input bu�er spaces, and to its left is the number of bu�ers, jBj, �nally inserted. The

CPU time in seconds for BINO and FAR-DS are also listed. The last row provides the percentage

change of total wire length compared to the result of SERT.

Since the timing constraints are quite stringent, most of the maximum delay violations, umax, from

the results of SERT are positive. Sometimes MVERT even results in a worse delay violation than SERT,

due to errors from the Elmore delay model. In other cases, the improvements from MVERT on both

delay and wire cost are limited and the timing constraints are often unsatis�ed, because the speci�cation

is unachievable without driver sizing or bu�er insertion. This hinders the ability of pure non-Hanan

optimization to reduce the cost further and BINO or FAR-DS becomes a necessary step. Both BINO

and FAR-DS can also satisfy the timing constraints that are impossible for SERT and MVERT.

Besides timing improvement, we can see that BINO and FAR-DS can reduce signi�cantly more cost

than MVERT under these somewhat harsh conditions. Sometimes MVERT may even increase the wire

length to meet the timing constraint which can be seen from the result of the �rst net in IC technology.

The results from the two di�erent variants of FAR-DS have no signi�cant di�erence.

Comparing the experimental results from BINO and FAR-DS, we can see that BINO can provide

more wire cost reduction than FAR-DS in most cases, and the larger timing slacks from BINO also

indicate its potential on dealing with even more stringent timing constraints. Although FAR-DS is not

so powerful as BINO, it shows an adaptive nature that can often trade o� the timing slack into less

25

driver cost. This is especially true for the V-search scheme of FAR-DS, whose most timing slacks are

close to zero.

These experiments were carried out on a SUN Ultra-10 station. The computation time of FAR-DS

mostly depends on the size of signal nets while the CPU time of BINO is more irregular because it also

depends on the number of bu�er spaces overlapping with routing tree. In most cases, the CPU time is

within one minute. In the worst case for a net of 20 sinks, the run time is less than four minutes for

both FAR-DS and BINO. On the whole, the computational cost of our algorithm is reasonable, since

these optimizations are carried out only for global timing-critical nets.

We also perform experiments to check the e�ect from using soft edges on the same set of nets and

the result is shown in Table 4. This result con�rms the conclusion that using soft edges can greatly

increase the possibility that bu�er spaces overlaps with routing edges.

Table 2: Experimental results on :18�m IC, h = 1; � = 2:5 for SERT, MVERT and BINO

SERT MVERT BINO FAR-DS: I-search FAR-DS: V-search
n W umax W umax W umax jBj=m cpu W umax � h cpu W umax � h cpu

5 226 4.51 243 -1.19 189 -9.48 3/6 9 187 0 2.9 3 2 187 0 2.9 3 2
5 219 -1.26 166 1.31 153 -2.78 1/7 6 155 -1.70 4.0 1 2 155 -0.02 2.5 1 3
5 292 -2.83 280 -1.03 231 -5.31 1/8 3 235 -0.01 2.6 3 3 235 -0.07 2.7 3 3
10 374 -0.82 341 -0.54 280 -1.69 2/8 24 295 -0.07 1.8 3 13 282 -0.41 1.9 3 19
10 310 -0.45 257 1.48 249 -2.87 1/7 14 252 -0.02 2.9 1 19 252 -0.33 3.1 1 25
10 401 1.92 381 0.91 348 -4.32 1/8 33 349 -1.85 4.0 1 14 349 -0.02 3.1 1 19
15 462 7.57 383 5.94 367 -2.28 2/9 61 370 -0.21 1.7 3 35 370 -0.72 1.8 3 49
15 626 4.37 555 -0.25 470 -0.27 2/10 86 494 0 2.1 5 64 494 -0.09 3.6 3 86
20 595 10.84 537 8.26 469 -0.02 3/10 204 488 -0.01 3.4 3 119 495 -0.43 1.9 3 166
20 564 9.05 481 4.88 433 -1.60 2/11 88 452 -0.06 1.9 3 79 452 -0.47 1.9 3 104

Ave �W (%) �10 �22 �20 �20

Table 3: Experimental results on MCM, h = 1; � = 2:5 for SERT, MVERT and BINO

SERT MVERT BINO FAR-DS: I-search FAR-DS: V-search
n W umax W umax W umax jBj=m cpu W umax � h cpu W umax � h cpu

5 444 1.82 427 0.37 332 0 1/6 12 340 0 1.7 3 3 347 -0.14 1.8 3 4
5 429 1.21 410 1.17 332 -0.71 1/7 5 376 -0.02 1.8 3 3 357 -0.07 4.0 1 5
5 478 -0.57 454 0.17 381 -4.91 1/6 3 412 0 2.2 3 3 405 0 2.5 3 5
10 617 4.14 539 3.59 480 -2.10 1/10 38 506 -0.04 1.9 3 16 506 -0.11 3.3 1 19
10 624 -0.55 505 1.08 465 -0.96 2/7 9 482 -0.14 4.0 1 17 482 -0.01 3.8 1 24
10 618 0.99 519 -0.07 486 -2.84 1/8 34 480 -2.01 4.0 1 14 480 -0.61 2.7 1 18
15 810 3.80 755 2.43 652 -0.64 2/10 81 706 -0.04 4.0 1 43 698 0 3.4 1 63
15 797 -0.99 695 0.37 656 -0.45 1/9 78 660 -0.01 3.7 1 42 660 -0.01 3.9 1 53
20 1253 4.69 1149 4.06 900 -0.30 2/12 204 962 -0.12 1.9 3 121 979 -0.36 2.1 3 153
20 1025 3.65 883 3.13 791 -1.91 2/8 105 826 -0.03 3.7 1 84 862 -0.10 2.7 3 124

Ave �W (%) �10 �23 �19 �19

26

Table 4: Comparison on number of overlaps between bu�er spaces and routing edges with and without
using soft edges

nets # overlaps w/o soft edge # overlaps w soft edge

20 34 71

8 Conclusion

When we extend the non-Hanan optimization to improve the performance of critical nets where both

timing and wire resources are stringent, bu�er insertion is shown to be a strong augmentation to the

timing optimization toolkit, even with location restrictions. A combination of driver sizing and non-

Hanan optimization can provide a continuous two-dimensional space. A search for the optimum in

this space may be guided by properties derived from the Elmore delay model, which may have large

quantitative errors but good qualitative �delity. These properties are used to direct heuristics that use

a fourth order AWE model for wire delay calculation. For drivers, a more accurate model can be applied

in place of an RC switch model in a similar fashion. Experimental results show that both BINO and

FAR-DS can bring both timing and wire cost improvements signi�cantly.

As compromises to computation time, uniform driver stage ratio and RC driver model are adopted

in this work. In future work, we would like to replace them with non-uniform stage ratio and a

more elaborated driver model, respectively. Also an e�cient integration of BINO and FAR-DS will

be considered.

9 Acknowledgment

The authors would like to thank the anonymous reviewers for their constructive comments.

Appendix

Similar to the work of [2], a delay violation function model with respect to connection location and

driver stage ratio under the Elmore delay is derived as follows.

For a general routing tree depicted in Figure 2, we wish to connect node vk and its downstream

subtree Tk to edge (vi; vj) in tree TnTk at a point within the bounding box de�ned by vi and CC. We

use Cj and Ck to represent the load capacitance seen from node vj and vk, respectively. The resistance

of the driver that drives the routing tree directly is expressed as Rd.

First we consider the delay function with respect to only the connection location which is the Man-

27

hattan distance z, from vi to the connection point v0.

If a node is not in the downstream of node vi, its Elmore delay from source is as follows:

f1 = Rd(Ct � cz) + �0 + �1(lik � z); (15)

where �0 and �1 are constants. Recall that Ct is the total load capacitance seen from the last stage of

driver if vk is connected to vi.

The Elmore delay from vi to v
0 is given by:

f 0 = rcz(
z

2
+ lij � z + lik � z) + rz(Cj + Ck): (16)

From v0 to any node in Tj , the delay can be obtained as:

f2 = r(lij � z)(
c(lij � z)

2
+ Cj) + �2: (17)

Similarly, the delay from v0 to any node in Tk is:

f3 = r(lik � z)(
c(lik � z)

2
+ Ck) + �3: (18)

Both �2 and �3 are constants. If a sink is in Tj, its Elmore delay is form of the sum of f1, f
0 and f2.

When a sink is in Tk, its Elmore delay is the sum of f1, f
0 and f3. If a sink is not in the downstream of

ni, its Elmore delay is simply f1. In all these cases, the delay is either a linear or a quadratic function

of z with non-positive coe�cient for the second order term. Therefore, we can obtain the conclusion

that delay or delay violation function for any sink is a concave function with respect to z, which is same

as Theorem 1.

For cascaded drivers, Rd =
R0

�h
, and we need to take into account the driver delay TD = hR0(Cd+�Cg).

After we combine the interconnect with driver delay, we can obtain a general form of delay violation

function vs. z and � as follows:

f(z; �) = �a2rcz
2 +

R0(Ct � cz)

�h
+ a1z +R0Cgh�+ a0 (19)

28

where a0 and a1 are constants, and a2 = 0 or 1. This is the same as equation (5).

References

[1] J. Lillis and P. Buch, \Table-lookup methods for improved performance-driven routing," Proceed-

ings of the ACM/IEEE Design Automation Conference, pp. 368{373, 1998.

[2] K. D. Boese, A. B. Kahng, B. A. McCoy and G. Robins, \Near-optimal critical sink routing tree

constructions," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

Vol. 14, No. 12, pp. 1417-36, Dec. 1995.

[3] J. Lillis, C. K. Cheng, T. T. Lin and C. Y. Ho, \New performance driven routing techniques with

explicit area/delay tradeo� and simultaneous wire sizing," Proceedings of the 33rd ACM/IEEE

Design Automation Conference, pp. 395-400, Jun. 1996.

[4] A. Vittal and M. Marek-Sadowska, \Minimum delay interconnect design using alphabetic trees,"

Proceedings of the ACM/IEEE Design Automation Conference, pp. 392{396, 1994.

[5] J. Cong and C. K. Koh, \Interconnect layout optimization under higher-order RLC model," Pro-

ceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp. 713-720,

1997.

[6] F. J. Liu, J. Lillis and C. K. Cheng, \Design and implementation of a global router based on a new

layout-driven timing model with three poles," Proceedings of the IEEE International Symposium

on Circuits and Systems, pp. 1548-51, 1997.

[7] J. Cong and B. Preas, \A new algorithm for standard cell global routing," Proceedings of the

IEEE/ACM International Conference on Computer-Aided Design, pp. 176-179, 1988.

[8] J. Cong and C. K. Koh, \Simultaneous driver and wire sizing for performance and power optimiza-

tion," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 2,

No. 4, pp. 408-425, Dec. 1994.

[9] S. S. Sapatnekar, \RC interconnect optimization under the Elmore delay model," Proceedings of

the ACM/IEEE Design Automation Conference, pp. 392-396, 1994.

29

[10] H. Hou and S. S. Sapatnekar, \Routing tree topology construction to meet interconnect timing

constraints", Proceedings of the ACM International Symposium on Physical Design, pp. 205-210,

1998.

[11] H. Hou, J. Hu and S. S. Sapatnekar, \Non-Hanan routing", IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, Vol. 18, No. 4, pp. 436-444, April, 1999.

[12] L. P. V. Ginneken, \Bu�er placement in distributed RC-tree networks for minimal Elmore delay",

Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 865-868, 1990.

[13] J. Lillis, C. K. Cheng and T. Y. Lin, \Simultaneous routing and bu�er insertion for high per-

formance interconnect", Proceedings of the Sixth Great Lakes Symposium on VLSI, pp. 148-153,

1996.

[14] J. C. Shah and S. S. Sapatnekar, \Wiresizing with bu�er placement and sizing for power-delay

tradeo�s", Proceedings of the International Conference on VLSI Design, pp. 346-351, 1996.

[15] C. C. N. Chu and D. F. Wong, \Closed form solution to simultaneous bu�er insertion/sizing and

wire sizing", Proceedings of the ACM International Symposium on Physical Design, pp. 192-197,

1997.

[16] T. Okamoto and J. Cong, \Bu�ered Steiner tree construction with wire sizing for interconnect

layout optimization", Proceedings of the IEEE/ACM International Conference on Computer-Aided

Design, pp. 44-49, 1996.

[17] A. Salek, J. Lou and M. Pedram, \A simultaneous routing tree construction and fanout optimization

algorithm", Proceedings of the IEEE/ACM International Conference on Computer-Aided Design,

pp. 625-630, 1998.

[18] H. Zhou, D. F. Wong, I-M. Liu and A. Aziz, \Simultaneous routing and bu�er insertion with

restrictions on bu�er Locations", Proceedings of the ACM/IEEE Design Automation Conference,

pp. 96-99, 1999.

[19] W. C. Elmore, \The transient response of damped linear network with particular regard to wide-

band ampli�ers," Journal of Applied Physics, Vol. 19, pp. 55-63, 1948.

30

[20] J. Rubinstein, P. Pen�eld and M. A. Horowitz, \Signal delay in RC tree networks," IEEE Trans-

actions on Computer-Aided Design, Vol. CAD-2, No. 3, pp. 202-211, July 1983.

[21] L. T. Pillage and R. A. Rohrer, \Asymptotic waveform evaluation for timing analysis," IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 9, No. 4, pp.

352-366, Apr. 1990.

[22] C. L. Ratzla�, N. Gopal and L. T. Pillage, \RICE: Rapid interconnect circuit evaluator," Proc.

28th ACM/IEEE Design Automation Conference, pp. 555-560, 1991.

[23] J. Qian, S. Pullela and L. T. Pillage, \Modeling the e�ective capacitance for the RC interconnect of

CMOS gates," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

Vol. 13, No. 12, pp. 1526-35, Dec. 1994.

[24] R. Gupta, B. Krauter, B. Tutuianu, J. Willis and L. T. Pileggi, \The Elmore delay as a bound for

RC trees with generalized input signals," Proc. 33rd ACM/IEEE Design Automation Conference,

pp. 364-369, 1995.

[25] D. G. Luenberger, \Linear and Nonlinear Programming," Addison-Wesley Publishing Company,

Reading, Massachusetts., 1984.

[26] N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design: a Systems Perspective, 2nd

edition, Reading, MA, Addison-Wesley, pp. 229-231, 1993.

31

