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Abstract. This paper presents a new stochastic preconditioning approach for large sparse ma-
trices. For the class of matrices that are row-wise and column-wise irreducibly diagonally dominant,
we prove that an incomplete LDLT factorization in a symmetric case or an incomplete LDU factor-
ization in an asymmetric case can be obtained from random walks, and used as a preconditioner.
It is argued that our factor matrices have better quality, i.e., better accuracy-size tradeoffs, than
preconditioners produced by existing incomplete factorization methods. Therefore a resulting pre-
conditioned Krylov-subspace iterative solver requires less computation than traditional methods to
solve a set of linear equations with the same error tolerance. The advantage increases for larger and
denser matrices. These claims are verified by numerical tests, and we provide techniques that can
potentially extend the theory to non-diagonally-dominant matrices.
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1. Introduction. Preconditioning is a crucial part of an iterative solver. Sup-
pose a set of linear equations is Ax = b, where A is a given square nonsingular matrix
that is large and sparse, b is a given vector, and x is the unknown solution vector to be
computed. A preconditioner is a square nonsingular matrix T such that an iterative
solver can solve the transformed system TAx = Tb with a higher convergence rate.

The quality of a preconditioner matrix T is how closely it approximates A−1,
measured by the condition number of TA or the spectral radius of (I − TA). Exist-
ing preconditioning techniques can be roughly divided into two categories: explicit
methods and implicit methods [3]. In explicit methods, which are often referred to
as approximate inverse methods, the preconditioner T is in the form of a matrix or a
polynomial of matrices [3], [4], [28]. In implicit methods, the preconditioner T is in
the form of (A′)−1, where A′ approximates A and is easier to solve [3], [28]. Although
explicit preconditioning methods have the advantage of being easily parallelizable,
implicit methods have been more successfully developed and more widely used. A
prominent class of implicit preconditioners are those based on incomplete LU (ILU)
factorization: for example, ILU(0), ILU(k) and ILUT are popular choices in numerical
computation [2], [6], [28]. Another aspect of the quality of an ILU preconditioner is
its stability, i.e., the condition numbers of the ILU factors, especially for indefinite
matrices [7]; for diagonally dominant matrices, this is less an issue since most ILU
methods, including ours, guarantee that the ILU factors are also diagonally dominant.

The subject of this paper, except for Section 8, is the class of matrices that are
row-wise and column-wise irreducibly diagonally dominant, defined in Definition 1.2.

Definition 1.1. The matrix graph of a square matrix A of dimension N is a
directed graph with N nodes labeled 1, 2, · · · , N , such that, for any i 6= j, an edge exists
from node i to node j if and only if Ai,j 6= 0.

Definition 1.2. A square matrix A is said to be row-wise and column-wise
irreducibly diagonally dominant if it satisfies the following conditions for any i:
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1. Ai,i ≥
∑

j 6=i |Ai,j |.
2. Ai,i ≥

∑
j 6=i |Aj,i|.

3. ∃k such that Ak,k >
∑

j 6=k |Ak,j | and that there exists a directed path from
node i to node k in the matrix graph of A.

4. ∃k such that Ak,k >
∑

j 6=k |Aj,k| and that there exists a directed path from
node k to node i in the matrix graph of A.

It is worth noting that: if row i is strictly diagonally dominant, the third condition
is trivially satisfied; if column i is strictly diagonally dominant, the fourth condition
is trivially satisfied; all diagonal entries are positive; A is positive definite. If A is
symmetric, its matrix graph can be represented by an undirected graph, and then the
first and second conditions merge into one, and the third and fourth merge as well.

For a matrix A that satisfies Definition 1.2, the most widely used preconditioners
are the variants of incomplete triangular factorization [2], [19], [28]. If A is asym-

metric, an ILU preconditioner is in the form of T =
(
L̃D̃Ũ

)−1

where L̃ is a lower

triangular matrix with unit diagonals, D̃ is a diagonal matrix, and Ũ is an upper trian-
gular matrix with unit diagonals. To produce such a preconditioner, various existing
techniques all perform Gaussian elimination on A, and each uses a specific strategy to
drop insignificant entries during the process: ILU(0) applies a pattern-based strategy,
and allows L̃i,j 6= 0 or Ũi,j 6= 0 only if Ai,j 6= 0 [28]; ILUT applies a value-based
strategy, and drops an entry from L̃ or Ũ if its value is below a threshold [28]; a
more advanced strategy can be a combination of pattern, threshold and other size
limits such as maximum number of entries per row. Another ILU strategy, referred
to as Modified ILU (MILU), is to compensate the diagonal entries of D̃ during the
factorization process to guarantee that the row sums of L̃D̃Ũ are equal to those of A
[28]. Combining the MILU strategy with the previously mentioned dropping strate-
gies results in MILU(0), MILUT, and so on. If A is symmetric, the ILU becomes the

incomplete Cholesky (IC) preconditioner in the form of T =
(
L̃D̃L̃T

)−1

, where L̃ is a

lower triangular matrix with unit diagonals and D̃ is a diagonal matrix. The various
ILU strategies all apply in their symmetric forms, and result in the preconditioners
IC(0), ICT, MIC(0), MICT, and so on. For symmetric M-matrices, another approach
is the support-graph method, which also produces a preconditioner in the form of

T =
(
L̃D̃L̃T

)−1

, but with the property that L̃D̃L̃T corresponds to a subgraph of the
matrix graph of A; the main difference between (non-recursive) support-graph and IC
is that entries are dropped from the original matrix A initially, rather than from the
partially factored matrix during the factorization process [5], [18], [30].

The proposed preconditioning technique in this paper belongs to the category
of implicit preconditioners based on incomplete factorization, and our innovation is
a stochastic procedure for building the incomplete triangular factors. It is argued
algorithmically that our factor matrices have better quality, i.e., better accuracy-size
tradeoffs, than preconditioners produced by existing incomplete factorization meth-
ods. Therefore the resulting preconditioned Krylov-subspace solver, which we refer
to as the hybrid solver, requires less computation than traditional methods to solve a
set of linear equations with the same error tolerance, and the advantage increases for
larger and denser matrices. We use numerical tests to compare our method against
IC(0), ICT, MICT, and support-graph preconditioners on symmetric diagonally dom-
inant benchmarks, and compare against ILU(0), ILUT, and MILUT on asymmetric
diagonally dominant benchmarks. We also provide in Section 5.3 the relation to ex-
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plicit factored-approximate-inverse preconditioners, and in Section 8 techniques that
can potentially extend the theory to non-diagonally-dominant matrices.

Parts of this paper were initially published in [25] and [26], which dealt with
only symmetric diagonally dominant M-matrices in specific engineering problems.
This manuscript includes unpublished mathematical proofs in Section 3, unpublished
Sections 4 and 8 on the generalization of the theory, unpublished techniques in Section
6 to improve the performance, as well as comprehensive numerical results.

For clarity of the presentation, Sections 2 and 3 will describe the main framework
of our theory in the context of a narrower class of matrices: if a matrix satisfies
Definition 1.2 and is a symmetric M-matrix, it is referred to as an R-matrix in this
paper as a shorthand notion. Then in Section 4, we will show that any matrix A that
satisfies Definition 1.2 can be handled with two extra techniques.

We will now review previous efforts of using stochastic methods to solve systems of
linear equations. Historically, the theory was developed on two seemingly independent
tracks, related to the analysis of potential theory [8], [15], [17], [20], [21], [23] and to
the solution of systems of linear equations [11], [15], [31], [32], [34]. However, the two
applications are closely related and research along each of these tracks has resulted
in the development of analogous algorithms, some of which are equivalent.

The second track will be discussed here. The first work of a random-walk based
linear equation solver is [11], although it was presented as a solitaire game of drawing
balls from urns. It was proven in [11] that, if the matrix A satisfies certain conditions,
a game can be constructed and a random variable1 X can be defined such that its
expected value E[X] = (A−1)ij , where (A−1)ij is an entry of the inverse matrix of
A. Two years later, the work in [34] continued this discussion in the formulation of
random walks, and proposed the use of another random variable, and it was argued
that, in certain special cases, this variable has a lower variance than X, and hence
is likely to converge faster. Both [11] and [34] have the advantage of being able to
compute part of an inverse matrix without solving the whole system, in other words,
localizing computation. Over the years, various descendant stochastic solvers have
been developed [15], [31], [32], though some of them do not have the locality property.

Early stochastic solvers suffer from accuracy limitations, and this was remedied
by the sequential Monte Carlo method proposed in [14] and [22], through iterative
refinement. Let x′ be an approximate solution to Ax = b found by a stochastic solver,
let the residual vector be r = b − Ax′, and let the error vector be z = x − x′; then
Az = r. The idea of the sequential Monte Carlo method is to iteratively solve Az = r
using a stochastic solver, and in each iteration, to compute an approximate z that is
then used to correct the current solution x′. Although the sequential Monte Carlo
method has existed for over forty years, it has not resulted in any powerful solver that
can compete with direct and iterative solvers, due to the fact that random walks are
needed in every iteration, resulting in a relatively high overall time complexity.

2. Stochastic Linear Equation Solver. In this section, we study the un-
derlying stochastic mechanism of the proposed preconditioner. It is presented as a
stand-alone stochastic linear equation solver; however, in later sections, its usage is
not to solve equations, but to build an incomplete factorization.

2.1. The Generic Algorithm. Let us consider a random walk “game” defined
on a finite undirected connected graph representing a street map, for example, Fig-
ure 2.1. A walker starts from one of the nodes, and every day, he/she goes to an

1The notations are different from the original ones used in [11].
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Fig. 2.1. An instance of a random walk “game.”

adjacent node l with probability pi,l for l = 1, 2, · · · , degree(i), where i is the current
node, degree(i) is the number of edges connected to node i, and the adjacent nodes
are labeled 1, 2, · · · , degree(i). The transition probabilities satisfy

degree(i)∑

l=1

pi,l = 1.(2.1)

The walker pays an amount mi to a motel for lodging everyday, until he/she reaches
one of the homes, which are a subset of the nodes. Note that the motel price mi is a
function of his/her current location, node i. The game ends when the walker reaches
a home node: he/she stays there and gets awarded a certain amount of money, m0.
We now consider the problem of calculating the expected amount of money that the
walker has accumulated at the end of the walk, as a function of the starting node,
assuming he/she starts with nothing. The gain function is therefore defined as

f(i) = E[total money earned |walk starts at node i].(2.2)

It is obvious that

f(one of the homes) = m0.(2.3)

For a non-home node i, again assuming that the nodes adjacent to i are labeled 1, 2,
· · · , degree(i), the f variables satisfy

f(i) =
degree(i)∑

l=1

pi,lf(l)−mi.(2.4)

For a game with N non-home nodes, there are N linear equations similar to the one
above, and the solution to this set of equations gives the exact values of f at all nodes.

In the above equations obtained from a random walk game, the set of allowable
matrices is a superset of the set of R-matrices2. In other words, given a set of linear

2A matrix from a game has all the properties of an R-matrix, except that it may be asymmetric.
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equations Ax = b, where A is an R-matrix, we can always construct a random walk
game that is mathematically equivalent, i.e., such that the f values are the desired
solution x. To do so, we divide the ith equation by Ai,i to obtain

xi +
∑

j 6=i

Ai,j

Ai,i
xj =

bi

Ai,i
,(2.5)

xi =
∑

j 6=i

(
−Ai,j

Ai,i

)
xj +

bi

Ai,i
.(2.6)

Equation (2.4) and equation (2.6) have seemingly parallel structures. Let N be the
dimension of the matrix A, and let us construct a game with N non-home nodes,
which are labeled 1, 2, · · · , N . Due to the properties of an R-matrix, we have

•
(
−Ai,j

Ai,i

)
is a non-negative value and can be interpreted as the transition

probability of going from node i to node j.
•

(
− bi

Ai,i

)
can be interpreted as the motel price mi at node i.

However, the above mapping is insufficient due to the fact that condition (2.1) may
be broken: the sum of the

(
−Ai,j

Ai,i

)
coefficients is not necessarily one. In fact, because

all rows of the matrix A are diagonally dominant, the sum of the
(
−Ai,j

Ai,i

)
coefficients

is always less than or equal to one. Condition (2.1) can be satisfied if we add an extra
transition probability of going from node i to a home node, by rewriting (2.6) as

xi =
∑

j 6=i

(
−Ai,j

Ai,i

)
xj +

∑
j Ai,j

Ai,i
·m0 +

b′i
Ai,i

, where b′i = bi −
∑

j

Ai,j ·m0.(2.7)

It is easy to verify that
∑

j
Ai,j

Ai,i
is a non-negative value for an R-matrix, and that the

following mapping establishes the equivalence between equation (2.4) and equation
(2.7), while satisfying (2.1) and (2.3).

•
(
−Ai,j

Ai,i

)
is the probability of going from node i to node j.

•
∑

j
Ai,j

Ai,i
is the probability of going from node i to a home with award m0.

•
(
− b′i

Ai,i

)
is the motel price mi at node i.

The choice of m0 is arbitrary because b′i always compensates for the m0 term in
equation (2.7), and in fact m0 can take different values in (2.7) for different rows
i. Therefore the mapping from an equation set to a game is not unique. A simple
scheme can be to let m0 = 0, and then mi = − bi

Ai,i
.

To find xi, the ith entry of solution vector x, a natural way is to simulate a certain
number of random walks from node i and use the average monetary gain in these walks
as the approximated entry value. If this amount is averaged over a sufficiently large
number of walks by playing the “game” a sufficiently large number of times, then by
the Law of Large Numbers [35], an acceptably accurate solution can be obtained.

According to the Central Limit Theorem [35], the estimation error of the above
procedure is asymptotically a zero-mean Gaussian variable with variance inversely
proportional to M , where M is the number of walks. Thus there is an accuracy-
runtime tradeoff. In implementation, instead of fixing M , one may employ a stopping
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criterion driven by a user-specified error margin ∆ and confidence level α:

P [−∆ < x′i − xi < ∆] > α,(2.8)

where x′i is the estimated ith solution entry from M walks.

2.2. Two Speedup Techniques. In this section, we propose two new tech-
niques that dramatically improve the performance of the stochastic solver. They will
play a crucial role in the proposed preconditioning technique.

2.2.1. Creating Homes. As discussed in the previous section, a single entry in
the solution vector x can be evaluated by running random walks from its corresponding
node in the game. To find the complete solution x, a straightforward way is to repeat
such procedure for every entry. This, however, is not the most efficient approach.

We propose a speedup technique by adding the following rule: after the computa-
tion of xi is finished according to criterion (2.8), node i becomes a new home node in
the game with an award amount equal to the estimated value x′i. In other words, any
later random walk that reaches node i terminates, and is rewarded a money amount
equal to the assigned x′i. Without loss of generality, suppose the nodes are processed
in the natural ordering 1, 2, · · · , N , then for walks starting from node k, the node
set {1, 2, · · · , k − 1} are homes where the walks terminate (in addition to the original
homes generated from the strictly-diagonally-dominant rows of A), while the node set
{k, k + 1, · · · , N} are motels where the walks pass by.

One way to interpret this technique is by the following observation about (2.4):
there is no distinction between the neighboring nodes that are homes and those that
are motels, and the only reason that a walk can terminate at a home node is that its
f value is known and is equal to the award. In fact, any node can be converted to a
home node if we know its f value and assign the award accordingly. Our new rule is
simply utilizing the estimated x′i ≈ xi in such a conversion. Another way to interpret
this technique is by looking at the source of the value x′i. Each walk that ends at a
new home and obtains such an award is equivalent to an average of multiple walks,
each of which continues walking from there according to the original game settings.

With this new method, as the computation for the complete solution x proceeds,
more and more new home nodes are created in the game. This speeds up the algorithm
dramatically, as walks from later nodes are carried out in a game with a larger and
larger number of homes, and the average number of steps in each walk is reduced.
At the same time, this method helps convergence without increasing M , because, as
mentioned earlier, each walk becomes the average of multiple walks. The only cost3

is that the game becomes slightly biased when a new home node is created, due to
the fact that the assigned award value is only an estimate, e.g. x′i 6= xi; overall, the
benefit of this technique dominates its cost.

2.2.2. Bookkeeping. Direct solvers are efficient in computing solutions for mul-
tiple right-hand-side vectors after an initial matrix factorization, since only a for-
ward/backward substitution step is required for each additional solve. Analogous to
a direct solver, we propose a speedup mechanism for the stochastic solver.

Recall that in the procedure of constructing a random walk game discussed in
Section 2.1, the topology of the game and the transition probabilities are solely de-
termined by the matrix A, and hence do not change when the right-hand-side vector
b changes. Only motel prices and award values in the game are linked to b.

3The cost discussed here is in the context of the stochastic solver only. For the proposed precon-
ditioner, this will no longer be an issue.
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When solving a set of linear equations with the matrix A for the first time, we
create a journey record for every node in the game, listing the following information.

• For any node i, record the number of walks performed from node i.
• For any node i and any visited motel node j, record the number of times that

walks from node i visit node j.
• For any node i and any reached home node j, which can be either an initial

home in the original game or a new home node created by the technique from
Section 2.2.1, record the number of walks that start from i and end at j.

Then, if the right-hand-side vector b changes while the matrix A remains the
same, we do not need to perform random walks again. Instead, we simply use the
journey record repeatedly and assume that the walker takes the same routes, gets
awards at the same locations, pays for the same motels, and only the award amounts
and motel prices have been modified. Thus, after a journey record is created, new
solutions can be computed by some multiplications and additions efficiently.

Practically, this bookkeeping is only feasible after the technique from Section 2.2.1
is in use, for otherwise the space complexity can be prohibitive for a large matrix.

This bookkeeping technique will serve as an important basis of the proposed
preconditioner. There the bookkeeping scheme itself gets modified, and a rigorous
proof is presented in Section 3.2 that the space complexity of the modified bookkeeping
is upper-bounded by the space complexity of an exact matrix factorization.

3. Proof of Incomplete LDLT Factorization for R-matrices. In this sec-
tion, we build an incomplete LDLT factorization of an R-matrix A by extracting
information from the journey record of random walks. The proof is described in two
stages: Section 3.1 proves that the journey record contains an approximate L factor,
and then Section 3.2 proves that its non-zero pattern is a subset of that of the exact
L factor. The formula of the diagonal D factor is derived in Section 3.3.

The factorization procedure is independent of the right-hand-side vector b. Any
appearance of b is symbolic, and the involved equations are true for any possible b.

3.1. The Approximate Factorization. Suppose the dimension of the matrix
A is N , and its kth row corresponds to node k in Figure 2.1, k = 1, 2, · · · , N . Without
loss of generality, assume that in the stochastic solution, the nodes are processed in the
natural ordering 1, 2, · · · , N . According to the speedup technique in Section 2.2.1, for
random walks that start from node k, the nodes in the set {1, 2, · · · , k−1} are already
solved and they now serve as home nodes where a random walk ends. The awards
for reaching nodes {1, 2, · · · , k − 1} are the estimated values of {x1, x2, · · · , xk−1}
respectively. Suppose that in equation (2.7), we choose m0 = 0, and hence the motel
prices are given by mi = − bi

Ai,i
, for i = k, k + 1, · · · , N . Further,

• Let Mk be the number of walks carried out from node k.
• Let Hk,i be the number of walks that start from node k and end at node

i ∈ {1, 2, · · · , k − 1}.
• Let Jk,i be the number of times that walks from node k pass the motel at

node i ∈ {k, k + 1, · · · , N}.
Taking the average of the results of the Mk walks from node k, we obtain the

following equation for the estimated solution entry:

x′k =

∑k−1
i=1 Hk,ix

′
i +

∑N
i=k Jk,i

bi

Ai,i

Mk
,(3.1)
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where x′i is the estimated value of xi for i ∈ {1, 2, · · · , k − 1}. Note that the awards
received at the initial home nodes are ignored in the above equation since m0 = 0.
Moving the Hk,i terms to the left side, we obtain

−
k−1∑

i=1

Hk,i

Mk
x′i + x′k =

N∑

i=k

Jk,i

MkAi,i
bi.(3.2)

By writing the above equation for k = 1, 2, · · · , N , and assembling the N equations
together into a matrix form, we obtain

Y x′ = Zb,(3.3)

where x′ is the approximate solution produced by the stochastic solver; Y and Z are
two square matrices of dimension N such that

Yk,k = 1, ∀k,

Yk,i = −Hk,i

Mk
, ∀k > i,

Yk,i = 0, ∀k < i,

Zk,i =
Jk,i

MkAi,i
, ∀k ≤ i,

Zk,i = 0, ∀k > i.(3.4)

These two matrices Y and Z are the journey record built by the bookkeeping
technique in Section 2.2.2. Obviously Y is a lower triangular matrix with unit diagonal
entries, Z is an upper triangular matrix, and their entries are independent of the right-
hand-side vector b. Once Y and Z are built from random walks, given any b, one
can apply equation (3.3) and find x′ efficiently by a forward substitution.

It is worth pointing out the physical meaning of the matrix Y : the negative of
an entry, (−Yk,i), is asymptotically equal to the probability that a walk from node
k ends at node i, when Mk goes to infinity. Another property of the matrix Y is
that, if a walk from node k can never reach an original home node generated from a

strictly-diagonally-dominant row of A, the row sum
∑

i Yk,i =
Mk−

∑
i
Hk,i

Mk
is zero.

From equation (3.3), we have

Z−1Y x′ = b.(3.5)

Since the vector x′ in the above equation is an approximate solution to the original
set of equations Ax = b, it follows that4

Z−1Y ≈ A.(3.6)

Because the inverse of an upper triangular matrix, Z−1, is also upper triangular,
equation (3.6) is in the form of an approximate “UL factorization” of A. The following

4For any vector b, we have
(
Z−1Y

)−1
b = x′ ≈ x = A−1b. Therefore, A

(
Z−1Y

)−1
b ≈

b, and then

(
I −A

(
Z−1Y

)−1
)

b ≈ 0. Since this is true for any vector b, it must be true for

eigenvectors of the matrix

(
I −A

(
Z−1Y

)−1
)

, and it follows that the eigenvalues of the matrix(
I −A

(
Z−1Y

)−1
)

are all close to zero. Thus we claim that Z−1Y ≈ A.
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definition and lemma present a simple relation between UL factorization and the more
commonly encountered LU factorization.

Definition 3.1. The operator rev(·) is defined on square matrices: given a
matrix A of dimension N , rev(A) is also a square matrix of dimension N , such that

rev(A)i,j = AN+1−i,N+1−j , ∀i, j ∈ {1, 2, · · · , N}.

lemma 1. Let A = LU be the LU factorization of a square matrix A, then
rev(A) = rev(L)rev(U) is true and is the UL factorization of rev(A).

The proof of Lemma 1 is omitted. In simple terms, it states that the reverse-
ordering of the LU factors of A are the UL factors of reverse-ordered A.

Applying Lemma 1 on equation (3.6), we obtain

rev(Z−1)rev(Y ) ≈ rev(A).(3.7)

Since A is an R-matrix and is symmetric, rev(A) must be also symmetric, and we can
take the transpose of both sides, and have

(rev(Y ))T
(
rev(Z−1)

)T ≈ rev(A),(3.8)

which is in the form of a Doolittle LU factorization [10]: the matrix (rev(Y ))T is lower
triangular with unit diagonal entries; the matrix

(
rev(Z−1)

)T is upper triangular.
lemma 2. The Doolittle LU factorization of a square matrix is unique.
The proof of Lemma 2 is omitted. Let the exact Doolittle LU factorization of

rev(A) be rev(A) = Lrev(A)Urev(A), and its exact LDLT factorization be rev(A) =

Lrev(A)Drev(A)

(
Lrev(A)

)T. Since (3.8) is an approximate Doolittle LU factorization of
rev(A), while the exact Doolittle LU factorization is unique, it must be true that:

(rev(Y ))T ≈ Lrev(A),(3.9)
(
rev(Z−1)

)T ≈ Urev(A) = Drev(A)

(
Lrev(A)

)T
.(3.10)

The above two equations indicate that from the matrix Y built by random walks,
we can obtain an approximation to factor Lrev(A), and that the matrix Z contains
redundant information. Section 3.3 shows how to estimate the matrix Drev(A) utilizing
only the diagonal entries of the matrix Z, and hence the rest of Z is not needed at
all. According to equation (3.4), the matrix Y is the award register in the journey
record and keeps track of end nodes of random walks, while the matrix Z is the
motel-expense register and keeps track of all intermediate nodes of walks. Therefore
the matrix Z is the dominant portion of the journey record, and by removing all of
its off-diagonal entries, the modified journey record is significantly smaller than that
in the original bookkeeping technique from Section 2.2.2. In fact, an upper bound on
the number of non-zero entries in the matrix Y is provided in the next section.

3.2. The Incomplete Non-zero Pattern. The previous section proves that an
approximate factorization of an R-matrix A can be obtained by random walks. It does
not constitute a proof of incomplete factorization, because an incomplete factorization
implies that its non-zero pattern must be a subset of that of the exact factor. Such a
proof is the task of this section: to prove that an entry of (rev(Y ))T can be possibly
non-zero only if the corresponding entry of Lrev(A) is non-zero.
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For i 6= j, by Definition 3.1 and equation (3.4), the (i, j) entry of (rev(Y ))T is

(
(rev(Y ))T

)
i,j

= YN+1−j,N+1−i = −HN+1−j,N+1−i

MN+1−j
.(3.11)

This value is non-zero if and only if j < i and HN+1−j,N+1−i > 0. In other words, at
least one random walk starts from node (N + 1− j) and ends at node (N + 1− i).

Fig. 3.1. One step in symmetric Gaussian elimination.

To analyze the non-zero pattern of Lrev(A), certain concepts from the literature of
LU factorization are used here, and certain conclusions are cited without proof. More
details can be found in [1], [10], [12], [13], [16]. Figure 3.1 illustrates one step in the
exact Gaussian elimination of a matrix: removing one node from the matrix graph,
and creating a clique among its neighbors. For example, when node v1 is removed, a
clique is formed for {v2, v3, v4, v5, v6}, where the new edges correspond to fills added
to the remaining matrix. At the same time, five non-zero values are written into the
L matrix, at the five entries that are the intersections5 of node v1’s corresponding
column and the five rows that correspond to nodes {v2, v3, v4, v5, v6}.

Definition 3.2. Given a graph G = (V, E), a node set S ⊂ V , and nodes
v1, v2 ∈ V such that v1, v2 /∈ S, node v2 is said to be reachable from node v1 through
S if there exists a path between v1 and v2 such that all intermediate nodes, if any,
belong to S.

Definition 3.3. Given a graph G = (V,E), a node set S ⊂ V , a node v1 ∈ V
such that v1 /∈ S, the reachable set of v1 through S, denoted R (v1, S), is defined as:

R (v1, S) = {v2 /∈ S|v2 is reachable from v1 through S}.

Note that if v1 and v2 are adjacent, there is no intermediate node on the path
between them, then Definition 3.2 is satisfied for any node set S. Therefore, R (v1, S)
always includes the direct neighbors of v1 that do not belong to S.

Given an R-matrix A, let G be its matrix graph, let L be the complete L factor
in its exact LDLT factorization, and let v1 and v2 be two nodes in G. Note that every
node in G has a corresponding row and a corresponding column in A and in L. The
following lemma can be derived from [13, p. 98], [16].

lemma 3. The entry in L at the intersection of column v1 and row v2 is non-zero
if and only if:

1. v1 is eliminated prior to v2 during Gaussian elimination.
2. v2 ∈ R (v1, {nodes eliminated prior to v1}).

5In this section, rows and columns of a matrix are often identified by their corresponding nodes
in the matrix graph, and matrix entries are often identified as intersections of rows and columns. The
reason is that such references are independent of the matrix ordering, and thereby avoid confusion
due to the two orderings involved in the discussion.
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We now apply this lemma on Lrev(A). Because the factorization of rev(A) is
performed in the reverse ordering, i.e., N,N − 1, · · · , 1, the (i, j) entry of Lrev(A) is
the entry at the intersection of the column that corresponds to node (N + 1− j) and
the row that corresponds to node (N + 1 − i). This entry is non-zero if and only if
both of the following conditions are met.

1. Node (N + 1− j) is eliminated prior to node (N + 1− i).
2. (N + 1− i) ∈ R (N + 1− j, Sj),

where Sj = {nodes eliminated prior to N + 1− j}.
Again, because the Gaussian elimination is carried out in the reverse ordering

N,N −1, · · · , 1, the first condition implies that N +1− j > N +1− i and hence j < i.
The node set Sj in the second condition is simply {N + 2− j, N + 3− j, · · · , N}.

Recall that equation (3.11) is non-zero if there is at least one random walk that
starts from node (N +1− j) and ends at node (N +1− i). Also recall that according
to Section 2.2.1, when random walks are performed from node (N + 1 − j), nodes
{1, 2, · · · , N − j} are home nodes that walks terminate, while nodes Sj = {N + 2 −
j,N + 3− j, · · · , N} are the motel nodes that a walk can pass through. Therefore, a
walk from node (N + 1− j) can possibly end at node (N + 1− i), only if (N + 1− i)
is reachable from (N + 1− j) through the motel node set, i.e., node set Sj .

By now it is proven that both conditions for
(
Lrev(A)

)
i,j

to be non-zero are nec-
essary conditions for equation (3.11) to be non-zero. Therefore, the non-zero pattern
of (rev(Y ))T is a subset of the non-zero pattern of Lrev(A). Together, this conclusion
and equation (3.9) give rise to the following lemma.

lemma 4. (rev(Y ))T is the L factor of an incomplete LDLT factorization of the
matrix rev(A).

This lemma indicates that, from random walks, we can obtain an incomplete
LDLT factorization of the matrix A in its reversed index ordering. The remaining
approximate diagonal matrix D is derived in the next section.

3.3. The Diagonal Component. To evaluate the approximate D matrix, we
take the transpose of both sides of equation (3.10), and obtain

rev(Z−1) ≈ Lrev(A)Drev(A).(3.12)

lemma 5. For a non-singular square matrix A, rev(A−1) = (rev(A))−1.
The proof of Lemma 5 is omitted. Applying it to equation (3.12), we have

(rev(Z))−1 ≈ Lrev(A)Drev(A),

I ≈ rev(Z)Lrev(A)Drev(A).(3.13)

Recall that rev(Z) and Lrev(A) are both lower triangular, that Lrev(A) has unit diago-
nal entries, and that Drev(A) is a diagonal matrix. Therefore, the (i, i) diagonal entry
in the above equation is simply

(rev(Z))i,i

(
Lrev(A)

)
i,i

(
Drev(A)

)
i,i
≈ 1,

(
Drev(A)

)
i,i
≈ 1

(rev(Z))i,i

.(3.14)

Applying Definition 3.1 and equation (3.4), we finally have the equation for computing
the approximate D factor, given as follows:

(
Drev(A)

)
i,i
≈ 1

ZN+1−i,N+1−i
=

MN+1−iAN+1−i,N+1−i

JN+1−i,N+1−i
.(3.15)
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It is worth pointing out the physical meaning of the quantity JN+1−i,N+1−i

MN+1−i
. It is

the average number of times that a walk from node N + 1− i passes node N + 1− i
itself; in other words, it is the average number of times that the walker returns to
his/her starting point before the game is over. Equation (3.15) indicates that an entry
in the D factor is equal to the corresponding diagonal entry of the original matrix A
divided by the expected number of returns.

4. Proof of Incomplete LDU/LDLT Factorization for Diagonally Domi-
nant Matrices. The previous two sections have presented the theory of stochastic
preconditioning in the context of R-matrices. In this section, we show that the pro-
posed preconditioner applies to any matrix A that satisfies Definition 1.2.

4.1. Asymmetric Matrices. Let us first remove the symmetry requirement
on the matrix A. Recall that the construction of the random walk game and the
derivation of equation (3.7) do not require A to be symmetric. Therefore, matrices
Y and Z can still be obtained by (3.4) from random walks, which we will refer to
as YA and ZA in this section, and equation (3.7) remains true for an asymmetric
matrix A. Suppose the exact LDU factorization of the matrix rev(A) is rev(A) =
Lrev(A)Drev(A)Urev(A), where Lrev(A) is a lower triangular matrix with unit diagonal
entries, Urev(A) is an upper triangular matrix with unit diagonal entries, and Drev(A) is
a diagonal matrix. It is easy to show, based on Lemma 2, that the LDU factorization
is also unique. Substituting the factorization into equation (3.7), we have

rev(Z−1
A )rev(YA) ≈ Lrev(A)Drev(A)Urev(A).(4.1)

Based on the uniqueness of LDU factorization, it must be true that

rev(YA) ≈ Urev(A),(4.2)

rev(Z−1
A ) ≈ Lrev(A)Drev(A).(4.3)

By equation (4.2), we can approximate Urev(A) based on YA; by equation (4.3), and
through the same derivation as in Section 3.3, we can approximate Drev(A) based on
the diagonal entries of ZA. The remaining question is how to obtain Lrev(A).

Suppose we construct a random walk game based on AT instead of A, and obtain
matrices YAT and ZAT based on equation (3.4). Then by equation (4.2), we have

rev(YAT) ≈ Urev(AT),(4.4)

where Urev(AT) is the exact U factor in the LDU factorization of rev(AT). It is easy
to derive the following:

rev(AT) = (rev(A))T =
(
Urev(A)

)T
Drev(A)

(
Lrev(A)

)T
,(4.5)

Lrev(AT)Drev(AT)Urev(AT) =
(
Urev(A)

)T
Drev(A)

(
Lrev(A)

)T
.(4.6)

Based on the uniqueness of the LDU factorization, it must be true that
(
Lrev(A)

)T = Urev(AT).(4.7)

By (4.4) and (4.7), we finally have

rev(YAT) ≈ (
Lrev(A)

)T
,

(rev(YAT))T ≈ Lrev(A).(4.8)
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In other words, we can approximate Lrev(A) based on YAT .
As a summary, when the matrix A is asymmetric, we need to construct two

random walk games for A and AT, and then based on the two Y matrices and the
diagonal entries of one of the Z matrices6, we can approximate the LDU factorization
of rev(A) based on equations (3.4), (3.15), (4.2), and (4.8). Both the time complexity
and space complexity of building the preconditioner become roughly twice those of
the symmetric case: this is the same behavior as a traditional ILU.

The remainder of this section gives an outline of the proof that the non-zero
patterns of the above approximate L and U factors by (4.2) and (4.8) are subsets of
those of the exact factors. The proof is essentially the same as Section 3.2, and we
will only point out the differences due to asymmetry.

Fig. 4.1. One step in asymmetric Gaussian elimination.

Figure 4.1 illustrates one step in the exact Gaussian elimination of an asymmetric
matrix: removing one node from the matrix graph, and adding an edge from each of
its fan-in nodes to each of its fan-out nodes; the new edges correspond to fills added
to the remaining matrix. In the example of Figure 4.1, when node v1 is removed,
edges are added from each of its fan-in nodes {v2, v3, v4} to each of its fan-out nodes
{v4, v5, v6}, with the exception that no edge is added from v4 to itself. At the same
time, three non-zero values are written into the L matrix, at the three entries that
are the intersections of node v1’s corresponding column and the three rows that cor-
respond to nodes {v2, v3, v4}; three non-zero values are written into the U matrix,
at the three entries that are the intersections of node v1’s corresponding row and
the three columns that correspond to nodes {v4, v5, v6}. Utilizing Figure 4.1, we can
prove Lemma 6, which is the asymmetric version of Lemma 3; the proof is omitted.

Definition 4.1. Given a directed graph G = (V,E), a node set S ⊂ V , and
nodes v1, v2 ∈ V such that v1, v2 /∈ S, node v2 is said to be reachable from node v1

through S if there exists a directed path from v1 to v2 such that all intermediate nodes,
if any, belong to S.

Definition 4.2. Given a directed graph G = (V,E), a node set S ⊂ V , a node
v1 ∈ V such that v1 /∈ S, the reachable set of v1 through S, denoted R (v1, S), is
defined as:

R (v1, S) = {v2 /∈ S|v2 is reachable from v1 through S}.

lemma 6. Suppose the exact LDU factorization of a square matrix A exists and
is A = LDU . Let v1 and v2 be two nodes in the matrix graph of A. The entry in L
at the intersection of column v1 and row v2 is non-zero if and only if:

1. v1 is eliminated prior to v2 during Gaussian elimination.
2. v1 ∈ R (v2, {nodes eliminated prior to v1}).

6Due to the uniqueness of the LDU, it does not matter the diagonals of which Z are used.
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The entry in U at the intersection of column v1 and row v2 is non-zero if and only if:
1. v2 is eliminated prior to v1 during Gaussian elimination.
2. v1 ∈ R (v2, {nodes eliminated prior to v2}).

Applying Lemma 6 on the matrix rev(A), and through the same procedure as
Section 3.2, it can be proven7 that the conditions in Lemma 6 are necessary conditions
for the non-zero entries in (4.2) and (4.8). Therefore, the non-zero patterns of the
approximate L and U factors by (4.2) and (4.8) are subsets of those of the exact
factors, and hence we have the following lemma, the asymmetric version of Lemma 4.

lemma 7. (rev(YAT))T is the L factor, and rev(YA) is the U factor, of an in-
complete LDU factorization of the matrix rev(A).

4.2. Random Walk Game with Scaling. This section shows that our method
does not require A to be an M-matrix: as long as the matrix A satisfies Definition 1.2,
its off-diagonal entries can be positive or complex-valued.

Fig. 4.2. A random walk in the modified game with scaling.

To remove the M-matrix constraint, a new game is designed by defining a scaling
factor8 s on each direction of every edge in the original game from Section 2.1. Such
a scaling factor becomes effective when a random walk passes that particular edge in
that particular direction, and remains effective until this random walk ends.

Let us look at the stochastic solver first. A walk is shown in Figure 4.2: it passes
a number of motels, each of which has its price ml, l ∈ {1, 2, · · · , Γ}, and ends at a
home with certain award value maward. The monetary gain of this walk is defined as

gain = −m1 − s1m2 − s1s2m3 − · · · −
Γ−1∏

l=1

sl ·mΓ +
Γ∏

l=1

sl ·maward.(4.9)

In simple terms, this new game is different from the original game in that each trans-
action amount during the walk is scaled by the product of the currently active scaling
factors. Define the expected gain function f to be the same as in equation (2.2), and
it is easy to derive the replacement of equation (2.4):

f(i) =
degree(i)∑

l=1

pi,lsi,lf(l)−mi,(4.10)

where si,l denotes the scaling factor associated with the direction i → l of the edge
between i and l, and the rest of the symbols are the same as defined in (2.4).

In this section, we require that each s factor has an absolute value of one. There-
fore, the scaling in the new game never changes the magnitude of a monetary transac-
tion, and only changes its sign or phase. Section 8 will discuss other scaling schemes.

Due to the degrees of freedom introduced by the scaling factors, the allowable
matrix A in (4.10) is now any matrix that is diagonally dominant. Hence, given any
matrix A that satisfies Definition 1.2, a corresponding game can be constructed.

7It is important to note that, in the random walk game constructed for AT, the road directions
are all reversed, compared to the game for A.

8A similar concept of scaling factors can be found in [11], though tailored to its game design.



STOCHASTIC PRECONDITIONING 15

For stochastic preconditioning, this new game design with scaling leads to the
redefinition of the H and J quantities in Section 3.1 and in all subsequent formulations:

Hk,i =
∑

walk from k to i


 ∏

step l

sl


 , ∀k > i,(4.11)

Jk,i =
∑

partial walk from k to i


 ∏

step l

sl


 , ∀k ≤ i.(4.12)

Note that a single walk from k may contribute multiple terms in the summation in
(4.12), if it passes node i multiple times, and each such time the partial walk is defined
as the segment from the start k to the current passing of i; a partial walk in (4.12)
always starts from the initial start at k, and not from any intermediate passing of k;
in the case of i = k, the summation in equation (4.12) includes a zero-length partial
walk for each walk performed from k, and the zero-length product of scaling factors
is defined to be one. When all s factors are set to be one, the new game design is
identical to the original one, and equations (4.11) and (4.12) simply degenerate to the
original definitions of H and J in Section 3.1.

After applying the new formulas (4.11) and (4.12), all the equations and deriva-
tions in Sections 3 and 4 are valid, and now we have proven the proposed precondi-
tioning method for any matrix A that satisfies Definition 1.2.

5. Relation to and Comparison with ILU/IC/Approximate-inverse. In
this section, the proposed hybrid solver for diagonally dominant matrices is presented
in its entirety, by summarizing the previous three sections; its relation to and com-
parison with several existing preconditioning methods are discussed.

5.1. The Hybrid Solver. We begin by defining the rev(·) operator on vectors.
Definition 5.1. The operator rev(·) is defined on vectors: given vector x of

length N , rev(x) is a vector of length N and rev(x)i = xN+1−i, ∀i ∈ {1, 2, · · · , N}.
It is easy to verify that Ax = b is equivalent to rev(A)rev(x) = rev(b). By now,

we have collected the necessary pieces, and the hybrid solver is summarized in the
pseudocodes in Algorithm 1 and Algorithm 2. Here conjugate gradient (CG) and
biconjugate gradient (BCG) are listed as example iterative engines, and the proposed
preconditioner can work with any iterative solver.

Algorithm 1. The hybrid solver for symmetric matrices:
Precondition {

Run random walks, build the matrix Y and find diagonal

entries of Z using equations (3.4)(4.11)(4.12);

Build Lrev(A) using equation (3.9);

Build Drev(A) using equation (3.15);

}
Given b, solve {

Convert Ax = b to rev(A)rev(x) = rev(b);
Apply CG on rev(A)rev(x) = rev(b) with the

preconditioner
(
Lrev(A)Drev(A)L

T
rev(A)

)−1
;

Convert rev(x) to x;
}
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Algorithm 2. The hybrid solver for asymmetric matrices:
Precondition {

Run random walks in the game for A, build the matrix YA and

find diagonal entries of ZA using equations (3.4)(4.11)(4.12);

Build Urev(A) using equation (4.2) based on YA;

Build Drev(A) using equation (3.15) based on diagonals of ZA;

Run random walks in the game for AT, build the matrix YAT

using equations (3.4)(4.11);

Build Lrev(A) using equation (4.8) based on YAT;

}
Given b, solve {

Convert Ax = b to rev(A)rev(x) = rev(b);
Apply BCG on rev(A)rev(x) = rev(b) with the

preconditioner
(
Lrev(A)Drev(A)Urev(A)

)−1
;

Convert rev(x) to x;
}

5.2. Comparison with ILU/IC. This section presents an algorithmic argu-
ment that the proposed preconditioner has better quality than the traditional ILU
or IC preconditioners. In other words, if the incomplete LDU/LDLT factorization
built by our method has the same number of non-zero entries as one that is built by
a traditional approach, we expect a better approximation to the exact LDU/LDLT

factorization, and a preconditioned Krylov-subspace solver to converge with fewer
iterations. Experimental condition number comparisons are provided in Section 7.

Let us use the symmetric ICT approach as an example of traditional precondi-
tioning methods; a similar argument can be made for other existing techniques for
either symmetric or asymmetric matrices, as long as they are sequential procedures
based on Gaussian elimination. Suppose in Figure 3.1, when eliminating node v1, the
new edge between nodes v2 and v3 corresponds to an entry whose value falls below a
specified threshold, then ICT drops that entry from the remaining matrix, and that
edge is removed from the remaining matrix graph. Later when the algorithm reaches
the stage of eliminating node v2, because of that missing edge, no edge is created from
v3 to the neighbors of v2, and thus more edges are missing, and this new set of miss-
ing edges then affect later computations accordingly. Therefore, an early decision of
dropping an entry is propagated throughout the ICT process. On the one hand, this
leads to the sparsity of the preconditioner, which is desirable; on the other hand, error
accumulation occurs, and later columns of the resulting incomplete Cholesky factor
may deviate from the exact Cholesky factor by a larger amount than the planned
threshold. Such error accumulation gets exacerbated for larger and denser matrices.

Let us generalize the above argument to all traditional ILU/IC methods, and
state it from a different perspective: traditional ILU/IC methods are all sequen-
tial procedures where later rows/columns are calculated based on previously com-
puted rows/columns, which may contain errors due to dropped entries; such data
dependency can be represented by a directed acyclic graph; the depth of this de-
pendency graph increases for larger and denser matrices, and we argue that higher
data-dependency depth implies stronger error accumulation.

The hybrid solver does not suffer from such error accumulation. According to
equation (3.4), the calculation of Yk,i, which will become a single entry in the resulting
incomplete LDU/LDLT factorization, replies on no other Y or Z entries. In other
words, equation (3.4) provides a direct unbiased Monte Carlo estimator for each single
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entry in an LDU/LDLT factorization, and allows obtaining any single entry in an
LDU/LDLT factorization without computing any other entry. Practically, a row of
the matrix Y can be computed together because the needed random walks are shared
by its entries. When we run random walks from node k and collect the Hk,i values
to build the kth row of the matrix Y according to equation (3.4), we only know
that the nodes {1, 2, · · · , k − 1} are homes, and this is the only information needed9.
Therefore, the quality of the computed kth row of the matrix Y does not affect other
rows in any way; each row is responsible for its own accuracy, according to a criterion
to be discussed in Section 6.1. In fact, in a parallel computing environment, the
computation of each row of Y can be assigned to a different processor.

It is important to distinguish the error accumulation discussed in this section and
the cost of bias discussed at the end of Section 2.2.1. For an iterative solver with
implicit factorization-based preconditioning, there can be two different types of error
accumulation: first, the process of building the preconditioner can accumulate error,
as described earlier with the ICT example; second, the process of applying the pre-
conditioner inside an iterative solver can accumulate error, i.e., the forward/backward
substitution is a sequential solving process and later entries in the resulting vector are
calculated based on earlier entries which contain errors. That bias discussed at the
end of Section 2.2.1, in the context of the hybrid solver, maps to the second type, the
error accumulation in applying the preconditioner; such bias or error propagation is
inevitable in all iterative solvers as long as an implicit factorization-based precondi-
tioner is in use. Our claim here is that the hybrid solver is free of error accumulation
in building the preconditioner, and not in applying the preconditioner10.

In summary, due to the absence of error accumulation in building the precondi-
tioner, we expect the proposed stochastic preconditioning to outperform traditional
ILU/IC methods, and we expect larger advantage on larger and denser matrices.

5.3. Relation to Factored Approximate Inverses. A factored-approximate-
inverse preconditioner approximates A−1 in the form of a product of, typically three,
matrices, and are obtained by either a norm-minimization approach or an inverse
triangular factorization [3], [4]. As an explicit preconditioning method, it has the
advantages of parallelism as well as better stability, compared to ILU/IC, although
its accuracy-size tradeoff is often inferior. It was shown in [4] that triangular factored
approximate inverses can be viewed as approximations of the inverses of LDU/LDLT

factors. This section shows that such a factored-approximate-inverse preconditioner
can be easily produced by our stochastic procedure, and that we again have the
advantage of being free of error accumulation over existing methods.

Applying Lemma 5 on equation (4.3), we have

rev(ZA)−1 ≈ Lrev(A)Drev(A),

rev(ZA) ≈ D−1
rev(A)L

−1
rev(A),

9As a side note, recall the property of the matrix Y that, for an R-matrix A, if a walk from
node k can never reach an original home node generated from a strictly-diagonally-dominant row of

A, the row sum
∑

i
Yk,i =

Mk−
∑

i
Hk,i

Mk
is guaranteed to be zero. This is a property of an exact

LDLT factorization of an R-matrix, and is maintained naturally in our preconditioner. This aspect is
similar in flavor as MILU/MIC, which achieves this property by compensating their diagonal entries.

10After a row of the matrix Y is calculated, it is possible to add a postprocessing step to drop
insignificant entries. The criterion can be any of the strategies used in traditional incomplete fac-
torization methods. With such postprocessing, the hybrid solver still maintains the advantage of
independence between row calculations. This is not included in our implementation.
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Drev(A)rev(ZA) ≈ L−1
rev(A).(5.1)

Since ZA can be built by equation (3.4) and Drev(A) can be built by equation (3.15),
the above equation gives a stochastic approach to approximate the matrix L−1

rev(A).
Suppose we construct a game based on AT instead of A, and obtain matrices ZAT

and Drev(AT) based on equations (3.4) and (3.15). Then by equation (5.1), we have

Drev(AT)rev(ZAT) ≈ L−1
rev(AT)

.(5.2)

Based on the uniqueness of the LDU factorization, and by (4.6), it must be true that

Lrev(AT) ≈ UT
rev(A).(5.3)

Combining the above two equations, we get

Drev(AT)rev(ZAT) ≈
(
UT

rev(A)

)−1

,

Drev(AT)rev(ZAT) ≈
(
U−1

rev(A)

)T

,

(rev(ZAT))T DT
rev(AT) ≈ U−1

rev(A).(5.4)

The above equation gives a stochastic approach to approximate the matrix U−1
rev(A).

With equations (5.1) and (5.4), we can construct a factored-approximate-inverse
preconditioner in the form of Ũ−1

rev(A)D̃
−1
rev(A)L̃

−1
rev(A), where Ũ−1

rev(A), D̃−1
rev(A) and L̃−1

rev(A)

approximate U−1
rev(A), D−1

rev(A) and L−1
rev(A) respectively. For a symmetric matrix A,

since U−1
rev(A) =

(
L−1

rev(A)

)T

, only equation (5.1) is needed. It is worth pointing out the
physical meaning of this preconditioner: the approximate inverse factor is contained
in the motel register matrix Z rather than the award register matrix Y .

Comparing the above stochastic approach against existing methods for building
triangular factored approximate inverses, we again note that existing methods are
sequential procedures where later rows/columns are calculated based on previously
computed rows/columns which contain errors, and that our approach has the advan-
tage of being free of error accumulation. Therefore, the stochastic approximate-inverse
preconditioning in this section may potentially give a better performance.

In this paper, we choose to focus on implicit stochastic preconditioning, and will
not further discuss the stochastic approximate inverse method beyond this section.

6. Implementation Issues. This section describes several implementation as-
pects of the stochastic preconditioning. The goal is to minimize the cost of building
the preconditioner, and to achieve a better accuracy-size tradeoff.

6.1. Stopping Criterion. The topic of this section is the accuracy control of
the preconditioner, that is, how should one choose Mk, the number of walks from
node k, to achieve a certain accuracy level in estimating its corresponding entries in
the LDU/LDLT factorization. In Section 2.1, the stopping criterion in the stochastic
solver is defined on the result of a walk; it is not applicable to preconditioning because
here it is necessary for the criterion to be independent of the right-hand-side vector
b. In our implementation, a new stopping criterion is defined on a value that is a
function of only the matrix A, as follows. Let Ξk = E [length of a walk from node k],
and let Ξ′k be the average length of the Mk walks. The stopping criterion is

P [−∆ <
Ξ′k − Ξk

Ξk
< ∆] > α,(6.1)
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where ∆ is a relative error margin, and α is a confidence level, for example α = 99%.
Practically, this criterion is checked by the following inequality:

∆Ξ′k
√

Mk

σk
> Q−1

(
1− α

2

)
,(6.2)

where σk is the standard deviation of the lengths of the Mk walks, and Q is the
standard normal complementary cumulative distribution function. Thus, Mk is de-
termined dynamically, and random walks are run from node k until condition (6.1) is
satisfied. Different choices of ∆ and/or α result in different tradeoff points between
accuracy and size of the proposed preconditioner. Our experience with 3D Laplacian
matrices and VLSI circuit placement matrices, for which results will be presented in
Section 7, suggests that a ∆ value between 30% and 40% with α = 99% gives a rea-
sonably good tradeoff, and the condition (6.1) is typically satisfied within 100 walks.
In practice, it is also necessary to impose a lower bound on Mk, e.g., 20 walks.

Note that this is not the only way to design the stopping criterion: it can also be
defined on quantities other than Ξk (for example, the expected number of returns).

6.2. Exact Computations for One-step Walks. The technique in this sec-
tion is a special treatment for the random walks with length 1, which we refer to as
one-step walks. Such a walk occurs when an immediate neighbor of the starting node
is a home node, and the first step of the walks happens to go there. The idea is to
replace stochastic computations of one-step walks with their deterministic limits.

Without loss of generality, assume that the node ordering in the hybrid solver
is the natural ordering 1, 2, · · · , N . Let us consider the Mk walks from node k, and
suppose at least one of its immediate neighboring nodes is a home, which could be
either an initial home if the kth row of the matrix A is strictly diagonally dominant,
or a node j such that j < k. Among the Mk walks, let Mk,1 be the number of one-step
walks, and let Hk,i,1 be the portion of (4.11) contributed by one-step walks that go
to node i, where node i is an arbitrary node such that i < k. For the case that node
i is not adjacent to node k, Hk,i,1 is simply zero. Equation (3.4) can be rewritten as

Yk,i = −Hk,i

Mk
= −Hk,i,1

Mk
−

(
Mk −Mk,1

Mk

)
·
(

Hk,i −Hk,i,1

Mk −Mk,1

)
.(6.3)

Applying the H values in (4.11), the mapping between (2.7) and (4.10), and the
fact that every scaling factor s has unit magnitude, we can derive the following:

lim
Mk→∞

Hk,i,1

Mk
= sstep k to i · P [first step goes to node i] = −Ak,i

Ak,k
,(6.4)

lim
Mk→∞

Mk −Mk,1

Mk
= P [first step goes to a non-absorbing node](6.5)

=
∑

j>k

P [first step goes to node j] =

∑
j>k |Ak,j |
Ak,k

.

We modify equation (6.3) by replacing the term Hk,i,1
Mk

and the term Mk−Mk,1
Mk

with their limits given by the above two equations, and obtain a new formula for Yk,i:

Yk,i =
Ak,i

Ak,k
−

(∑
j>k |Ak,j |
Ak,k

)
·
(

Hk,i −Hk,i,1

Mk −Mk,1

)
.(6.6)
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The remaining stochastic part of this new equation is the term Hk,i−Hk,i,1
Mk−Mk,1

, which
can be evaluated by considering only random walks whose length is at least two;
in other words, one-step walks are ignored. In implementation, this can be realized
by simulating the first step of walks by randomly picking one of the non-absorbing
neighbors of node k; note that then the number of random walks would automatically
be (Mk −Mk,1), and no adjustment is needed.

With a similar derivation, the Zk,k formula11 in (3.4) can be modified to

Zk,k =
1

Ak,k
−

∑
j>k |Ak,j |
A2

k,k

+

(∑
j>k |Ak,j |
A2

k,k

)
·
(

Jk,k − Jk,k,1

Mk −Mk,1

)
,(6.7)

where Jk,k,1 is the portion of (4.12) contributed by one-step walks. Obviously Jk,k,1 =
Mk,1, and therefore

Zk,k =
1

Ak,k
+

(∑
j>k |Ak,j |
A2

k,k

)
·
(

Jk,k −Mk,1

Mk −Mk,1
− 1

)
.(6.8)

The remaining stochastic part of this new equation, the term Jk,k−Mk,1
Mk−Mk,1

, again can be
evaluated by considering only random walks with length being at least two. Practi-
cally, such computation is concurrent with evaluating Yk,i’s based on equation (6.6).

The benefit of replacing (3.4) with equations (6.6) and (6.8) is twofold:
• Part of the evaluation of Yk,i and Zk,k entries is converted from stochas-

tic computation to its deterministic limit, and the accuracy is potentially
improved. For a node k where all neighbors have lower indices, i.e., when
all neighbors are home nodes, equations (6.6) and (6.8) become exact: they
translate to the exact entry values in the complete LDU/LDLT factorization.

• By avoiding simulating one-step walks, the amount of computation in building
the preconditioner is reduced. For a node k where all neighbors are homes,
the stochastic parts of (6.6) and (6.8) disappear, and no walks are needed.

6.3. Reusing Walks. Without loss of generality, assume that the node ordering
in the hybrid solver is the natural ordering 1, 2, · · · , N . A sampled random walk is
completely specified by the node indices along the way, and hence can be viewed as a
sequence of integers {k1, k2, · · · , kΓ}, such that k1 > kΓ, that k1 ≤ kl, ∀l ∈ {2, · · · ,Γ−
1}, and that an edge exists between node kl and node kl+1, ∀l ∈ {1, · · · , Γ − 1}.
If a sequence of integers satisfy the above requirements, it is referred to as a legal
sequence, and can be mapped to an actual random walk.

Due to the fact that a segment of a legal sequence may also be a legal sequence,
it is possible to extract multiple legal sequences from a single simulated random
walk, and use them also as random walks in the evaluation of equation (3.4) or its
placement, (6.6) and (6.8). However, there are rules that one must comply with when
extracting these legal sequences. A fundamental premise is that random samples must
be independent of each other. If two walks share a segment, they become correlated.
Note that if two walks have different starting nodes, they never participate in the same
equation (6.6) or (6.8), and hence are allowed to share segments; if two walks have
the same starting nodes, however, they are prohibited from overlapping. Moreover,
due to the technique in the previous section, any one-step walk should be ignored.

11Recall that we only need diagonal entries of the matrix Z.
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(a) {2, 4, 6, 4, 5, 7, 6, 3, 2, 5, 8, 1}
(b) {4, 6, 4, 5, 7, 6, 3} {5, 7, 6, 3} {5, 8, 1}

Fig. 6.1. An example of (a) the legal sequence of a simulated random walk and (b) three extra
walks extracted from it.

Figure 6.1 shows an example of extracting multiple legal sequences from a single
simulated random walk. The sequence {2, 5, 8, 1} cannot be used because it has the
same starting node as the entire sequence; the sequence {4, 5, 7, 6, 3} cannot be used
because it has the same starting node as {4, 6, 4, 5, 7, 6, 3} and the two sequences
overlap12. On the other hand, {5, 7, 6, 3} and {5, 8, 1} are both extracted because
they do not overlap and hence are two independent random walks.

Considering all of the above requirements, the procedure for an R-matrix is shown
in Algorithm 3, where the extracted legal sequences are directly accounted for in
the M , H and J accumulators, which are defined as in Section 3.1. Note that the
simulated random walk is never stored in memory, and the only extra storage due
to this technique is the stacks, which contain a monotonically increasing sequence of
integers at any moment. For a random walk game with scaling for a non-R-matrix,
more storage is needed to keep track of products of scaling factors, and the increments
of H and J variables should be the proper products of scaling factors instead of ones.

Algorithm 3. Extract multiple walks from a single simulation, for an R-matrix:
stack1.push( k1 );

stack2.push( 1 );

For l = 2, 3, · · · , until the end of walk, do {
While( kl < stack1.top() ){

If( l > stack2.top()+1 ){
k′ = stack1.top();

Mk′ = Mk′ + 1;
Hk′,kl

= Hk′,kl
+ 1;

Jk′,k′ = Jk′,k′ + 1;
}
stack1.pop();

stack2.pop();

}
If( kl > stack1.top() ){

stack1.push( kl );

stack2.push( l );

}
else Jkl,kl = Jkl,kl + 1;

}

This technique reduces the preconditioning runtime by fully utilizing the infor-
mation contained in each simulated walk, such that it contributes to equations (6.6)
and (6.8) as multiple walks. It guarantees that no two overlapping walks have the
same starting node, and hence does not hurt the accuracy of the produced precondi-

12It is also legitimate to extract {4, 5, 7, 6, 3} instead of {4, 6, 4, 5, 7, 6, 3}. However, the premise
of random sampling must be fulfilled: the decision of whether to start a sequence with k2 = 4 must
be made without the knowledge of numbers after k2, and the decision of whether to start a sequence
with k4 = 4 must be made without the knowledge of numbers after k4. The strategy in Algorithm 3 is
to start a sequence as early as possible, and hence produces {4, 6, 4, 5, 7, 6, 3} instead of {4, 5, 7, 6, 3}.
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tioner. The only cost of this technique is that the node ordering must be determined
beforehand, and hence pivoting is not allowed during the incomplete factorization13.

6.4. Matrix Ordering. In existing factorization-based preconditioning tech-
niques, matrix ordering affects the performance. The same statement is true for
the proposed stochastic preconditioner. In general, since we perform an incomplete
LDU/LDLT factorization on the reverse ordering of the matrix A, we can utilize any
existing ordering method on A and then reverse the resulting ordering; in this way,
any benefit of that ordering method can be inherited by us. For example, a reversed
Approximate Minimum Degree ordering (AMD) [1] is likely to improve the accuracy-
size tradeoff; a reversed Reverse Cuthill-McKee ordering (RCM) [9], which becomes
the original Cuthill-McKee ordering, is likely to improve cache efficiency.

7. Numerical Results. Twelve symmetric benchmark matrices are used to
compare the stochastic preconditioner against IC(0), ICT, MICT, and support-graph
preconditioners; twelve asymmetric benchmark matrices are used to compare the
stochastic preconditioner against ILU(0), ILUT, and MILUT preconditioners.

The first set of symmetric benchmarks are generated by SPARSKIT [29] by finite-
difference discretization, with the regular seven-point stencil, of the 3D Laplace’s
equation ∇2u = 0 with Dirichlet boundary condition. The matrices correspond to
3D grids with sizes 50-by-50-by-50, 60-by-60-by-60, up to 100-by-100-by-100, and a
right-hand-side vector with all entries being 1 is used with each of them. They are
listed in Tables 7.1, 7.3 and 7.4 as benchmarks m1 to m6. Another six application-
specific benchmarks, m7 to m12, are reported in Tables 7.2, 7.3 and 7.4: they are
symmetric placement matrices from VLSI designs, and are denser than the 3D-grid
matrices. The twelve asymmetric benchmarks, m1’ to m12’ in Tables 7.5 and 7.6,
are derived from m1 to m12 respectively: each of them is generated by randomly
switching signs of the off-diagonal entries in a symmetric benchmark and randomly
removing a fraction of its off-diagonal entries.

MATLAB is used to generate the IC(0), ICT, MICT, ILU(0), ILUT, and MILUT
preconditioners. Three matrix ordering algorithms are available in MATLAB: mini-
mum degree ordering (MMD) [12], AMD [1] and RCM [9]. AMD results in the best
performance on the benchmarks and is used for all. TAUCS [33] is used to gener-
ate the support-graph preconditioners, which are based on the non-recursive version
of the augmented maximum-weight-basis (AMWB) algorithm proposed in [5]. Our
solver package [27] generates the stochastic preconditioners. The condition number
measurements in Tables 7.1, 7.2 and 7.5 are all performed in MATLAB; the support-
graph preconditioners and the stochastic preconditioners are read into MATLAB via
binary files. The preconditioned CG and BCG solves in Tables 7.3 and 7.6 are all
performed in MATLAB as well. The T2 runtimes in Table 7.4, which are not used in
any comparison, are measured on CG solves by our solver package [27].

In Tables 7.1 and 7.2, and Figure 7.1, the condition number comparisons are based
on roughly equal preconditioner sizes: the dropping thresholds of ICT and MICT are
tuned, and the accuracy-size tradeoffs of the support-graph preconditioner as well as
the proposed stochastic preconditioner are adjusted, such that the sizes of the factors
produced by all four methods are similar, i.e., the S values in the tables are close.

A clear trend can be observed in Figure 7.1 that when the matrix size increases,

13For irreducibly diagonally dominant matrices, pivoting is not needed. For more general matrices
to be discussed in Section 8, the usage of this technique may be limited. Note that this technique is
optional, and without it, the advantages of the hybrid solver still hold.
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Table 7.1
Condition number comparison of the stochastic preconditioner against ICT, MICT, and

support-graph preconditioners on the symmetric 3D-grid benchmarks. N is the dimension of a
matrix; E is the number of non-zero entries of a matrix; C1 is the condition number of the original
matrix; S is the number of non-zero entries of the preconditioner (L and D matrices); C2 is the
condition number after split preconditioning.

Matrix N E C1 ICT MICT Support-graph Stochastic
S C2 S C2 S C2 S C2

m1 1.25e5 8.60e5 1.05e3 1.72e6 19.4 1.72e6 30.3 1.73e6 623 1.71e6 4.72
m2 2.16e5 1.49e6 1.51e3 3.00e6 27.7 3.00e6 43.2 3.11e6 564 3.02e6 4.84
m3 3.43e5 2.37e6 2.04e3 4.80e6 37.4 4.80e6 58.4 4.79e6 587 4.87e6 5.13
m4 5.12e5 3.55e6 2.66e3 7.20e6 48.5 7.20e6 75.8 7.30e6 1.46e3 7.35e6 4.78
m5 7.29e5 5.05e6 3.36e3 1.03e7 61.0 1.03e7 95.2 1.03e7 866 1.06e7 5.05
m6 1.00e6 6.94e6 4.13e3 1.42e7 75.2 1.42e7 117 1.42e7 2.07e3 1.46e7 5.15

Fig. 7.1. The condition number C2 after preconditioning as a function of the matrix dimension
N for the results in Table 7.1.

the performances of ICT and MICT both degrade, while the performance of the
stochastic preconditioner remains relatively stable. This is consistent with our ar-
gument in Section 5.2: when the matrix is larger and denser, the effect of error
accumulation in traditional methods becomes stronger, and the benefit of stochastic
preconditioning becomes more prominent. The same explanation holds for the fact
that the performance gap in Table 7.2 is bigger than in Table 7.1, and the reason
is that the m7-m12 benchmarks are denser than m1-m6, i.e., m7-m12 have a higher
average number of non-zeroes per row. In Table 7.2, the performances of ICT and
MICT fluctuates significantly due to the different structural and numerical properties
of the benchmarks m7-m12; again, the stochastic preconditioner remains stable.

In Table 7.3, we use a different metric to compare the stochastic preconditioning
against the IC(0), ICT, MICT preconditioners, as well as the support-graph precon-
ditioner at two different tradeoff points, one with a size similar to IC(0) and the other
with a size similar to ICT. The complexity metric is the number of double-precision
multiplications needed at the PCG solving stage for the equation set Ax = b, in
order to converge with an error tolerance of 10−6, i.e., ‖ b − Ax ‖2 < 10−6· ‖ b ‖2.
In Table 7.3, the I values are from MATLAB, and the M values are calculated as
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Table 7.2
Condition number comparison of the stochastic preconditioner against ICT, MICT, and

support-graph preconditioners on the symmetric VLSI placement benchmarks. N , E, C1, S and
C2 are as defined in Table 7.1.

Matrix N E C1 ICT MICT Support-graph Stochastic
S C2 S C2 S C2 S C2

m7 7.28e4 1.10e6 1.96e5 1.28e6 743 1.28e6 1.06e3 1.26e6 1.60e3 1.28e6 6.66
m8 2.07e5 2.14e6 2.45e4 3.00e6 234 3.00e6 320 3.04e6 2.17e3 2.96e6 5.83
m9 2.67e5 3.19e6 1.13e5 4.06e6 278 4.06e6 315 4.08e6 1.20e4 4.05e6 6.25
m10 4.04e5 5.09e6 1.13e4 6.32e6 310 6.32e6 467 6.45e6 8.85e3 6.41e6 6.40
m11 4.39e5 8.06e6 5.73e4 8.07e6 181 8.07e6 211 8.07e6 1.02e4 8.09e6 6.77
m12 8.54e5 9.23e6 1.30e4 1.26e7 385 1.26e7 537 1.25e7 9.12e3 1.26e7 6.17

Table 7.3
Computational complexity comparison of CG using the stochastic preconditioner against using

IC(0), ICT, MICT, and support-graph preconditioners, to solve the twelve symmetric benchmarks
for one right-hand-side vector, with 10−6 error tolerance. N , E, S are as defined in Table 7.1; I is
the number of iterations to reach 10−6 error tolerance; M is the total number of multiplications; R
is our speedup ratio, measured by the corresponding M value divided by the M value of stochastic
preconditioning.

Matrix m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12
N 1.35e5 2.16e5 3.43e5 5.12e5 7.29e5 1.00e6 7.28e4 2.07e5 2.67e5 4.04e5 4.39e5 8.54e5
E 8.60e5 1.49e6 2.37e6 3.55e6 5.05e6 6.94e6 1.10e6 2.14e6 3.19e6 5.09e6 8.06e6 9.23e6

S 1.71e6 3.02e6 4.87e6 7.35e6 1.06e7 1.46e7 1.28e6 2.96e6 4.05e6 6.41e6 8.09e6 1.26e7
Stochastic I 17 17 18 18 18 19 21 20 22 21 22 20

M 8.14e7 1.43e8 2.43e8 3.65e8 5.25e8 7.63e8 8.30e7 1.78e8 2.72e8 4.10e8 5.72e8 7.57e8
S 4.93e5 8.53e5 1.36e6 2.03e6 2.89e6 3.97e6 5.87e5 1.17e6 1.73e6 2.75e6 4.25e6 5.04e6

IC(0) I 59 70 81 92 94 104 127 151 165 142 115 187
M 1.38e8 2.84e8 5.23e8 8.88e8 1.29e9 1.96e9 3.26e8 8.02e8 1.27e9 1.73e9 2.11e9 4.25e9
R 1.70 1.99 2.16 2.43 2.46 2.57 3.92 4.51 4.68 4.23 3.68 5.61
S 1.72e6 3.00e6 4.80e6 7.20e6 1.03e7 1.42e7 1.28e6 3.00e6 4.06e6 6.32e6 8.07e6 1.26e7

ICT I 21 25 29 32 36 40 60 72 88 71 56 100
M 1.01e8 2.09e8 3.87e8 6.40e8 1.03e9 1.57e9 2.37e8 6.46e8 1.09e9 1.37e9 1.45e9 3.78e9
R 1.24 1.47 1.59 1.75 1.96 2.06 2.85 3.63 4.01 3.35 2.54 4.99
S 1.72e6 3.00e6 4.80e6 7.20e6 1.03e7 1.42e7 1.28e6 3.00e6 4.06e6 6.32e6 8.07e6 1.26e7

MICT I 27 32 38 43 46 52 71 86 101 85 65 119
M 1.30e8 2.68e8 5.07e8 8.60e8 1.31e9 2.04e9 2.80e8 7.72e8 1.25e9 1.65e9 1.69e9 4.50e9
R 1.59 1.88 2.09 2.35 2.50 2.68 3.37 4.34 4.60 4.01 2.95 5.94
S 4.95e5 8.51e5 1.35e6 2.10e6 2.91e6 3.92e6 5.53e5 1.20e6 1.72e6 2.74e6 4.14e6 5.05e6

Support- I 315 349 491 492 584 628 274 438 870 678 999 1000
graph #1 M 7.40e8 1.42e9 3.16e9 4.82e9 8.05e9 1.18e10 6.84e8 2.35e9 6.69e9 8.27e9 1.81e10 2.27e10

R 9.09 9.93 13.0 13.2 15.3 15.5 8.24 13.2 24.6 20.2 31.6 30.0
S 1.73e6 3.11e6 4.79e6 7.30e6 1.03e7 1.42e7 1.26e6 3.04e6 4.08e6 6.45e6 8.07e6 1.25e7

Support- I 195 194 205 319 251 387 200 315 763 545 720 633
graph #2 M 9.41e8 1.66e9 2.73e9 6.44e9 7.19e9 1.52e10 7.83e8 2.85e9 9.48e9 1.07e10 1.87e10 2.38e10

R 11.6 11.7 11.3 17.6 13.7 20.0 9.42 16.0 34.9 26.1 32.7 31.4

M = I · (S · 2 + E + N · 4), which is the best possible implementation based on the
PCG pseudo codes in [2], [28].

Again, Table 7.3 suggests that PCG with stochastic preconditioning requires the
least amount of computation to reach the same convergence criterion, and that the
speedup ratio R gets higher for larger and/or denser matrices.

The computational costs of building the proposed preconditioner are reported
in Table 7.4. For each benchmark, the cost is shown in two forms: the amount of
computation measured by the total number of random-walk steps, as well as the
corresponding physical CPU runtime T1. A random-walk step is an element oper-



STOCHASTIC PRECONDITIONING 25

Table 7.4
Cost of the stochastic preconditioning, measured by the total number of random-walk steps

performed, and by the physical preconditioning CPU times T1 of our implementation on a Linux
workstation with 2.8GHz CPU frequency. T2 is the solving CPU time of our implementation with
10−6 error tolerance. The units for T1 and T2 are second.

Matrix m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12
#step 3.67e7 6.86e7 1.16e8 1.83e8 2.74e8 3.91e8 2.26e7 4.89e7 6.80e7 9.11e7 1.14e8 1.99e8
T1 7.05 13.91 23.97 38.30 58.63 83.86 6.12 11.86 18.70 28.96 55.80 77.63
T2 2.38 5.64 10.71 17.68 28.56 41.04 2.04 5.29 8.34 14.45 22.80 31.10

ation in the proposed algorithm and involves one random number generation plus
O (log (degree(i))) logic operations, where degree(i) is the degree of the current node.
The choice of random number generator (or quasirandom numbers as an alternative)
is a separate issue, and our implementation uses one from [24, p. 279]. The physical
solving runtime T2 is also included as a reference. Admittedly, the preconditioning
runtime T1 is more than the typical runtime of a traditional incomplete factorization;
however, it is not a large overhead, gets easily amortized over multiple re-solves, and
is worthwhile given the speedup achieved in the solving stage, i.e., the lower T2. In
Table 7.4, T1 is no more than three times T2; hence, given the potential T2 reduction
suggested by Table 7.3, it is likely that for a relatively large matrix, our precondition-
ing would save overall runtime even for just a single right-hand-side vector.

Table 7.5
Condition number comparison of the stochastic preconditioner against ILUT and MILUT on

the twelve asymmetric benchmarks. N , E, C1, C2 are as defined in Table 7.1; S′ is the number of
non-zero entries of the asymmetric preconditioner (L, D, U matrices).

Matrix m1’ m2’ m3’ m4’ m5’ m6’ m7’ m8’ m9’ m10’ m11’ m12’
N 1.25e5 2.16e5 3.43e5 5.12e5 7.29e5 1.00e6 7.28e4 2.07e5 2.67e5 4.04e5 4.39e5 8.54e5
E 8.60e5 1.49e6 2.37e6 3.55e6 5.05e6 6.94e6 1.10e6 2.14e6 3.19e6 5.09e6 8.06e6 9.23e6
C1 552 632 713 785 743 856 8.47e3 1.93e3 1.85e4 1.46e3 2.78e3 1.39e3
Stochastic S′ 2.99e6 5.27e6 8.50e6 1.28e7 1.85e7 2.55e7 2.57e6 6.12e6 8.72e6 1.28e7 1.70e7 2.62e7

C2 3.21 3.21 3.38 3.27 3.46 3.45 3.28 4.05 3.81 4.39 5.10 3.89
ILUT S′ 3.04e6 5.30e6 8.47e6 1.27e7 1.81e7 2.50e7 2.54e6 6.01e6 8.91e6 1.24e7 1.67e7 2.63e7

C2 15.6 17.8 20.0 22.0 22.7 24.0 60.8 35.8 42.9 54.7 35.6 50.0
MILUT S′ 3.04e6 5.30e6 8.47e6 1.27e7 1.81e7 2.50e7 2.54e6 6.01e6 8.91e6 1.24e7 1.67e7 2.63e7

C2 21.6 24.4 27.9 31.1 32.8 35.0 81.2 54.9 57.9 79.0 62.6 71.7

In Tables 7.5 and 7.6, the condition number and the computational complex-
ity comparisons are repeated for the asymmetric benchmarks m1’ to m12’, and the
stochastic preconditioning is compared against ILUT, MILUT, and ILU(0). The
ILU(0) data points for m8’ and m12’ are unavailable due to MATLAB failures. In
Table 7.6, based on the preconditioned BCG pseudo code in [2], the M formula is
M = I · (S′ · 2 + E · 2 + N · 7). Again, Tables 7.5 and 7.6 suggest that the stochas-
tic preconditioning results in the least condition numbers, and the least amount of
computation to reach convergence, and that the advantages gets more prominent for
larger and/or denser matrices.

A reference implementation of the stochastic preconditioning as well as the hybrid
solver, is available to the public [27].

8. Future Work. So far it is required that, in the random walk game, every
scaling factor s must have an absolute value of one. Therefore, the scaling in the
game never changes the magnitude of a monetary transaction, and only changes its
sign or phase. This section discusses implications of non-unitary scaling factors.
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Table 7.6
Computational complexity comparison of BCG using the stochastic preconditioner against using

ILU(0), ILUT, MILUT preconditioners, to solve the twelve asymmetric benchmarks for one right-
hand-side vector, with 10−6 error tolerance. N , E are as defined in Table 7.1; S′ is as defined in
Table 7.5; I, M , R are as defined in Table 7.3.

Matrix m1’ m2’ m3’ m4’ m5’ m6’ m7’ m8’ m9’ m10’ m11’ m12’
N 1.25e5 2.16e5 3.43e5 5.12e5 7.29e5 1.00e6 7.28e4 2.07e5 2.67e5 4.04e5 4.39e5 8.54e5
E 8.60e5 1.49e6 2.37e6 3.55e6 5.05e6 6.94e6 1.10e6 2.14e6 3.19e6 5.09e6 8.06e6 9.23e6

S′ 2.99e6 5.27e6 8.50e6 1.28e7 1.85e7 2.55e7 2.57e6 6.12e6 8.72e6 1.28e7 1.70e7 2.62e7
Stochastic I 16 17 17 16 17 18 17 17 17 17 17 18

M 1.37e8 2.56e8 4.11e8 5.82e8 8.87e8 1.29e9 1.34e8 3.05e8 4.37e8 6.57e8 9.04e8 1.38e9
S′ 8.60e5 1.49e6 2.37e6 3.55e6 5.05e6 6.94e6 1.10e6 N/A 3.19e6 5.09e6 8.06e6 N/A

ILU(0) I 60 66 73 78 77 87 88 N/A 90 89 82 N/A
M 2.59e8 4.93e8 8.68e8 1.39e9 1.95e9 3.02e9 4.32e8 N/A 1.32e9 2.06e9 2.90e9 N/A
R 1.88 1.93 2.11 2.38 2.20 2.34 3.24 N/A 3.01 3.14 3.20 N/A
S′ 3.04e6 5.30e6 8.47e6 1.27e7 1.81e7 2.50e7 2.54e6 6.01e6 8.91e6 1.24e7 1.67e7 2.63e7

ILUT I 25 27 29 31 32 34 45 47 46 43 38 54
M 2.17e8 4.07e8 6.98e8 1.12e9 1.65e9 2.41e9 3.51e8 8.34e8 1.20e9 1.63e9 2.00e9 4.16e9
R 1.58 1.60 1.70 1.92 1.86 1.86 2.63 2.73 2.75 2.48 2.21 3.01
S′ 3.04e6 5.30e6 8.47e6 1.27e7 1.81e7 2.50e7 2.54e6 6.01e6 8.91e6 1.24e7 1.67e7 2.63e7

MILUT I 33 34 38 39 42 45 55 57 59 54 46 67
M 2.86e8 5.13e8 9.15e8 1.41e9 2.16e9 3.19e9 4.29e8 1.01e9 1.54e9 2.05e9 2.42e9 5.16e9
R 2.09 2.01 2.23 2.42 2.44 2.46 3.21 3.31 3.52 3.12 2.68 3.73

If the scaling factors are allowed to take arbitrary complex values, the allowable
matrix A in (4.10) becomes any matrix such that the diagonal entries are non-zero. In
other words, if a matrix A has non-zero diagonal entries, a random walk game exists
such that the f values, if they uniquely exist, satisfy a set of linear equations where
the matrix is A. However, if there exist scaling factors with absolute values over 1,
numerical problems may potentially occur since the product of scaling factors may be
unbounded. How to quantify this effect and to analyze the corresponding convergence
rate, is an open question for future research.
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