
Retiming Control Logic

Naresh Maheshwari Sachin S. Sapatnekar

Department of Electrical & Computer Engineering Department of Electrical & Computer Engineering

Iowa State University, Ames IA 50011, USA University of Minnesota, Minneapolis, MN 55455, USA

naresh@iastate.edu sachin@ece.umn.edu

Abstract

Retiming is a powerful technique for delay and area optimization that operates by relocating the

ip-ops in a circuit. This movement of ip-ops in control logic changes the state encoding of �nite

state machines, requiring the preservation of initial (reset) states. Unfortunately traditional retiming

algorithms pay no regard to maintaining the initial state. While some work has been carried out on

�nding a retiming of a circuit with equivalent initial states, it has concentrated on achieving a speci�ed

clock period without regard to the number of ip-ops. However, if the number of ip-ops is not

explicitly minimized the retimed circuit may have a very large number of ip-ops. This work targets

the problem of minimizing the number of ip-ops in control logic subject to a speci�ed clock period

and with a guarantee of an equivalent initial state. The problem is formulated as a mixed integer linear

program and bounds on the retiming variables are used to guarantee an equivalent initial state. These

bounds also lead to a simple method for calculating an equivalent initial state for the retimed circuit.

The mixed integer linear program formulation is capable of modeling the maximum sharing of di�erent

types of ip-ops at the fanout of a gate. Experimental results on circuits of up to 9000 gates and are

shown to be close to a (perhaps unachievable) lower bound.

1 Introduction

Retiming is a procedure that involves the relocation of ip-ops (FF's) across logic gates to allow the circuit

to be operated under a faster clock. The technique was �rst proposed by Leiserson and Saxe [1, 2]. The

retiming problem as posed by Leiserson and Saxe was framed in the following ways:

(1) The minimum period (minperiod) retiming problem where FF's are relocated to obtain a circuit

with the minimum clock period, without any consideration to the area penalty due to an increase in

the number of FF's. Retiming for a speci�ed clock period is a special case of this problem.

(2) The constrained minimum area (minarea) retiming problem, where FF's are relocated to achieve

a given target clock period with the minimum number of FF's. Retiming to minimize the number of

FF's without any regard to the period is a special case of this problem.

Several research e�orts have extended the Leiserson-Saxe method to handle variations of the original

problem, for example, retiming level-clocked circuits [3,4], improving the delay model [5,6], retiming for low

1

power [7,8], and combining retiming with synthesis [9,10]. The work in [11] presented results on the validity

of retiming sequential circuits.

One problem associated with the application of retiming is related to the preservation of the initial (reset)

state of a circuit, which is determined by the initial values of the registers in the circuits. In the synthesis

of control logic, the initial state of the circuit is an integral part of its behavior. Therefore, it is necessary

to �nd an equivalent initial state for the retimed circuit. An initial state in the retimed circuit is equivalent

to that in the original circuit if for any input sequence applied to both the circuits, with the original circuit

started in the initial state and the retimed circuit started in the equivalent initial state, the same sequence

of outputs is produced [12].

?

(b)(a)

A

B

C

D
0

1

1

0

Figure 1: (a) Original circuit. (b) Retimed circuit

It is not always possible to �nd an equivalent initial state for the retimed circuit without modifying

it. For example, consider the circuit in Figure 1 taken from [13]. If the initial value of FF's fA,B,C,Dg

are f0,0,1,1g, respectively, then the retimed circuit cannot be initialized to have the same behavior as the

original circuit since an equivalent initial value of FF C in the retimed circuit cannot be found. Techniques

for �nding a retiming with an equivalent initial state were proposed in [12, 13].

retiming by -1 f(a,b)f

a

b

f

Figure 2: Forward retiming of a combinational logic node

As shown in Figure 2, an equivalent initial state can always be found for forward motion of FF's (referred

to as \negative retimings" using the notation of Leiserson and Saxe). Thus, one way to ensure that an

equivalent initial state can always be found is to permit only forward retiming moves. This concept was used

by Touati and Brayton in [13] to compute initial states of retimed circuits. In their approach, FF's may

be removed from all the primary outputs and inserted at all the primary inputs, corresponding to a motion

across the host node (de�ned in Section 2.1). The problem is then reduced to determining the initial values

for the FF's inserted at the primary inputs.

Permitting only forward moves is too restrictive because some backward moves have equivalent initial

states. For example if, in the circuit in Figure 1 both FF A and B have the same initial value, then the

backward move across gate G1 is possible while maintaining equivalent initial state. Hence, another retiming

2

requiring some backward moves may exist, that enables one to �nd an equivalent initial state without any

modi�cations to the circuit, even for circuits where the method of [13] required circuit modi�cations. Reverse

retiming [12,14] �nds this retiming by disallowing FF moves across the primary outputs and by minimizing

their backward motion.

For digital circuit design, the most useful objective function is that of constrained minarea retiming.

However none of the above methods considers the area penalty during retiming to achieve the target clock

period since they perform minperiod retiming rather than minarea retiming. The standard minarea algo-

rithms, e.g., [2, 15, 16], pay no regard to the initial states. While they have applications in datapaths where

the initial state is unimportant, they cannot be used to optimize control logic since an equivalent initial state

is not guaranteed to exist in the retimed circuit.

We believe that this work is the �rst to target the problem of minarea retiming for control logic guar-

anteeing equivalent initial states. As in [13], we use the phrase retiming an initial state to mean �nding a

retiming (with an initial state) such that the original circuit and the retimed circuit have the same behavior

when started in their respective initial states. We use the term minarea initial state retiming to refer to

retiming an initial state with minimum number of FF's. As in most of the references on retiming listed

above, this work assumes the circuit to be composed of gates with �xed delays, and considers circuits with

edge-triggered FF's.

In this research, which we believe to be the �rst published work on the problem of optimal minarea

initial state retiming, we use bounds on the retiming variables to allow backward motion of FF's only if an

equivalent initial value exits. Therefore, any retiming thus obtained will have an equivalent initial state.

There may be multiple sets of these bounds, and all of them must be explored to obtain an optimal minarea

initial state retiming. However the number of FF's obtained by standard minarea retiming can be used as

a lower bound to prune this exploration.

This work also provides a new minarea initial state formulation that takes into account the initial value

of the FF's while modeling the sharing of FF's at the output of a multi-fanout gate. We will show through an

example in Section 4.2 that the pre-justi�cation approach, where we use justi�cation choices before retiming

to build the FF sharing model, is essential to obtain a correct FF sharing model; in the absence of this

method, the FF cost computed by the traditional FF sharing model is incorrect in the presence of initial

conditions.

The method presented here is applicable for retiming of any circuit which has more than one type of

memory elements such that memory elements of di�erent types can not be merged together. An example

is a situation of FF's with load enables that can only be combined if the enabling signal to two FF's is the

same.

The rest of the paper is organized as follows: Section 2 presents the required background and the standard

minarea retiming algorithm. Next in Section 3 we present an method to ensure the existence of an equivalent

initial state, followed by the FF sharing model in Section 4. We present experimental results in Section 5

and conclude the paper in Section 6.

3

2 Background

2.1 Notation

The notation in this section is reproduced from [2] and is presented for completeness. A sequential circuit

can be represented by a directed graph G(V;E), where each vertex v corresponds to a gate, and a directed

edge euv represents a connection from the output of gate u to the input of gate v, through zero, one or

more FF's. Each edge has a weight w(euv), which is the number of FF's between the output of gate u and

the input of gate v. Each vertex has a constant delay d(v). The fanin and the fanout set of a vertex v

are denoted by FI(v) and FO(v) respectively. A special vertex called the host vertex H , is introduced in

the graph, with edges from the host vertex to all primary inputs of the circuit, and edges from all primary

outputs to the host vertex.

A retiming is a labeling of the vertices r : V ! Z, where Z is the set of integers. The weight of an edge

euv after retiming, denoted by wr(euv) is given by

wr(euv) = r(v) + w(euv)� r(u) (1)

The retiming label r(v) for a vertex v represents the number of FF stages moved from its output towards

its inputs. One may de�ne the weight w(p) of any path p : u ; v originating at vertex u and terminating

at vertex v, as the sum of the weights on the edges on p, and its delay d(p) as the sum of the weights of

the vertices on p. A path with w(p) = 0 corresponds to a purely combinational path with no FF's on it;

therefore, the clock period can be calculated as

c = max
pjw(p)=0

fd(p)g (2)

An important concept used in the Leiserson-Saxe approach is that of the W and D matrices that are

de�ned for all pairs of vertices (u; v) such that there exists a path p : u ; v that does not include the host

vertex. W (u; v) denotes the minimum latency, in clock cycles, for the data owing from u to v, and D(u; v)

gives the maximum delay from u to v for the minimum latency, i.e.,

W (u; v) = min
p:u;v

fw(p)g (3)

D(u; v) = max
p:u;v and w(p)=W (u;v)

fd(p)g (4)

2.2 The minarea retiming problem

The conventional minarea retiming problem (without regard to initial states) was formulated in [2] as the

following linear program (LP):

minimize
P

v2V (jFI(v)j � jFO(v)j) � r(v) (5)

subject to r(u)� r(v) � w(euv) 8euv 2 E

r(u)� r(v) �W (u; v)� 1 8D(u; v) > c

4

where jFI(v)j and jFO(v)j represent the number of fanins and fanouts of a gate v respectively, and c, as in

the earlier discussion, is the target clock period.

Recently the Minaret algorithm [16] combined the ASTRA approach of [17] with the minarea retiming

method of [15] to achieve e�cient minarea retiming. In this method the LP (5) was reduced by adding

bounds on the r variables.

3 Ensuring Equivalent Initial States

The requirement of initial state equivalence imposes restrictions in addition to those in traditional minarea

retiming. Thus the number of FF's obtained in minarea retiming is, by de�nition, a lower bound on the

number of FF's obtainable by a minarea equivalent state retiming. We call this lower bound �.

However it is not always possible to achieve this lower bound. As an example, consider the circuit with

unit delay gates shown in Figure 1. The minarea retiming for a clock period of 2 units, and without regard to

initial state requires only 1 FF. However, if the initial values of FF's fA,B,C,Dg are f0,0,1,1g, any minarea

initial state retiming will require 2 FF's. Furthermore, the optimal number of FF's depends on the initial

state of the original circuit. If the initial values for FF's fA,B,C,Dg are f0,1,1,1g, then any minarea initial

state retiming will have 3 FF's.

Even in cases where the lower bound � is achievable with equivalent initial states, there would, in general,

be multiple retimings with optimal number of FF's. Some of these retimings may not have equivalent initial

states, and hence, we must restrict our solution space to exclude such solutions. One way to do this is to

disallow backward motion of FF's across a gate if the FF's at its output do not have compatible values. The

presence of FF's with incompatible logic values at the output of a gate is called a conict. A conict at the

output of a gate prevents it from being retimed in the backward direction.

Thus one way to ensure that any obtained retiming has an equivalent initial state is to update the upper

bounds Uv in the Minaret formulation [16], so that conicting FF's at the fanouts of a gate are never retimed

to its inputs. This will ensure a valid equivalent state in the retimed circuit. This new upper bound on gate

v that ensures a valid equivalent state is called Bv . Since we want a retiming that has an equivalent state

and satis�es the target clock period we need to enforce r(v) � Bv and r(v) � Uv. If we de�ne justi�cation

upper bound as Jv = min(Bv; Uv), then we only need to ensure r(v) � Jv. A set of such justi�cation upper

bounds denoted by �i = fJ iuj 8u 2 V g. Since forward retiming moves always have equivalent initial values,

the lower bounds from Minaret for conventional minarea retiming are still valid for minarea initial state

retiming. Thus we obtain the following modi�ed LP

minimize
P

v2V [(jFI(v)j � jFO(v)j) � r(v)] (6)

subject to r(u)� r(v) � cuv 8c(u; v) 2 C

Lu � r(u) � Ju 8u 2 V

Any solution to this LP will have an initial state that is equivalent to the initial state in the original

circuit and will satisfy the target clock period. The techniques of [16] can be applied to further reduce the

size of the LP (6).

5

3.1 Obtaining the Justi�cation Bounds

We will now describe a method for obtaining these new justi�cation upper bounds Jv for a gate v. The

procedure consists of two steps: a justi�cation step, where an equivalent initial state is found, and a bound

computation step, where the bounds Jv on each gate under that equivalent initial state are calculated.

With every FF we associate a three valued (1,0,X) logic value. We de�ne compatibility as follows: a logic

value of 0 is compatible with both 0 and X, but logic values 0 and 1 are not compatible with each other1. A

gate can only be retimed if it has FF's with compatible logic values at all of its fanouts. A gate is retimed

in the backward direction by removing an FF from each of its fanouts, and adding one to each of its inputs.

A gate is called output-ready if it has an FF on each of its fanouts and the logic value on each such FF is

compatible with the values on the others. The procedure maintains a list of gates that can be retimed. A

gate is taken from the list and retimed, and the list is updated. As the gates are retimed, a procedure similar

to [16] is used to compute the bounds. The upper bounds, Jv are obtained by moving FF's as far backwards

as possible without violating the period constraints. The count of the FF's moved across any gate gives its

upper bound on the r variable of the gate.

Each time FF's are moved from the outputs of a gate to its inputs, we must assign logic values to the

new FF's added at the inputs. These logic values must be equivalent to the original value at the output

of the gate in order to obtain an initial state retiming. This assignment, in general, may not be unique

and is similar to the phase of justi�cation in the process of automatic test pattern generation [18]. Unique

justi�cation at a gate occurs if the gate has a single input, or the logic value at the output is X (all inputs

are assigned to logic X), e.g., a logic value of 1 at the output of AND gates requires a logic value of 1 at all

the inputs. If there are multiple possible mappings for the logic value at the output to the logic values at

the inputs, then we must make a choice (or decision) and we have non-unique justi�cation at the gate. A

logic value of 1 at the output of an OR gate is an example of non-unique justi�cation as we can assign any

input to logic value 1 and the rest to X.

3.2 Searching for the Optimal Solution

G1

G2

G3

G4

G5

0

0

1

d

h

e

g

c

f

b

a

c

G3

G4

G5d

e

f

G2

b 0

a

G1
1

g

h

x
0

G1

G2 G4

G5

b

a

c 1

G3

d
0

e

f

0

g

h

0
x

(c)(b)(a)

Figure 3: E�ect of justi�cation on the number of FF's

Di�erent justi�cation decisions may lead to a di�erent number of FF's obtained after minarea retiming. As

an example, consider the circuit shown in Figure 3(a), with an FF with value 0 at the output of an AND

1For circuits with multiple types of memory elements that cannot be combined, compatibility can be de�ned similarly.

6

gate, leading to two possible choices shown in Figures 3(b) and 3(c). The corresponding decisions lead to

retimed circuits with three and two FF's, respectively.

Under nonunique justi�cations, a number of di�erent allowable justi�cations are possible. Let us de�ne a

set of one such possible justi�cation as �i. Each such �i will give us a set (one for each gate) of justi�cation

upper bounds �i = fJ ivj 8v 2 V g that is used to solve the minarea LP. If the number of FF's so obtained

is not equal to the minarea lower bound �, we must backtrack and obtain another set of justi�cations �j

that leads to a di�erent �j . This process is repeated until we either achieve the minarea lower bound �, or

no more justi�cations exist. Since a complete exploration will be computationally expensive, one may halt

the exploration of the search space at any time and take the best solution obtained so far.

Thus the process of minarea initial state retiming can be given by the following pseudocode. The

procedure returns the minarea retiming with an equivalent initial state.

1 Obtain minarea lower bound �

2 j = 0;

3 Best = 1;

4 while (true)

5 f

6 while (U 6= ; OR D 6= ;)

7 f

8 if (U 6= ;) do unique justification

9 if (D 6= ;) = do decision justification

10 g

11 /* This gives us a justification set �j. */

12 /* which corresponds to a set of justification upper bounds �j. */

13 Obj = lp solve(�j); /* solve LP in (6) */

14 If(Obj == �) return(Obj); /* lower bound obtained */

15 If(Best > Obj) Best = Obj; /* store best result */

16 B = backtrack(�j);

17 If(B == Infeasible) return(Best); /* all justifications explored */

18 g

The function backtrack changes the last decision that has a yet unexplored choice, and is similar to one

used in automatic test pattern generation (see for example [19]). The period constraints need be generated

only once during the entire procedure since they do not depend on the justi�cation process. This is helpful

since the period constraint generation is a very computationally intensive process.

The theoretical upper bound on the number of possible justi�cation sets �i's in the worst case is jFF j �Q
8v2V jFI(v)j, where jFI(v)j is the number of fanins of the gate v, and jFF j is the number of FF's in the

original circuit. This upper bound is due to the fact that in the worst case, each FF in the circuit may move

across every gate and every such move may require a decision. However in practical circuits the number of

feasible justi�cations will be much less than this theoretical upper bound due to the following reasons

7

� As shown in the results of [16] the mobility of FF's is very limited in practice, and hence, all FF's

cannot move across all gates as assumed by the theoretical bound above.

� Due to conicts at the gate fanouts the FF's may not be able to move towards the inputs of that gate,

and this further restricts the mobility of the FF's.

� Some FF's moving across gates have unique justi�cations.

� Every time a decision is made in case of a nonunique justi�cation, all fanins but one are assigned logic

value X for AND/OR/NAND/NOR type of gates). This logical X moves backward through unique

justi�cation until it is forced to a 0 or 1.

� As soon as the lower bound of � is achieved we do not need any more justi�cation sets. In our

experimental results we found that in many circuits this lower bound is achieved in the �rst few

iterations.

� Only backward moves need justi�cation, while forward moves have a unique mapping of logic values,

and hence, do not add to the number of �i's.

B

G1

G2

a

b

0

0
A

Figure 4: An example of pruning technique

The number of justi�cation sets can be further reduced by pruning suboptimal �i's. Consider the circuit

in Figure 4 with the logic values of FF A and FF B equal to 0. Since the output of the AND gate G1 is

at logic value 0 we have two possible mappings for the equivalent values at the inputs a and b. However

the choice of setting input a to X and input b to 0 is better than the choice of a = 0 and b = X . This is

because in the presence of FF B with logic value 0, the X on input b will be forced to a 0, e�ectively setting

the choice to a = 0 and b = 0. This is suboptimal to the choice of a = X and b = 0, since X on input a can

move further back than a 0.

4 FF Sharing

The cost function in the LP (6) assumes that each FF has exactly one fanout. However, in practice an FF

can have multiple fanouts, allowing the FF's on di�erent fanout edges of a gate to be shared. This sharing

must be taken into account for an accurate area model. For example, consider gate A in Figure 5 with three

fanouts B, C, and D having three, two and two FF's respectively. The LP (6) will model the total number of

FF's as seven as shown in Figure 5(a). However the FF's can be merged or shared as shown in Figure 5(b)

resulting in a total cost of only three FF's.

8

B

C

D

A

(a) (b)

B

C

D

A

Figure 5: Unconditional register sharing at multiple fanouts

We �rst briey describe the sharing model from [2], the details of which can be found in [20]. This model

does not consider initial values on the FF's, and hence is not applicable for minarea initial state retiming.

We then present a new model for conditional sharing of FF's, which takes into account the initial values on

the FF's.

4.1 Unconditional Sharing of FF's

euvw()
k

euv1w()

euvw()2

euv1w()()-w(max)u

euvw()2-()w(max)u

euvw()
k()-w(max)u

u
m

 vk

v

 v2

1

u

1/k

1/k

1/k

1/k

1/k

1/k

euvw()2

euv1w()

euvw()
k

u

v k

 v

 v

1

2

Figure 6: Model for maximum register sharing at multiple fanouts

The unconditional sharing model of [2] introduces a mirror vertex mi for each gate i that has more than

one fanout, as shown in Figure 6. Every edge eij , in addition to having a weight w(eij), now also has a

width �(eij). In Figure 6, the edge weights are shown above the edges while the edge widths are shown

below the edges. Consider a gate u with k fanouts to gates vj ; j = 1 � � � k. To model the maximum

sharing of FF's, an extra edge is added from each fanout gate vj to the mirror vertex, mu, with weight

w(evjmu
) = w(maxu) � w(euvj), where w(maxu) = max8i2FO(u)(w(eui)) is the maximum weight on any

9

fanout edge of gate u. Each of the edges from the gate i to its fanouts j, and from the fanouts to the mirror

vertex has a width of 1=k, i.e.,

�(euvj) = 1=k and �(evjmu
) = 1=k for j = 1 � � � k

. The objective function of the LP (6) is modi�ed to include the e�ect of register sharing as follows:

min
X

v2(V [M)

2
4
0
@ X

8j2FI(v)

�(ejv)�
X

8j2FO(v)

�(evj)

1
A � r(v)

3
5

subject to r(u) � r(v) � cuv 8(u; v) 2 C (7)

r(j)� r(mi) � cjmi
8(j;mi) 2 Cm

where M = fmvjv 2 V and jFO(v)j > 1g is the set of all the mirror vertices, and Cm = f(j;mi)jmi 2

M and j 2 FO(i)g is the set of constraints due to the mirror vertices and is called the mirror constraint

set. The weight cjmi
on a constraint (j;mi) 2 Cm of the form r(j) � r(mi) � cjmi

is given by cjmi
=

w(maxi)� w(eij).

The objective function of the LP (7) now denotes the increase in the number of FF's assuming maximal

sharing of FF's at the output of all gates. The weights on all paths from gate u to its mirror vertex mu

are the same before retiming, i.e., w(euvi) + w(evimu
) = w(maxi) 1 � i � k, and therefore, the weights on

all paths from gate u to its mirror vertex mu must be equal after retiming. Since the mirror vertex mu is

a sink in the graph, the register count on one of the edge from the fanout nodes to mu will be zero, i.e.,

9i jw(evi;mu
) = 0. Thus the weight on all paths from gate u to mirror vertex mu after retiming will be

wr(maxu) = max8j2FO(u)(wr(euj)). Since there are k paths each with width 1=k the total cost of all paths

will be wr(maxu) as desired.

We now present an alternate view of this model. The change in cost function due to adding or removing

FF's from the fanout junction of gate u is modeled by two retiming variables: one for the gate, r(u) and other

for the mirror vertex, r(mu). Any change in the cost function due to FF's moving across the multi-fanout

gate itself are modeled by r(u), while any change due to FF motion across its fanout gates vi; 1 � i � k is

modeled by the mirror variable r(mu).

The change in the number of FF's in the circuit, under maximal sharing obtained by retiming a gate u

by one unit can be calculated as follows. The decrease in the cost function obtained by removing an FF

from each of the fanouts of a gate is one unit, even for multiple fanout gates since the FF's on all the fanouts

were shared. The increase in the cost function from adding an FF to all the inputs of a gate u is equal to

the number of fanins of u that have only one fanout, since any FF added to a fanin j of gate u that has

more than one fanout (jFO(j)j > 1) is already modeled by the mirror variable of that fanin gate mj . Thus

the cost contribution of any single fanout gate u is given by (jFI 0(u)j� 1) � r(u), while that of a multi-fanout

gate is given by (jFI 0(u)j�1) �r(u)+r(mu), where FI
0(u) is the set of fanins that have only a single output,

i.e., FI 0(u) = fvjv 2 FI(u) AND jFO(v)j = 1g.

10

4.2 Motivation for Conditional FF Sharing

Consider the possibility of performing minarea initial state retiming by extending the approach in [12] using

post-justi�cation after successive retiming steps, instead of pre-justi�cation before performing the retiming,

as we do with the FF sharing model that will shortly be proposed.

This extension would �rst perform conventional minarea retiming, and if a conict occurs at a gate while

moving the FF's to obtain this retiming in a post-retiming justi�cation stage, then an appropriate bound

is placed on the retiming variable of this gate. The minarea retiming problem may be solved again, and

the process repeated until no conicts are obtained. Thus the �nal circuit has an equivalent initial state

although it may require more FF's than the conventional minarea, since the bounds placed on the retiming

variables to ensure equivalent initial states can increase the optimal solution. This method can be seen as a

\dual" of our approach, since it starts from the lower bound and tries to achieve feasibility (equivalent initial

state), while in our approach we start with a feasible solution and try to achieve optimality. However, using

this approach without a conditional FF sharing model can lead to suboptimal results, as will be shown in

the following example.

1

0
0
0

1

00/1
0/1

1

G1

G2

G3

G4

G5

G6

Figure 7: Conditional register sharing at multiple fanouts

Consider the circuit in Figure 7. Unconstrained minimum area retiming with no initial state consid-

erations will �nd an optimal solution by moving the FF's to the output of gate G1, resulting in one FF.

However, this is an infeasible location with the given set of initial states as the values cannot be justi�ed

backwards due to conicts at gates G2 and G3. Let us now say that we apply an extension of the approach

in [12] by detecting these conicts and updating their r bounds to prohibit FF movements to the left across

these two gates, and using the Leiserson/Saxe FF sharing model. The solution now found will be a two-FF

solution with one FF each at the outputs of G2 and G3, placed before the fanout point. However, due to

initial state conicts (the justi�ed values are shown in the �gure, with both possible justi�cations shown for

the XOR gate), the number of FF's must actually be 4, corresponding to two FF's at the outputs of each

of G2 and G3, with initial states of 0 and 1. This solution is clearly suboptimal, and the optimal solution is

the original con�guration, with 3 FF's.

Therefore, the use of a Leiserson-Saxe like FF sharing model with post-justi�cation is likely to result in

suboptimal solutions. This motivates the value of using the FF sharing model with pre-justi�cation that

we propose in the next section. It is very important to note that this example shows that the use of post-

justi�cation will not lead to the optimal solution and hence pre-justi�cation is essential for correctly counting

the number of FF's.

11

4.3 Conditional FF sharing

The model in Section 4.1 assumes that an FF can be combined with any other FF, and hence is not applicable

to minarea initial state retiming where FF's have logic values associated with them, and an FF with logic

value 1 can not be shared with one that has logic value 0. For example, consider the circuit in Figure 5(a)

with initial state values as shown in Figure 8(a). With these initial values, the sharing given by the mirror

vertex model of Section 4.1 is shown in Figure 5(b); this is not valid for the given initial values. Instead, the

maximal sharing is as shown in Figure 8(b) and requires a total six FF's. The reason is that only two FF's,

shown in the dashed box in Figure 8(a), can be shared. The situation is further complicated by the fact that

two FF's can be shared only if the FF's at their fanins (if any) are also shared. For example, consider the

circuit in Figure 8(b), the FF's on output C and D cannot be shared, although both have an initial state

value of 1, because their fanins are not shared.

1

0 1

0 1

(b)(a)

1

1 0 1

1 1

0 1

B

C

D

A
A

B

C

D

Figure 8: Conditional register sharing at multiple fanouts

Thus we need a way to model the conditional sharing when FF's have initial values associated with them.

This conditional sharing is also required for circuits that have more than one type of FF's that can not be

shared with each other. We will now present the modi�cations required to model the conditional sharing

by a 0/1 mixed integer linear program (0/1 MILP) formulation. This modi�cation is used for all gates with

conicts at their fanouts, and for all other gates the simpler model of [2] is used. This combination keeps

the number of integer variables within a small fraction of the total number of variables. We will �rst present

the model and then illustrate it through an example.

a

b

d

c

101

11

01

1 0 1

1 1

10

c

d

b

1 2 3

α

α

α

α

α α1 2 3

4

65

Figure 9: An example for FF sharing

The justi�cation process of Section 3 determines the logic values of all FF's that can possibly be retimed

backwards to arrive at the fanout of a given gate. There is a sequence of these \possible" FF's that may

12

arrive at every fanout of every gate, and possibly be retimed across the gate, or remain at the gate output;

the �nal retiming may contain only a subsequence of this possible sequence. The logic values of these possible

FF's at the fanouts of a gate u are represented by a table Tu with jFO(u)j rows as shown in Figure 9. Since

a maximum of Jv FF's can be moved backwards across gate v to its fanins, and w(euv) FF's already exist

between gate u and gate v, the maximum number of FF's possible between gate u and gate v is Jv+w(euv).

Therefore, each row, v 2 FO(u), has Jv + w(euv) entries, each of which is either a 0 or a 1.

The value in the vth row and kth column of the table is denoted by Tu(v; k). We de�ne a sharing class2 Si

to contain a set of values that can be shared, and represent the set of sharing classes for the fanouts of gate

u by Nu. Two values Tu(p; q) and Tu(r; s) can be shared (i.e., belong to the same sharing class) only if q = s

and Tu(p; i) = Tu(r; i) for i = 0; � � � ; s� 1. A function class(Tu(v; k)) gives the index of the sharing class for

entry (v; k) in table Tu, e.g., Sclass(Tu(v;k)) is the sharing class containing the k
th FF between gate u and its

fanout v (counting from u). All the FF's in a sharing class can be shared with each other, and hence require

only one physical FF. Each sharing class Si is represented in the MILP by a variable �i 2 f0; 1g. If �i = 1

in the optimal solution of the MILP, then the FF's of sharing class Si share a physical FF and the sharing

class Si is said to be active. FF's moved forward across gate u to its fanouts can be shared unconditionally

and will be handled later.

To ensure that the kth FF retimed across gate v activates its own sharing class variable �class(Tu(v;k)),

we require that the variable �class(Tu(v;k)) be active before the variable �class(Tu(v;k+1)). This is achieved by

adding the following constraint

�class(Tu(v;k)) � �class(Tu(v;k+1)) 8v 2 FO(u) and 1 � k � Jv + w(euv)� 1

For every multi-fanout gate u we also de�ne an integer variable �u � 0, which models the forward

retiming. This is required because unlike backward retiming, FF's introduced at the fanouts by forward

retiming across gate u can be unconditionally shared since all of them have the same logic value. Thus the

� variables model the backward retiming and � models the forward retimings. Notice that this is di�erent

from the unconditional sharing model of Section 4.1 where the mirror variable r(mu) modeled FF's moved

by both forward and backward retimings since all FF's could be unconditionally shared. Requiring the �

variables to be nonnegative, �i � 0 ensures that they model only forward (positive) retiming moves, while

the condition �u � 0, ensures that �u models only backward (negative) retiming moves.

4.3.1 Modi�cations in the Objective Function

To model the conditional sharing represented by the sharing classes, the objective function term for a gate

u that has a conict at its fanouts is modi�ed to

(jFI 0(u)j � 1) � r(u) + �u +
P

i2Nu
�i (8)

This expression counts the number of FF's that settle at the output of gate u after retiming and the

signi�cance of each term is as follows:

2Sharing classes for circuits with di�erent types of FF's can be de�ned similarly.

13

� The �rst term (jFI 0(u)j � 1) � r(u) in (8) models the increase in the number of FF's when gate u is

retimed by one unit, and is similar to the model in [2]. As earlier FI 0(u) is the set of fanins that have

only a single output, i.e., FI 0(u) = fvjv 2 FI(u) AND jFO(v)j = 1g. It assumes a shared cost of

one at the fanouts of gate u for any set of FF's retimed in either direction across gate u. In forward

retiming, all FF's inserted at the outputs of a gate have the same logic values, and therefore, the shared

cost at fanouts of gate u in forward retiming is one. Since a gate can be retimed backwards only if all

FF's at its output have the same logic values, the shared cost at the outputs before retiming is also

one, as modeled by this term. The bound r(u) � Ju, ensures that no set of FF's, with shared cost

greater than one, is ever retimed backwards across gate u.

� The second term �u � 0 is a correction factor applied to correctly model the situation in which a set of

FF's moves forward across gate u and all its fanouts. It is active only during forward retiming steps,

and models the number of FF's moved across the fanout junction of gate u by forward retiming. Since

a negative value of �u denotes forward retiming, it reects a cost saving in the objective function.

� As mentioned earlier �i = 1 implies that the sharing class Si is active, therefore,
P

8 i2Nu
�i denotes

the number of active sharing classes at the fanouts of gate u. Since each active sharing class requires

one FF, the number of active sharing classes is also the number of physical FF's required at the fanouts

of gate u. The minimization of the objective function will force the maximal sharing at the outputs

of gate u. The �rst FF in a sharing class Si that arrives at the fanout junction activates the sharing

class variable �i, incurring a cost of one in the objective function. The remaining FF's in that sharing

class can then arrive without incurring any extra cost in the objective function.

4.3.2 Additional Constraints

The number of FF's between gate u and its fanout v is given by wr(euv) = w(euv) + r(v) � r(u). The

cost of the FF's between u and v is given by
PJv+w(euv)

k=1 �class(Tu(v;k)), out of which r(u) FF's are removed

by backward retiming across gate u and ��u FF's are removed by forward (negative) retiming across the

fanouts. The conditional sharing of FF's is automatically modeled by the sharing of the � variables amongst

the fanouts. Since the cost of FF's should be same as the number of actual FF's, we get

w(euv) + r(v) � r(u) =

Jv+w(euv)X
k=1

�class(Tu(v;k)) � r(u) + �u 8 v 2 FO(u) (9)

which can be rewritten as

w(euv) + r(v) = �u +

Jv+w(euv)X
k=1

�class(Tu(v;k)) 8 v 2 FO(u) (10)

Since the right hand side of Equation (10) is being minimized in the objective function, we can relax the

equality to the following inequality

w(euv) + r(v) � �u +

Jv+w(euv)X
k=1

�class(Tu(v;k)) 8 v 2 FO(u) (11)

14

4.3.3 The MILP Nature of the Problem

The problem of retiming under this new FF sharing model will now be shown to be solvable using an MILP

solver. Although the problem is an integer linear program (ILP), with integer values required for the r, �

and � variables, the structure of the problem implies that both r and � must always be integers at any basic

solution of the linear program. Therefore it su�ces to set the � variables to be integers limited to the values

0 and 1, and this will result in guaranteed integer values for r and �.

Consider the constraints of the LP (6). To show our result, we will �rst summarize the well-known proof

that shows that the optimal r values must correspond to integers. Due to the fact that all constraints of this

LP are di�erence constraints, the constraint matrix has the totally unimodular property [21]. This implies

that any square submatrix must have a determinat of �1. As a result, since the right hand side constraint

vector is integral, it can be shown [21] by applying Cramer's rule that all vertices of the constraining polytope

must have integer values. Consequently, regardless of the coe�cients of the linear objective function, the

solution must result in integer values of r, and therefore the problem can be solved as an LP rather than an

ILP.

The new constraints added by us, of the form of (11), can be written as di�erence constraints between

the r and � variables by temporarily relegating the � variables to the right hand side. In this situation,

the left hand side of the constraint matrix remains a totally unimodular matrix. The right hand side will

always evaluate to an integer if the � variables are forced to be integers. Consequently, at any legal value of

�, the vertices of the constraining polytope must correspond to integer values of the r and � variables, and

therefore any optimal solution to the problem, regardless of the coe�cients of the linear objective function

must have integer values of the r and � variables.

As a result of this, we may write the problem as a 0/1-MILP, with the � variables constrained to be 0

or 1, and no integerization constraints on the r or � variables, and we will be guaranteed to obtain a legal

retiming solution.

4.3.4 An Example

Consider the circuit with the sharing classes in its table of logic values, as shown in Figure 9. The MILP for

this circuit is

Minimize : �r(b)� r(c)� r(d) + �1 + �2 + �3 + �4 + �5 + �6 + �a

subject to r(b) � �1 + �2 + �3 + �a

r(c) � �1 + �4 + �a

r(d) � �5 + �6 + �a

�1 � �2 � �3

�1 � �4 ; �5 � �6

�a � 0 ; �i 2 f0; 1g 8i

Backward Retiming: Suppose we want to model the sharing for r(a) = 0, r(b) = 3, r(c) = 1 and r(d) = 2.

Then the optimal objective function value of the above LP is -1, which gives the correct increase in the

15

number of FF's from the original circuit in Figure 10(a) to the retimed circuit in Figure 10(b).

1 0 1

1 1

0 1

a

b

d

c

(a)

1

0 1

1

0 1

a

b

c

d

(b)

r(a) = 0

r(b) = 3

r(c) = 1

r(d) = 2

Figure 10: Example of positive retiming

Forward retiming: Now suppose we want to model the sharing for r(a) = �2, r(b) = �2, r(c) = �1 and

r(d) = �1. Then the optimal objective function value is 3, which is the increase in the number of FF's from

the original circuit in Figure 11(a) to the retimed circuit in Figure 11(b). As can be seen one FF is shared

for the edges eac and ead even though they were not in the same sharing class. This is possible because the

FF's moved forward to the outputs of gate a; hence they all have same logic value without regard to the

sharing class which are de�ned for backward movements. Thus these FF's can be shared and our formulation

correctly models the cost.

a

(a) (b)

a

b

d

c1 1

b

c

d

1

1 1

1

1

r(a) = -2

r(d) = -1

r(c) = -1

r(b) = -2

Figure 11: Example of negative retiming

5 Experimental Results

We have implemented an initial state minarea retiming based on the presentation in this work. Since

obtaining an optimal solution requires complete exploration of the problem, it implies generating all the

possible justi�cation sets �i's, and solving the corresponding LP's. The clock period was chosen to be the

minimum clock period obtained by applying the minperiod retiming algorithm in [17]. Since enumerating

the elements of an exponential-size set can take an exponential number of steps, we implement a justi�cation

algorithm that makes random choices whenever there is a non-unique justi�cation. The LP is then solved for

the corresponding �i. If the lower bound � is not achieved, then we perform another random decision based

justi�cation. This process is repeated until either the lower bound is reached or a user-speci�ed number of

iterations are performed, and the best solution found is reported. Although it may seem arbitrary to use

random decisions, our experimental results show that the algorithm gives us good engineering solutions that

16

Table 1: Minarea Initial State Retiming

Circuit jGj P � A B C D

FF's Texec # FF's Texec # FF's Texec # FF's Texec

s27 11 6.0 3 3 0.01s 3 0.00s 3 0.01s 3 0.00s

s208.1 105 10.0 8 8 0.02s 8 0.02s 8 0.03s 8 0.03

s298 120 6.0 22 22 0.40s 22 0.44s 22 0.44s 22 0.44s

s382 159 7.0 23 23 2.59s 23 4.34s 23 4.35s 23 4.45s

s386 169 11.0 6 6 0.04s 6 0.03s 6 0.04s 6 0.03s

s344 161 14.0 19 19 1.77s 19 1.79s 19 1.77s 19 1.82s

s349 162 14.0 19 19 1.62s 19 1.62s 19 1.69s 19 1.62s

s526n 195 6.0 30 30 0.95s 30 0.95s 30 2.75s 30 0.97s

s510 212 11.0 7 7 0.12s 7 0.12s 7 012s 7 0.12s

s420.1 219 12.0 17 17 0.07s 17 0.06s 17 0.07s 17 0.06s

s641 380 74.0 19 19 0.11s 19 0.43s 19 0.44s 19 0.43s

s713 394 74 19 19 0.18s 19 0.68s 19 0.68s 19 0.69s

s967 395 12.0 35 35 28.52s 35 27.21s 35 28.05s 35 27.27s

s938 447 16.0 33 33 1.45s 33 1.53s 33 1.49s 33 1.53s

s1196 530 24.0 18 18 0.08s 18 0.07s 18 0.08s 18 0.17s

s1238 5.09 22.0 18 18 0.08s 18 0.07s 18 0.56s 18 0.08s

s1423 658 53.0 76 76 8.77s 76 9.23s 76 8.89s 76 9.31s

s1488 654 16.0 7 7 0.11s 7 0.11s 7 0.12s 7 0.11s

s1494 648 16.0 7 7 0.13s 7 0.12s 7 0.13s 7 0.12s

s3330 1790 14.0 110 110 0.58s 110 0.56s 110 0.59s 110 0.56s

s5378 2780 21.0 173 173 3m 18s 173 3m 19s 173 3m 18s 173 3m 17s

s9234.1 3271 38.0 134 134 21m 18s 134 21m 19s 134 23m 47s 134 21m 15s

s635 287 66.0 35 42 22.6s 42 22.38s 35 1.08s 39 22.5s

s953 396 13.0 27 32 32m 02s 32 27m 35s 32 31m 30s 32 27m 2s

s1269 570 19.0 84 84 0.26s 85 1m 33s 85 1m 31s 85 1m 4s

s1512 781 23.0 70 71 1h 51m 19s 72 1h 52s 1s 72 1h 56m 23s 70 1m 38s

s3271 1573 15.0 168 169 16m 46s 173 16m 5s 170 16m 40s 173 16m 29s

prolog 1602 13.0 122 124 16m 40s 125 16m 42s 125 16m 39s 125 16m 29s

s3384 1686 27.0 167 168 55m 42s 169 1h3m 18s 169 1h 2m 56s 169 51m 3s

s15850.1 9618 63.0 525 544 3h 9m 56s 540 4h 2m 36s 542 3h 57m 7s 544 3h 59m 5s

are close to the (possibly unachievable) lower bound. Other possible stopping criteria could be (a) having the

best result obtained so far be within a given percentage of the lower bound, or (b) obtaining no improvements

in the best solution for a given number of iterations, etc. If there are no gates with conicts, then the LP is

the dual of a network ow mincost ow problem, and is solved using a network simplex algorithm [16]. If,

however, we have to solve the general MILP we use the public domain MILP solver, lp solve [22].

We present results on the ISCAS89 [23] benchmark suite in Table 1. For each circuit, we show the number

of gates jGj, the target clock period jP j, and the lower bound on the number of FF's obtained by [16] �.

We also show the minimum number of FF's obtained with equivalent initial state and the execution time

Texec for all the tasks including solving the LP for all iteration on a HP 9000/777 C110 workstation. In the

absence of initial state values for the benchmark circuits we present results for four di�erent initial state

assignment. Case A has all FF's initialized to 0, while case B has all initialized to 1, case C and D are for

random state assignments. As can be seen from the results, for many circuits the lower bound is achieved in

a small number of iterations for almost any initial state. In fact in almost all of these cases the lower bound

� is obtained in the �rst iteration itself. For some circuits the lower bound was not reached; these are shown

in the lower part of the table. This, however, does not imply that the solution obtained is not optimal since

17

the lower bound is not always achievable with equivalent initial state. For these circuits, we report the best

solution obtained in 50 (5 for s15850.1) iterations.

We observed that in all of our test circuits, the number of gates requiring the 0-1 MILP model was less

than 2% of the total number of gates. In fact, in several of them, the number of gates that required the new

MILP model for register sharing was very small (less than 10). This kept the number of integer variables

well within the acceptable range for all our circuits, making our approach practical.

In the circuits where the lower bound � is not achieved the solution reported by our algorithm is very

close to �, and therefore, corresponds to a good engineering solution. Since the optimal number of FF's in a

circuit depend on the initial state of the original circuit, some variation in the number of FF's and execution

time is obtained for di�erent initial states. For s635, s1269 and s1512 the lower bound was seen to be

achieved for only some initial states.

6 Conclusion

We have presented a method to obtain minarea retiming of control logic subject to a given target clock

period and an equivalent initial state. Any minarea retiming algorithm, that does not consider initial states

will, in general, not give a solution with a valid equivalent state and hence cannot be used for control logic,

where initial states are important. Our method, on the other hand, will always result in a retimed circuit

with an equivalent initial state, i.e., the retimed circuit starting in the equivalent initial state will have the

same behavior as the original circuit starting in its given initial state. Unlike conventional minarea retiming

algorithms our approach can be used for performance constrained, area optimization of control circuits.

This approach also has applications in minarea retiming of circuits that contain di�erent types of memory

elements that can not be shared with each other, e.g. load enable registers.

We provide a simple way to incorporate the constraints for ensuring that the resulting retiming has an

equivalent initial state. This is achieved by imposing upper bounds on the retiming variables so that any

retiming respecting those bounds will have an equivalent initial state. This equivalent state can easily be

found after the retiming by using the information stored from the justi�cation phase. The technique also

utilizes a new approach that incorporates conditional FF sharing since the idea of mirror vertices used by

Leiserson and Saxe to model unconditional FF sharing [2] cannot be extended to the initial state retiming

problem. The solution approach searches the justi�cation space for the initial states and for each possible

justi�cation, solves an LP. The exploration of the justi�cation space can be stopped by the user at any

time, and it was seen that for all circuits tested, good engineering solutions that were close to a (possibly

unachievable) lower bound were found by the technique after a small amount of exploration.

The work in [24] showed that backward retiming with equivalent initial states such as the one in Figure 1

can always be obtained if the reset signal is expressed explicitly. This however requires the addition of a

multiplexor before the FF and thus changes the path delays in the circuit. This may cause the clock period

of the circuit to increase and is, therefore, not considered here.

References

[1] C. Leiserson, F. Rose, and J. B. Saxe, \Optimizing synchronous circuitry by retiming," in Proceedings

18

of the 3rd Caltech Conference on VLSI, pp. 87{116, 1983.

[2] C. E. Leiserson and J. B. Saxe, \Retiming synchronous circuitry," Algorithmica, vol. 6, pp. 5{35, 1991.

[3] K. A. Sakallah, T. N. Mudge, and O. A. Olukotun, \Analysis and design of latch-controlled synchronous

digital circuits," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 11, pp. 322{333, Mar. 1992.

[4] B. Lockyear and C. Ebeling, \Optimal retiming of level-clocked circuits using symmetric clock sched-

ules," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 13,

pp. 1097{1109, Sept. 1994.

[5] K. N. Lalgudi and M. Papaefthymiou, \DELAY: An e�cient tool for retiming with realistic delay

modeling," in Proceedings of the ACM/IEEE Design Automation Conference, pp. 304{309, 1995.

[6] T. Soyata, E. G. Friedman, and J. H. Mulligan, Jr., \Incorporating internconnect, register and clock dis-

tribution delays into the retiming process," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 16, pp. 165{120, Jan. 1997.

[7] J. Monteiro, S. Devadas, and A. Ghosh, \Retiming sequential circuits for low power," in Proceedings of

the IEEE/ACM International Conference on Computer-Aided Design, pp. 398{402, 1993.

[8] K. N. Lalgudi and M. Papaefthymiou, \Fixed-phase retiming for low power," in Proceedings of the

International Symposium of Low Power Electronics and Design, pp. 259{264, 1996.

[9] S. Malik, E. M. Sentovich, R. K. Brayton, and A. Sangiovanni-Vincentelli, \Retiming and resynthesis:

Optimizing sequential networks with combinational techniques," IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 10, pp. 74{84, Jan. 1991.

[10] G. De Micheli, \Synchronous logic synthesis: Algorithms for cycle time minimization," IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 10, pp. 63{73, Jan. 1991.

[11] V. Singhal, C. Pixley, R. L. Rudell, and R. K. Brayton, \The validity of retiming sequential circuits,"

in Proceedings of the ACM/IEEE Design Automation Conference, pp. 316{321, 1995.

[12] G. Even, I. Y. Spillinger, and L. Stok, \Retiming revisited and reversed," IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 15, pp. 348{357, Mar. 1996.

[13] H. J. Touati and R. K. Brayton, \Computing the initial states of retimed circuits," IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 12, pp. 157{162, Jan. 1993.

[14] I. Y. Spillinger, L. Stok, and G. Even, \Improving initialization through reversed retiming," in Proceed-

ings of the European Design and Test Conference, pp. 150{154, 1995.

[15] N. Shenoy and R. Rudell, \E�cient implementation of retiming," in Proceedings of the IEEE/ACM

International Conference on Computer-Aided Design, pp. 226{233, 1994.

[16] N. Maheshwari and S. S. Sapatnekar, \An improved algorithm for minimum-area retiming," in Proceed-

ings of the ACM/IEEE Design Automation Conference, pp. 2{7, 1997.

19

[17] S. S. Sapatnekar and R. B. Deokar, \Utilizing the retiming skew equivalence in a practical algorithm

for retiming large circuits," IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 15, pp. 1237{1248, Oct. 1996.

[18] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems Testing and Testable Design. New

York, NY: W. H. Freeman and Company, 1990.

[19] S. Kundu, L. Huisman, I. Nair, V. Iyengar, and L. Reddy, \A small test generator for large designs,"

in Proceedings of the IEEE International Test Conference, pp. 30{40, 1992.

[20] J. B. Saxe, Decomposable Searching Problems and Circuit Optimization by Retiming: Two Studies

in General Transformations of Computational Structures. PhD thesis, Carnegie-Mellon University,

Pittsburgh, PA, 1985.

[21] M. S. Bazaraa, J. J. Javis, and H. Sherali, Linear Programming and Network Flows. New York, NY:

John Wiley, 1977.

[22] M. Berkelaar, LP SOLVE User's Manual. Eindhoven University of Technology, Eindhoven, The Nether-

lands, June 1992.

[23] F. Brglez, D.Bryan, and K. Kozminski, \Combinational pro�les of sequential benchmark circuits," in

Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 1929{1934, 1989.

[24] V. Singhal, S. Malik, and R. K. Brayton, \The case for retiming with explicit reset circuitry," in

Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp. 618{625, 1996.

20

