
A Machine Learning Based Parasitic Extraction Tool

Geraldo Pradipta, Vidya A. Chhabria, and Sachin S. Sapatnekar
University of Minnesota, Minneapolis, MN 55455, USA.

Abstract— In this work, we develop a machine learning-based
parasitic extractor that takes a routed design in DEF and
generates parasitics in SPEF. The software builds regression
models that capture the behavior of resistance, capacitance
to ground, coupling, crossover, and crossunder capacitance
of a net. The characterization of these models is a one-time
cost to extract per-unit parasitics of the BEOL stack for a
given technology. The trained regression models can then be
used to rapidly estimate all the parasitic information of a
net in the design. Once characterized for a given technology,
our tool eliminates the dependency on non-human-readable
technology files (e.g., QRC format) provided by the foundry.
Our parasitic extraction framework, can be easily used by any
standard file-based design flow, since it reads routed design’s
DEF and generates SPEF. Eventually, this software will be
closely integrated with various design stages of the OpenROAD
project.

I. INTRODUCTION
With technology scaling, interconnect parasitics have become
dominant in influencing performance of VLSI circuits. For
precise timing and power analysis, a fast and accurate
parasitic estimation is necessary to aid design closure. Our
work [2], builds regression models that accurately captures
the behaviour of on-chip resistance (R), capacitance to
ground (C), and coupling capacitance (Cc) of a net for a
specific technology.

Our parasitic extraction (PEX) engine, can be used as a
post-layout parasitic analysis tool in any standard file based
RTL-GDS flow [3]. In its current form, it takes as an input,
a routed design in Design Exchange Format (DEF), uses
the calibrated regression models, and outputs parasitics in
a Standard Parasitic Exchange Format (SPEF) [7] file. The
generated SPEF file provides R, C, and Cc information of
all nets in the design, which can be fed into different sign-
off engines to help enable accurate analysis. Eventually, we
aim to integrate this software with various design stages
in the OpenROAD flow [1], [3], with the ability to handle
incremental updates, to provide fast parasitic estimates and
help enable a 24 hour turn-around-time flow.

One of the required inputs to parasitic extraction tools
are the RC technology files (e.g., in the QRC format)
or captables. These files contain parasitic characterization
of the technology elements. Newer technology design kits
come with encrypted technology files. To enable easy PEX
within the inner loop of physical design optimizations, we
create regression models to compute the parasitics of on-
chip interconnects. The coefficients of these models can
then be used to estimate the parasitics of any net, given
its length and neighborhood information, very quickly for
a given technology and RC corner.

Our work comprises of two flows as shown in Fig. 1.
(a) Calibration flow (Fig. 1(a)): a one-time process, for a

specific technology, that extracts the coefficients R, C
and Cc of various metal layers and via in the BEOL
stack in the form of regression models and store the
coefficients in a configuration file.

(b) Inference flow (Fig. 1(b)): uses the constructed
regression models to estimate parasitics on a given
routed design, i.e., given a routed DEF, our tool uses
the extracted coefficients to write SPEF.

LEF
Timing

Library

Routed

DEF

Design SPEF

DOE

LEF
Timing

Library

“Golden” SPEF

Parasitic

Extraction

Training Data Generator

Calibration Flow Inference Flow

Regression models

for R,C and CC

DEF to SPEF

PEX Tool

Regression models

for R,C and CC

(a) (b)

Fig. 1. PEX Framework: (a) calibration flow extracts parasitics from the
DOE and trains regression models, and (b) inference which flow uses the
trained model to generate SPEF.

II. CALIBRATION FLOW

The calibration flow is a one-time process that is imple-
mented for a specific technology. The goal of the calibration
flow is to build regression model for capturing the behavior
of these parameters:
• R and C based on per unit length
• Cc based on spacing and overlap between object wire

and its same layer neighbor
• Cross-under and cross-over coupling capacitance based

on number of neighbors of the object wire, spacing
between object wire and its neighbors, and the spacing
between the targeted crossing wire with its neighbor.

A. Design of Experiments

In the current implementation, the design of experiments
(DOE) assumes that width of the all wires in the design has
a fixed value of the minimum width for each metal layer.

Reference point

𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑙𝑙

𝑠𝑠

Fig. 2. DOE: wirelength l is varied to extract data points for per unit R
and C calibration while loverlap and s are varied to extract data points for
Cc separately for each metal layer.

Resistance and Capacitance: A simple schematic, in Fig. 2
shows a two-pin net that uses inverter cells for both the load
and the driver, which forms the basis of our experiments
for per-unit R and C extraction. Multiple data points which
comprise of length and its corresponding R and C values are
extracted by varying the wirelength, l. This experiment is
repeated for all layers within the BEOL stack. To remove the
contribution of the R and C within the cell, we subtract the
parasitics associated with the smallest test structure. Thus,
all data extracted from the DOE corresponds to parasitics of
wires beyond the smallest test structure, as shown in Fig. 2.
Via resistance and capacitance: The via resistances are
extracted using the same training data set as the per unit
R and C, which comprises of information across multiple
layers. The calibrated per unit R and C is used the in equation
below to estimate via R and C from the previously extracted
training set:

RCvia,i =
1
2RCtotal − 1

2

∑
x∈M

RCunit,x · lx −
i−2∑
j=1

RCvia,j (1)

where RCvia,i is the via resistance or capacitance that
connects metal layer i and i + 1, RCtotal is the total
interconnect parasitic, M is the a set of metal layers used
in the net, RCunit,x is the per unit R or C value for metal
layer x, lx is the wirelength for metal layer x, and RCvia,j

is the R or C of the via j.
Coupling capacitance: this is the capacitance between two
metal stripes on the same layer. and it depends on two
parameters (i) the distance between the two wires, s, and (ii)
their overlap length, loverlap. We extract several data points
for coupling capacitance between metal stripes within the
same layer by varying wire spacing and their overlap lengths.
Similarly, the experiment is repeated across all metal layers
in the BEOL stack.
Crossunder and crossover capacitance: The crossover
capacitance is formed between any three adjacent layers of
the BEOL stack. Consider a three level set of wire crossings,
as shown in Fig. 3, where the second-level metal lines, cross
the first-level, and the third-level metal lines, then based
on the work in [6], the crossover/crossunder capacitance
depends on two parameters: (i) spacing between the object
wire and its neighbors in the same layer, s1 and s2, and (ii)
spacing of the crossing wire to its closest neighbor, su and
st.

Fig. 3. DOE for crossunder and crossover coupling capacitance: Varying
number of neighbors of the object wire, spacing with its neighbors and
spacing of targeted crossing wire with its closes neighbors.

III. REGRESSION MODELS AND CONFIGURATION FILE

A. Regression Models for Resistance and Capacitance

We observe that the resistance R and C on each metal layer
can be modeled by a linear equation of the form:

RCwire = a · lwire + b (2)

where lwire represents the length of the wire and RCwire is
the R or C of the wire.

The via resistance is independent of length and neighbor-
hood information, but depends on the number of via cuts.
The via resistance of a k-cut via is given by the resistance
of a 1-cut via divided by k.

The coupling capacitance has a more complex equation
since it is also dependent on wire spacing. The coupling
capacitance follows the equation of a parallel plate capacitor
and varies inversely with the wire spacing. Thus, for two
wires run parallelly for a length loverlap and have a spacing
of s, the coupling capacitance, Cc, can be modeled as:

Cc = c/s+ d · loverlap + e · loverlap/s+ f (3)

where c, d, e, and f are characterization constants and s ∈
{s1, s2, st, su}.

Our regression model fits coefficients of st, su, s1, and s2
for each neighboring wires, to estimate the crossunder and
crossover coupling capacitance based on the work in [6].

B. Configuration File

We employ a configuration file that stores the coefficients
of the regression model, to replace parasitic technology files
(e.g., QRC tech file or captable) in the design methodology.
The format of the configuration file is depicted in Fig. 4.
The variable n in the configuration file represents the total
of metal layers for a specific technology, “xxx” represents
the coefficient values.

IV. INFERENCE FLOW

Fig. 1(b) demostrates the inference flow that can be deployed
into a standard design methodology (e.g., [3]). The inference
flow takes four inputs: (i) the configuration file generated
from the technology-specific calibration flow and (ii) the

RESISTANCE

metal_layer a b

1 xxx xxx

2 xxx xxx

. . .

. . .

n xxx xxx

CAPACITANCE TO GROUND

metal_layer a b

1 xxx xxx

2 xxx xxx

. . .

. . .

n xxx xxx

COUPLING CAPACITANCE

metal_layer c d e

1 xxx xxx xxx

2 xxx xxx xxx

. . . .

. . . .

n xxx xxx xxx

VIA RESISTANCE

metal_layer 1_CUT

1 xxx

2 xxx

. .

. .

n-1 xxx

VIA CAPACITANCE

metal_layer 1_CUT 2_CUT 3_CUT 4_CUT

1 xxx xxx xxx xxx

2 xxx xxx xxx xxx

.

.

n-1 xxx xxx xxx xxx

f
 xxx

 xxx

.

.

 xxx

Fig. 4. The configuration file format.

routed design in DEF format [4] (iii) LEF (iv) timing library.
The advantage of using the characterized configuration file
for a given technology, as described in Section III-B, is
that we can rapidly predict the parasitics for a given net in
any technology-specific design. This is enabled by building
standard file readers and writers which process the four
inputs and generate parasitics for every net in the design in a
SPEF [7]. The SPEF can be fed to any timing analyzer (e.g.,
[5]) to assess design performance. For each net in the design,
we run the parasitic analyzer that processes information of
a particular net and its neighborhood to obtain the required
parameters for the regression model. Then, the tool calculates
the resistances and total capacitance of every net in the
design.

V. RESULTS

Our experiments are carried out using Python 3.6 and Ca-
dence Innovus RC extractor as the golden extractor [9]. The
regression models are built using TensorFlow [8]. We have
several test nets represented in a DEF file that we use as the

input to the inference flow. The outputs of the inference flow
(SPEF) are then compared with the golden outputs generated
by Cadence Innovus extractor.

Figure 5 shows the "goodness of fit" plot for the con-
structed regression models. The figure compares the normal-
ized predicted and actual (commercially extracted) parasitic
(R and C) values from the test nets. The normalized root
mean square errors of the two plots are 0.016 and 0.021
respectively. This shows that our regression models fit the
data well.

Resistance

Actual Resistance (a.u.)

Pr
ed

ic
te

d
R

es
is

ta
nc

e
(a

.u
.)

Capacitance

Actual Capacitance (a.u.)

Pr
ed

ic
te

d
C

ap
ac

ita
nc

e
(a

.u
.)

Fig. 5. The predicted versus the actual resistance and capacitance values.

VI. FUTURE DIRECTIONS

In its current form, while the tool builds accurate regression
models for resistance and capacitance, and fits into a file-
based RTL-GDS flow, the software relies on commercial
tools for the one-time calibration flow. The models can be
used within fast optimization iterations of a timer and sup-
port incremental parasitic updates during each stage design
flow. We aim to integrate closely with every stage of an
end-to-end hardware design methodology as a part of the
OpenROAD [3] design flow. Continuous efforts are being
put into addressing the scalability issues of the routed DEF
to SPEF converter and its ability to handle a wide variety of
testcases.

REFERENCES

[1] T. Ajayi, et al. “Toward an Open-Source Digital Flow: First
Learnings from the OpenROAD Project.” in Proc. DAC,
pp. 76.1–76.4, 2019.

[2] OpenROAD-PEX, https://github.com/
The-OpenROAD-Project/def/tree/master/def

[3] The OpenROAD Project,
https://theopenroadproject.org

[4] LEF/DEF reference 5.8, http://www.si2.org/openeda.
si2.org/projects/lefdefnew

[5] OpenSTA, https://github.com/abk-openroad/OpenSTA
[6] J. Cong, et al. “Analysis and justification of a simple, practical 2

1/2-D capacitance extraction methodology,” in Proc. DAC, pp.
627–632, 1997.

[7] IEEE Standard for Integrated Circuit (IC) Delay and Power
Calculation System,
https://standards.ieee.org/project/1481.html

[8] TensorFlow framework, https://www.tensorflow.org/
[9] Cadence Innovus, https:

//www.cadence.com/content/cadence-www/global/
en_US/home/tools/digital-design-and-signoff/
soc-implementation-and-floorplanning/
innovus-implementation-system.html

