
Capturing the Effect of Crosstalk on Delay�

Sachin S. Sapatnekar
Department of Electrical and Computer Engineering

University of Minnesota, 200 Union Street SE,
Minneapolis 55455, USA.

Abstract
Crosstalk is generally recognized as a major problem in IC

design. This paper presents a novel approach to the efficient mea-
surement of the effect of crosstalk on the delay of a net using an
algorithm whose worst-case complexity is polynomial-time in the
number of nets. The cost of the algorithm is seen to beO(nlogn)
in practice, wheren is the number of nets, and it is amenable
to being incorporated into the inner loop of a timing optimizer.
To illustrate this, the method is applied to reduce the effects of
crosstalk in channel routing, where it is seen to give an average
improvement of 23% in the delay in a channel as compared to the
worst case, as measured by SPICE.

1 Introduction
In recent years, crosstalk has become a major problem affect-

ing the behavior of integrated circuits as device geometries have
scaled down, bringing wires closer to each other, and switching
frequencies have increased. Crosstalk can affect the behavior of
circuits in two ways: (a) introducing unwanted noise induced
in a quiet line, and (b) altering the delay of a switching transi-
tion. Each of these is a potentially serious hazard, and this has
motivated work in the area of crosstalk analysis and crosstalk-
tolerant design. Published techniques for crosstalk analysis typi-
cally work with either a very detailed and accurate analysis of the
phenomenon, or a very high-level model that captures the spirit, if
not the details, of the crosstalk phenomenon (for example, [1–3]).
The latter class of approaches has the advantage of speed over the
former class, at the expense of accuracy, and has been therefore
been used in the inner loop of optimizers. However, there is a
need for greater accuracy without sacrificing the requirement of
speed that is essential in the inner loop of an optimizer.

The goal of this work is to develop a technique that is inter-
mediate to the two in accuracy and speed, and to show its appli-
cation to optimal crosstalk-conscious channel routing. We will
concentrate primarily here on the effect of crosstalk on the circuit
delay; for methods for measuring the crosstalk noise, the reader
is referred to [4, 5]. The application of this approach to optimal
channel routing is shown.

Recent research on determining the waveform for a set of
wires that are subject to coupling effects was published in [6].
The approach provides exact waveforms through the use of wave-
form relaxation that capture the effect of coupling on delay, but
has a high computational cost.

The optimization problem chosen here has the same general
goal as [1], namely, to reduce the amount of crosstalk in a routed
channel. The advantage of performing crosstalk estimation and
reduction at this level is that since the details of the physical

�This research was supported in part by the Semiconductor Research Corpora-
tion under contract 98-DJ-609 and by the National Science Foundation under award
CCR-9800992.

design are decided at this phase of the design cycle, the timing
and neighborhood information of all nets is available, and con-
sequently, accurate estimates of the timing and crosstalk may be
made. Our method takes an initial routing solution that attempted
to minimize the number of tracks, and modifies the solution to
reduce the crosstalk-induced delay.

The important features of this work are as follows: (a) It pro-
vides, for the first time, a procedure for determining the effect of
crosstalk on delay that can be used in the inner loop of an op-
timizer. The procedure has polynomial time complexity in the
worst case and is experimentally seen never to be worse than
O(nlogn) wheren is the number of nets. (b) The application
of this procedure to channel routing is illustrated on several ex-
amples.

2 Preliminaries and Motivation
This work models a wire as a succession of RC segments con-

nected in series. We assume that the widths,wi, of the wires are
kept constant through the analysis and optimization. The resis-
tance,Ri, and intrinsic capacitance,Ci, of the ith segment are
given by the formulæRi = � li=wi andCi = � li wi, whereli
is the length of theith segment, and� and� are constants of pro-
portionality for the resistance and intrinsic capacitance (including
the fringing capacitance), respectively. The coupling capacitance,
Cc, between two adjacent nets is proportional tooverlapi, the
length along which the nets run next to each other, and is given
byCc = overlapi, where is a constant of proportionality.

It is important to emphasize that the exact functional form that
is used to estimate the capacitance and the delay are not impor-
tant. As will be seen later, the only requirement that the delay
model must satisfy is that an increase [decrease] in the coupling
capacitance should be translated into an increase [reduction] in
the delay of a net; this is a rather simple requirement that any
meaningful delay model would satisfy. In this work, we will use
the Elmore delay model for simplicity, but we emphasize that the
crosstalk estimation methodology is extendable to any arbitrary
delay model that satisfies the above requirements.

The role of the coupling capacitances is greatly dependent on
the relative switching times of the nets:

� If one net switches and the other remains inactive, then the
equivalent coupling capacitance between the two is mod-
eled asCc.

� If both nets switch at the same time in opposite directions
(i.e., one switches from 1 to 0, and the other from 0 to
1), then the equivalent coupling capacitance is modeled as
2Cc.

� If both nets switch at the same time in the same direc-
tion, then the equivalent coupling capacitance is modeled
as zero.

The complexity of this relationship arises from the interrelation-
ships between the timing behavior and the coupling capacitance.
The value of the equivalent coupling capacitance is affected by
the switching time, which, in turn, is affected by the value of the
coupling capacitance.

To elaborate on this, consider two wires that are laid out adja-
cent to each other. If the input signals to driver of the two wires
switch between times[Tmin;1; Tmax;1] and[Tmin;2; Tmax;2], re-
spectively, and if the delays required to propagate the signal along
the wires are in the range[d1;min; d1;max] and[d2;min; d2;max],
respectively, then the intervals during which the lines switch are
[Tmin;1+d1;min; Tmax;1+d1;max] and[Tmin;2+d2;min; Tmax;2+
d2;max], respectively. Therefore, the following relationship holds
between the switching times and the equivalent coupling capaci-
tance,Cc;eq.

Table 1: Variation ofCc;eq with switching time.
Interval Cc;eq

[maxfTmin;1 + d1;min; Tmin;2 + d2;ming,
minfTmax;1 + d1;max; Tmax;2 + d2;maxg] 0 or2Cc

[minfTmin;1 + d1;min; Tmin;2 + d2;ming,
maxfTmin;1 + d1;min; Tmin;2 + d2;ming] Cc

[minfTmax;1 + d1;max; Tmax;2 + d2;maxg,
maxfTmax;1 + d1;max; Tmax;2 + d2;maxg] Cc

The value ofCc;eq in the first line of Table 1 is chosen to be
either 0 or2Cc, depending on whether the signals switch in the
same direction, or in opposite directions. Note that it is possible
for some of the above intervals to be empty when the lower bound
and the upper bound of the interval coincide.

While the relationship shown in Table 1 looks relatively straight-
forward, it is considerably complicated by the fact thatd1;min,
d1;max, d2;min andd2;max are dependent on the value ofCc;eq ,
which is itself dependent on the values ofdi;min and di;max,
i = 1; 2. Therefore, an iterative approach is required.

It should be pointed out that the0�Cc�2Cc model has some
limitations. The work of [7] showed that a capacitance of 0 is not
a strict lower bound, and likewise,2Cc is not a strict upper bound
on the effective capacitance. In such a case, if a lower bound and
upper bound capacitance can be arrived at (including a negative
lower bound)a priori, the techniques described here can be used
to correctly determine the switching intervals (we do not provide
a technique for determining these boundsa priori in this work).

The relation between crosstalk and timing is illustrated by
the simplified three-wire example in Figure 1. We assume in-
terconnect parameters in accordance with [8], and assume that
the drivers a, b and c with resistances of 2K
, 3K
 and 1K
,
respectively, and that their inputs switch at times that lie in some
specified time intervals1. These times are assumed to be as fol-
lows:

� driver 1 switches in the interval [0.25ns,1.0ns]

� driver 2 switches in the interval [0.1ns,0.2ns]

� driver 3 switches at 0ns

For ease of description, we will assume equal rise and fall times.
We point out, though, that the methods described in this paper
do not require equal rise and fall times and can be extended to
unequal values using standard methods in timing analysis.

1Variations in the switching times may occur for various reasons such as the
existence of multiple paths passing through the gate with different delays.

On the surface, it would appear that none of the switching
time intervals overlap, and an equivalent coupling capacitance of
Cc would prevail, based on Table 1. However, these switching
intervals do not take the wire delay into account, and hence we
will now make that correction.

Cload

Cload

Cload

wire3

wire1

wire2

Driver a

Driver b

Driver c

R = 1K
d

d
R = 3K

R = 2K
d

2000 m

1000 m

1000 mµ

µ

µ

= 10fF

= 10fF

= 10fF

Figure 1: An example showing the effect of crosstalk on timing.

Let us, only for a moment, neglect the coupling capacitance.
The switching time of wires 1, 2 and 3 considering the effects
of their self-capacitance (i.e., area and fringing capacitance), and
ignoring the effects of coupling capacitance entirely, may be cal-
culated from the Elmore delay formula to be [0.331ns,1.081ns],
[0.343ns,0.443ns], and [0.161ns,0.161ns], respectively (note that
the last interval is a single point). Therefore, it is clear that the
overlaps in the timing intervals at the driver inputs can be mis-
leading and do not show the complete picture. Moreover, the ef-
fects of the coupling capacitance are yet to be incorporated, and
the calculation of the switching intervals while incorporating their
effects is quite involved.

Consider the switching of wire 1. A switching event at any
time in the interval [0.331ns,0.343ns] corresponds to a coupling
capacitance ofCc, implying that incorporation of coupling ca-
pacitance effects would update these switching times to the inter-
val [0.402ns,0.414ns]. An event in the interval [0.343ns,0.443ns]
corresponds to a best-case coupling capacitance of 0; therefore,
no correction in the earliest switching time due to the coupling ca-
pacitance is required. Consequently, the earliest switching event
occurs at time 0.3432ns, assuming that the switching intervals for
wire 2 have been correctly calculated. However, that is an invalid
assumption, as wire 2 has a minimum coupling capacitance of
Cc with wire 3, requiring its value to be corrected, leading to the
calculation of a new earliest switching time for wire 1, and so on.

After several iterations, the final switching intervals for wires
1 through 3 are calculated as [0.402ns,1.222ns], [0.554ns, 1.075ns]
and [0.302ns,0.302ns], respectively.

The objective of this example was to help the reader appreci-
ate the difficulty involved in calculating these switching intervals,
and to motivate the need for a precise, efficient and systematic al-
gorithm for the purpose.

This example illustrates the following points. Firstly, an iter-
ative approach is required. Secondly, different switching times
for a wire may correspond to different equivalent coupling capac-
itances, and a uniform value for the entire switching duration is
not valid; this is illustrated by the update to wire 1 in Iteration 1
above. Thirdly, the order in which the updates are made is impor-
tant for convergence. In the above example, if the updates were
carried out in an order that processes wire 2 before wire 1, then
the number of iterations would be brought down from two to one.

The algorithm proposed in this paper attempts to find such an
order, and determines the number of computations required by
the iterative procedure in the worst case. For this specific exam-
ple, our algorithm completes the computation in a single iteration
since the heuristic in Section 3.3 will process wire 2 before wire 1.

3 Algorithm for Correct Delay Estimation
The algorithm is described here in the context of a set of nets

N1; � � � ; Nk in a channel. We will assume that the channel is
positioned with its length along thex axis. We define aspatial
adjacency graph, Gs, whose vertices correspond to thek nets in
the channel. An edge is drawn between verticesi and j if the
horizontal spans of netsNi andNj intersect. If two nodes are
connected by an edge onGs, the corresponding nets will affect
each other by means of a coupling capacitance if they are placed
on adjacent tracks.

3.1 Outline of the Algorithm
The input to the algorithm is a channel routing solution that is

found without regard to crosstalk, using a standard channel router
[9,10], which provides the adjacency information required for the
analysis. For each driver, a switching interval[Tmin; Tmax] sig-
nifying the range of switching times at the input of the driver, and
a source resistance,Rd, are specified. If the wire originates at a
gate at the top or bottom of the channel, these quantities simply
correspond to the range of switching times and the driver resis-
tance of that gate. If the wire originates at the left or right of
the channel, thenRd corresponds to the upstream resistance. The
specification of the range of switching times corresponds to the
range of switching times of the driver of the net, plus the Elmore
delay of the net assuming that it terminates at the left edge of the
channel; this is justified by the separable structure of the Elmore
delay computation.

The goal of the algorithm is to incorporate the information
in theGs graph and the adjacency information derived from the
channel routing solution to arrive at a range[Tstart; Tend] for all
of the wires in the channel.

We define the self-delay,ds, of a line as its RC delay cal-
culated by considering only the intrinsic capacitance of the line.
Note that the self-delay is calculated without incorporating the
effects of coupling capacitance; consideration of the coupling ca-
pacitance can only cause the delay to increase, and hence the self-
delay is a lower bound on the delay of the line. The task of this
algorithm is to determine whether the correction due to coupling
capacitance should assume a capacitance ofCc or 2Cc [0 orCc]
for the maximum [minimum] switching time. Let delay(Cc) be
the delay on the line due to the coupling capacitance ofCc for
each neighbor of a given wire (note that the value ofCc for each
wire will be different, and this is only a notational convenience).
The initial switching interval is set to the value of[Tstart; Tend],
whereTstart = Tmin + ds andTend = Tmax + ds+ delay(Cc),
both of which are clearly lower bounds on the earliest and lat-
est switching times for the wire. The pseudocode below shows
how these can be refined to arrive at the actual earliest and latest
switching times.

ALGORITHM UpdateSwitchingTimes
1. For each netf
2. calculate itsds and delay(Cc) and updateTstart, Tend
3. g

/* OUTER LOOP */
4. Repeatf

/* FORWARD PASS
Update the latest switching time for each net using
Cc;eq = Cc or 2Cc, as appropriate

*/
5. Repeatf
6. For each neti f
7. For each neighborj of i in Gs

8. UpdateTend for i
9. For each neighborj of i in Gs

10. UpdateTend for j
11. g
12. g until (noTend changes)

/* BACKWARD PASS
Update the earliest switching time for each net using
Cc;eq = 0 orCc, as appropriate

*/
13. Repeatf
14. For each neti f
15. For each neighborj of i in Gs

16. UpdateTstart for i
17. For each neighborj of i in Gs

18. UpdateTstart for j
19. g
20. g until (noTstart changes)
21. g until (noTend or Tstart changes)

In practice, the changes in the forward and backward passes
are only made for neighbors of nets that were altered in the previ-
ous iteration, except in the first iteration of the outer loop, where
all nets are processed.

The neighbors of a wirej above correspond to adjacent ver-
tices in theGs graph. The updates in lines 8, 10, 16 and 18 are
performed using the scheme in Table 1, with the difference that
the wire delays are calculated using the values ofCc;eq based on
the current values ofTstart andTend for the nets. The update
formulæ are as follows:

Tend updates

� If Tend(j) > Tend(i) > Tstart(j), then the worst
case corresponds to an equivalent coupling capaci-
tance of2Cc between wiresi and j that is seen at
Tend(i), resulting in the update formulaTend(i) =
Update(Tend(i); 2Cc) where the right hand side im-
plies thatTend is updated so thatCc;eq betweeni and
j is set to2Cc.

� If Tend(i) > Tend(j) > Tstart(i), then the latest
concurrent switching occurs atTend(j), where a cou-
pling capacitance of2Cc is seen by wirei between
itself and wirej. This results in the update formula
Tend(i) = max[Update(Tend(j); 2Cc); Tend(i)].

� If the two intervals do not overlap spatially,Tend cor-
responds to an effective coupling capacitance ofCc,
and Tend(i) = Update(Tend(i); Cc) and Tend(j) =
Update(Tend(j); Cc).

Tstart updates

� If Tstart(j) > Tstart(i), then updateTstart(i) =
min[Update(Tstart(i); Cc); Tstart(j)].

� If Tstart(i) > Tend(j), then updateTstart(i) =
Update(Tstart(i); Cc).

� If Tend(j) > Tstart(i) > Tstart(j), thenTstart(i)
is left unchanged and corresponds to a coupling ca-
pacitance of zero.

The updates in lines 8 and 10 (and similarly, in lines 16 and
18) are performed in separate loops so that the value ofTend of
net i in the current iteration is fully calculated before its impact
on its neighbors is determined. This removes the need for unnec-
essary repeated applications of the update formulæ.

3.2 Theoretical Results and Complexity
Theorem 1: Algorithm UpdateSwitchingTimes converges.
Proof: In the first iteration of the outer loop, at the end of the
forward pass loop, the values ofTend are no smaller than they
were before the pass. This is due to the fact that the coupling
capacitance was taken to beCc before beginning, and during the
forward pass, some of these are updated to2Cc, with a conse-
quent increase inTend. Similarly, the value ofTstart is always
larger on completion of the backward pass in the first iteration of
the outer loop, since some of the coupling capacitances are up-
dated from 0 toCc.

In the second iteration of the forward pass, the values ofTend
are updated to reflect any altered circumstances due to overlaps
that were either introduced or made absent after the preceding
backward pass. Since the first backward pass keptTend unaltered
and only increasedTstart, it follows that the span of each switch-
ing interval could only be diminished, and not increased during
the backward pass. Therefore, it is not possible for any new over-
laps to be introduced, and consequently, any updates during the
second forward pass must be due to the fact that some overlaps
were removed during the first backward pass. The effect of a re-
moved overlap is that the worst-case equivalent coupling capaci-
tance is reduced from2Cc toCc, and therefore, the updated value
of Tend must be reduced in the second iteration. Similarly, that
since the second forward pass diminishes the overlaps, the value
of Tstart must be increased by the second forward pass.

In subsequent iterations, theTstart are either increased or kept
constant, and theTend values are either reduced or kept constant.
For n nets, since the number of possible configurations is finite
(< n � 3n, corresponding to each net having an equivalent cou-
pling capacitance of0; Cc or 2Cc with each other net), and since
the reduction is monotone, the procedure must converge. In prac-
tice, the procedure converges much faster thann � 3n steps since
many of the possible configurations are eliminated by the mono-
tone path taken by the algorithm, as shown below. 2

Theorem 2: The computational complexity of the algorithm is
O(nm2 + mn2), wheren is the number of nets andm < n is
the maximum number of nets that are spatially adjacent to any
net. Therefore, assuming thatm is bounded by a constant, the
complexity of the procedure isO(n2).
Proof: We will consider the case of the forward pass in which
Tend is updated; the argument forTstart is symmetric.

In the first iteration of the forward pass, each of then wires
is updated by its immediate neighbors. This leads to a maximum
of O(m2) updates per wire, implying that the cost of the first
iteration isO(nm2).

From the second iteration onwards, as shown in the proof of
Theorem 1, the value ofTend is nonincreasing. The update for-
mula forTend, listed in Section 3.1, implies that the value is de-
termined by either

(a) a change in the value ofTend of a neighboring wire to alter
the effective coupling capacitance from2Cc toCc, or

(b) a change in the value ofTend for a neighboring wire while
the effective coupling capacitance is unchanged at2Cc.

We will now recall the statement in the proof of Theorem 1 that
showed that the spans of the[Tstart; Tend] interval must contract
from one iteration to the next; this fact will often be used in this
proof.

For case (a) above, this implies that a net can be updated in
this manner at mostm times during the entire analysis procedure.
The analysis for case (b) is more involved and is as follows.

Consider a change in the value ofTend that is triggered by a
certain net. This may trigger a change in the value ofTend for
one or more of its neighboring nets, which may further trigger
changes in the values ofTend for neighbors of that net, and so
on. Note that each of these changes must necessarily be reduc-
tions. By the pigeonhole principle [11], since the number of nets
is n, at mostn nets will be processed in this manner before the
originating net is again a candidate for such a reduction.

For at least one wire in the system, theTend value will not be
reduced further when it becomes a candidate for the second time;
if it did, it would imply that theTend value for each wire could
reduce indefinitely by discrete nonconverging amounts through
multiple passes through this cycle, leading to aTend value of
�1, which is impossible sinceTend is bounded below by a finite
positive number.

Therefore, for this wire, the number of updates to itsTend
value is no more thanm, corresponding to one update of case (a)
above from each of itsm neighbors. If this wire hasm updates
to itsTend value, it can contribute no more thanm case (b) up-
dates to each of itsm neighbors. In conjunction with the case (a)
updates to these neighbors, this implies that each of them wires
would have no more than2m updates in all from the originating
wire. In fact, using a similar argument as before, for at least one
of them neighbors, the number of updates must be guaranteed
not to exceed2m. Similarly, for at least one of them neighbors
of this wire, the number of updates cannot exceed3m, and so
on. Consequently, the maximum number ofTend updates over all
wires cannot exceed

m+ 2m+ 3m+ � � �+mn = O(mn2)

In a similar fashion it can be shown that the number ofTstart
updates isO(mn2), implying that the computational complexity
of the entire procedure isO(nm2 +mn2). 2

The theorem above lists the worst-case time complexity of the
procedure, corresponding to the most pathological case where ev-
ery update to every net affects every other net. However, this is
extremely unlikely in practice, and with the use of heuristics (to
be described in Section 3.3), the number of updates can be re-
stricted to a complexity that is practically of the formO(n). In
our experiments, the number of iterations of the outer loop of Al-
gorithm UpdateSwitchingTimes never exceeded four and there-
fore, we found that the number of updates was linear in the num-
ber of nets. This ordering necessitated a sorting procedure, and
therefore the complexity of the entire procedure isO(nlogn).

3.3 Heuristics for Speeding up the Procedure
The order in which the nets are processed is important in en-

suring that the switching intervals are calculated efficiently. We
will illustrate this with respect to the backward pass of Algorithm
UpdateSwitchingTimes, noting that the argument is similar for
the forward pass loop.

We first note that for the backward pass loop of lines 13–20,
the iterations are similar to Gauss-Seidel updates, where all up-
dates in the current iteration are taken into account while process-
ing a net, rather than a Gauss-Jacobi iteration, where the values
from the previous iteration would be frozen in place and used in
the current iteration. Therefore, while processing thekth net in
the first forward pass, the updatedTstart values for the firstk�1
nets are being used.

If, in some iteration of the loop on lines 14–19, a netnx is up-
dated, then each neighbor ofnx is processed. The value ofTstart
of this neighbor is dependent on the values ofTstart andTend of
each of its neighbors (includingnx) in the following ways:

� Due to the monotone shrinking of the switching intervals,
the Tend value of each neighbor can affect theTstart of
a net precisely once: when the value ofTend is such that
a temporal overlap ceases to exist, the effective coupling
capacitance forTstart becomesCc instead of0.

� A change in theTstart value of a net can update theTstart
value of each neighbor according to the update formulæpre-
viously described. This update can occur more than once if
a poor ordering is chosen, and the alignment of the timing
windows for the nets (and the planets) is such that a patho-
logical case is excited. The computation in the procedure
can be reduced by heuristically choosing a good ordering.

Our heuristic updates the nets in descending order of the value
of Tstart at the beginning of the procedure. This is based on the
fact that sinceTstart is guaranteed to be nondecreasing and as a
result, when a net with a lower value ofTstart is updated, it is
likely not to be limited by theTstart values of its neighbors; if
they had largerTstart values to begin with, they would have been
updated already, and if they had smallerTstart values, then their
values are irrelevant as the update depends on theTstart value of
the current net. The cost associated with performing the sorting
procedure isO(nlogn).

Similarly, it can be argued that for the forward pass, nets should
be processed in increasing order of theirTend values. However,
it should be noted that this is only a heuristic, and does notguar-
anteea single pass through the repeat loop; in fact, it is easy
to derive examples where the application of this method would
require more than one pass of the repeat loop. For instance, con-
sider the situation in Figure 2, where the solid lines show the ini-
tial time spans,[Tstart; Tend], for switching events of three wires
that have a spatial overlap. According to the heuristic, the value
of Tend for wires a and b will first be updated during the forward
pass, as shown by the dotted lines a-b, as theTend value of wire
b plus the delay due to coupling. However, when wire b is pro-
cessed, it is seen that theTend values of wires b and c are updated
due to wire c, which necessitates another update to theTend of
wire a, shown by the dotted line a-(b-c), since theTend value for
b that was used earlier was incorrect.

a-b a-(b-c)

a-b b-c

b-c

wire a

wire b

wire c

Figure 2: An example showing that the left-edge ordering is
heuristic and not optimal.

4 Optimized Channel Routing
The channel routing problem is to determine an assignments

of nets to tracks in the channel with the aim of satisfying one or
multiple objectives. The most commonly used objective in the
past has been to minimize the number of tracks in the channel.
The locations of pins on the top and bottom of the channel are
fixed, and the nets are required to connect two or more pins at
either end of the channel. In the final routing solution, all nets are
required to satisfy two types of constraints [9]:
(1) horizontal constraints: two nets whose horizontal spans over-
lap must not occupy the same track, and
(2) vertical constraints: a net that is connected to a pin at the top

of the channel must lie above another net that is connected to a
pin at the bottom of the channel, in the same column.

n1

n2 n3

n4 n4

n3n2

n1

(a) (b)

Figure 3: Two permuted channel routing solutions.

The process of exchanging tracks in a routed channel can re-
duce the crosstalk in a channel. In the simple example in Fig-
ure 3(a), if the first two tracks are exchanged, as shown in Fig-
ure 3(b), the crosstalk in the channel would be “reduced”; the
procedure in [1] would produce such a solution. However, if the
focus is on timing-critical nets, and if net n1 in the uppermost
track of the initial routing is the most timing critical, it may be
better to leave it in its current position, as against moving it to the
second track, where it would have crosstalk interactions with a
larger number of nets.

The algorithm for optimizing the channel routing solution for
crosstalk effects uses a simulated annealing engine. The simu-
lated annealing algorithm [12] is a well-known procedure and we
will only outline the salient features of the method.

Thecost function is chosen to be a weighted sum of the max-
imum delay of each net; in our implementation, all weights were
chosen to be 1, but these may be adjusted appropriately to assign
a larger weight for more critical nets, if desired, or any alternative
cost function. The calculation ofTend proceeds according to the
algorithm described in Section 3.

A moveconsists of an exchange of a set of nets between two
tracks. These nets are chosen so that they are contiguous within
the track, and the number of such contiguous nets is chosen ran-
domly. For example, in Figure 3(a), some possible moves are:
(a) moving net n2 to the first track and n1 to the second
(b) moving nets n2 and n3 to the first track and n1 to the second
track
An example of an unallowable move is exchanging the positions
of nets n1 and n4, since this would violate a vertical constraint.
All moves are performed in such a way that the feasibility of the
routing solution is maintained. In other words, no move is permit-
ted to violate a horizontal or a vertical constraint. Moreover, the
number of tracks in the routing solution is maintained. Therefore,
this method may be used as a fine-tuning step after the height of
the channel has been minimized.

The simulated annealing procedure proceeds according to a
cooling schedule for the temperature. At each temperature, a
number of moves are attempted, with cost-reducing moves being
accepted and cost-increasing move being accepted probabilisti-
cally according to the Metropolis function.

5 Experimental Results
The algorithm to minimize the objective function by reorder-

ing, subject to horizontal and vertical constraints, was imple-
mented in C and executed on a Sparc Ultra 1/170 workstation.
In our implementation, we assumed that the rise times are equal
to the fall times, but this is not essential, and the procedure can
be extended easily to handle rise and fall transitions separately.

A summary of the results is shown in Table 2 for 0.25�m tech-
nology parameters. The algorithm was used to reorder eight dif-
ferent examples, keeping the number of tracks the same as that
in the original solution that was obtained from a Yoshimura and

Table 2: Results of Channel Reordering on Timing
Improv. CPU Improv. Improv. over

nets over init. Time over init. worst case
(estimated) (SPICE) (SPICE)

yk1 21 20.9% 9s 9.7% 15.6%
yk3a 45 12.2% 22s 3.9% 7.1%
yk3b 47 14.4% 68s 5.9% 14.0%
yk3c 54 12.5% 66s 4.2% 10.6%
yk4b 54 17.4% 87s 11.4% 17.3%
yk5 60 28.1% 101s 20.6% 36.6%
Deutsch1 72 35.2% 124s 34.6% 74.7%
Deutsch2 72 8.8% 201s 7.0% 9.6%

Kuh channel router [9] that optimizes the height of the channel.
The eight examples are taken from [9], with the last two exam-
ples being the routing of the Deutsch difficult example without
and with doglegs, respectively.

The second column of Table 2 shows the number of nets for
each example. The third column shows the improvement in the
objective function at the end of the simulated annealing run, as
compared to the objective function value in the original channel.
The CPU times for the run are shown in the next column.

The optimization was carried out on the basis of the Elmore
delay model, modeling the driver as a linear resistor. Due to
the well-known deficiencies of the Elmore model and the lim-
itations of the linear resistor model for a driver, we validated
the solution using SPICE, with a 0.25�m BSIM3 model for the
drivers and wired appropriately modeled using coupling capaci-
tances and capacitances to ground. The improvement provided by
the final solution over the initial solution according to this model
is shown in the last column of Table 2. It is seen that our opti-
mizer provides improvements in each case. Note that in the table,
Deutsch1 shows larger improvements than Deutsch2 since it uses
a larger number of tracks and has greater flexibility in reordering
for crosstalk reduction.

To obtain an idea of how much the optimal solution differs
from the worst solution, the simulated annealing algorithm was
executed again, this time with the objective ofmaximizingthe
objective function. At the end of this run, we have a reordered
channel where the effects of crosstalk correspond to the worst
possible scenario. The difference between this objective function
value and the objective function value obtained earlier provides
an idea of how much improvement is possible between the most
optimal and the least optimal channel routing solution. Note that
both of these solutions are valid solutions with the same num-
ber of tracks, and it is quite possible for a CAD tool that is not
crosstalk-conscious to come up with the worst-case solution. The
last column of Table 2 shows the improvement provided by the re-
sult of our technique over this worst-case solution, with the num-
bers corresponding to the results of SPICE simulations. These
figures make the case in favor of the use of crosstalk-conscious
criteria in routing.

Our claim of a linear number of updates in practice is validated
by the fact that the outer loop ofAlgorithm Update Switch-
ing Times is never invoked more than four times for all of the
circuits that we tried. Since the inner loops haveO(n) complex-
ity, the complexity is, in practice, dominated by theO(nlogn)
sorting process for the nets required by the ordering heuristic in
Section 3.3. For larger systems, a more approximate sorting pro-
cedure may be used to ease this bottleneck; in this work, the run
times were small enough that we did not need to resort to this.

6 Conclusion
A new provably polynomial time iterative procedure for deter-

mining the effect of crosstalk on delay has been proposed. From
the proof of Theorem 1, it can be seen that it is applicable un-
der any delay model where an increase in the effective coupling
capacitance causes an increase in the delay, and vice versa.

References
[1] T. Gao and C. L. Liu, “Minimum crosstalk channel routing,”

in Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design, pp. 692–696, 1993.

[2] K. Chaudhary, A. Onozawa, and E. S. Kuh, “A spacing al-
gorithm for performance enhancement and cross-talk reduc-
tion,” in Proceedings of the IEEE/ACM International Con-
ference on Computer-Aided Design, pp. 697–702, 1993.

[3] D. A. Kirkpatrick and A. L. Sangiovanni-Vincentelli,
“Techniques for crosstalk avoidance in the physical design
of high-performance digital systems,” inProceedings of the
IEEE/ACM International Conference on Computer-Aided
Design, pp. 616–619, 1994.

[4] A. Devgan, “Efficient coupled noise estimation for on-chip
interconnects,” inProceedings of the IEEE/ACM Interna-
tional Conference on Computer-Aided Design, pp. 147–151,
1997.

[5] K. Shepard, V. Narayanan, P. C. Elmendorf, and G. Zheng,
“GlobalHarmony: Coupled noise analysis for full-chip RC
interconnect networks,” inProceedings of the IEEE/ACM
International Conference on Computer-Aided Design,
pp. 139–146, 1997.

[6] P. D. Gross, R. Arunachalam, K. Rajagopal, and L. T. Pi-
leggi, “Determination of worst-case aggressor alignment for
delay calculation,” inProceedings of the IEEE/ACM Inter-
national Conference on Computer-Aided Design, pp. 212–
219, 1998.

[7] F. Dartu and L. T. Pileggi, “Calculating worst-case gate de-
lays due to dominant capacitance coupling,” inProceedings
of the ACM/IEEE Design Automation Conference, pp. 46–
51, 1997.

[8] J. Cong, “Challenges and opportunities for design innova-
tions in nanometer technologies,” tech. rep., Semiconductor
Research Corporation, Research Triangle Park, NC, 1997.

[9] T. Yoshimura and E. S. Kuh, “Efficient algorithms for chan-
nel routing,” IEEE Transactions on Computer-Aided De-
sign, vol. CAD-1, pp. 25–35, Jan. 1982.

[10] N. Sherwani,Algorithms for VLSI Physical Design Automa-
tion. Norwell, MA: Kluwer Academic Publishers, 1995.

[11] A. Tucker,Applied Combinatorics. New York, NY: Wiley
and Sons, 2nd ed., 1984.

[12] S. Kirkpatrick, C. Gelatt, Jr., and M. Vecchi, “Optimization
by simulated annealing,”Science, vol. 220, pp. 671–680,
May 1983.

