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Abstract—According to the conventional mixed-criticality
(MC) system model, low-criticality tasks are completely discarded
in high-criticality system mode. Allowing such loss of low-
criticality tasks is controversial and not obviously necessary.
We study how to achieve graceful degradation of low-criticality
tasks by continuing their executions with imprecise computing
or even precise computing if there is sufficient utilization slack.
Schedulability conditions under this Variable-Precision Mixed-
Criticality (VPMC) system model are investigated for partitioned
scheduling and fpEDF-VD scheduling. It is found that the two
scheduling methods in VMPC retain the same speedup factors as
in conventional MC systems. We develop a precision optimization
approach that maximizes precise computing of low-criticality
tasks through 0-1 knapsack formulation. Experiments are per-
formed through both software simulations and Linux prototyping
with consideration of overhead. The results show that schedu-
lability degradation caused by continuing low-criticality task
execution is often very small. The proposed precision optimization
can largely reduce computing errors compared to constantly
executing low-criticality tasks with imprecise computing in high-
criticality mode. The prototyping results indicate that partitioned
scheduling in VPMC outperforms the latest work based on fluid
model.

I. INTRODUCTION

Mixed-criticality system scheduling has attracted a great
deal of research attention in the past 10 years [1]–[6]. Its key
elements can be described through a dual-criticality system,
which starts with low-criticality mode. Once a high-criticality
job executes longer than its worst case execution time (WCET),
the system is switched to high-criticality mode, where high-
criticality tasks are treated with increased WCET and low-
criticality tasks are completely discarded. Such handling of
low-criticality tasks is controversial [6], [7]. One approach
to addressing this controversy is an elastic scheme [8], [9],
where low-criticality tasks are continued with extended period
in high-criticality mode. Another method is to reduce the prior-
ities of low-criticality tasks [9]. However, it is noticed [7] that
task period and priority are usually functional requirements
and cannot be easily changed.

A more viable approach to avoiding complete loss of low-
criticality tasks is making use of imprecise computing [9]–[12].
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Each low-criticality task can alternatively be executed with
imprecise computing, which causes inaccuracy in computing
results but costs relatively short execution time. When a system
is in high-criticality mode, low-criticality tasks can continue to
execute with imprecise computing instead of being dropped.
Such approach allows graceful degradation of low-criticality
tasks in high-criticality mode. This model is called Imprecise
Mixed-Criticality (IMC) system [11]. The concept of imprecise
computing appeared more than two decades ago [13]. Recently,
its realization has made a lot of progress [14] and its applica-
tion in mixed-criticality systems becomes more practical.

The schedulability conditions for several uniprocessor
scheduling algorithms in IMC are established [9]–[11]. When
deadline constraints are not tight, there is usually processor
utilization slack for low-criticality tasks to continue with even
precise computing. Based on this observation, the work of [12]
extends the fluid-based multiprocessor scheduling [15], [16] to
maximize precise computing of low-criticality tasks in high-
criticality mode. A mixed-criticality system with such treat-
ment of low-criticality tasks can be called Variable-Precision
Mixed-Criticality (VPMC) system. This is perhaps the only
published literature on VPMC and the only published work
considering graceful degradation of low-criticality tasks for
multiprocessor scheduling. Although the fluid-based schedul-
ing [15], [16] is optimal in theory, it cannot be implemented
with its original form on hardware as it depends on an
unrealistic assumption that each processor can be partitioned
into arbitrary fractions. MC-DP-Fair [15] is a practically imple-
mentable scheduling algorithm with schedulability equivalent
to the fluid-based scheduling. However, the work of [12] has
little discussion on MC-DP-Fair or the implementation issue,
and MC-DP-Fair can result in an excessive amount of context
switchings and hence a considerable overhead.

In this work, we study VPMC systems for some well-
known multiprocessor scheduling methods that have not been
well considered for the graceful degradation option yet.
These include partitioned scheduling, fpEDF-VD based global
scheduling [4] and MC-DP-Fair scheduling. The schedulability
conditions of these methods are extended for considering low-
criticality task executions in high-criticality mode. We found
that the speedup factors of partitioned scheduling and fpEDF-
VD are the same as before when they are applied in VPMC. We
develop a precision optimization technique that maximizes pre-
cise computing of low-criticality tasks in high-criticality mode.
This optimization is through formulation of 0-1 knapsack
problem, which is optimally solved by dynamic programming.
The proposed techniques are evaluated with both software sim-
ulation and Linux prototyping with consideration of overhead
on context switching, execution monitoring and mode changes.
Since continuing low-criticality tasks stresses processors more



than dropping them, it is important to validate in a realistic
setup [17]. The results show that the schedulability degradation
due to continuing low-criticality tasks is often very small. In
addition, VPMC systems with our precision optimization lead
to significantly smaller errors than IMC systems. Although the
fluid-based VPMC system [12] has the best schedulability in
theory, it is outperformed by partitioned scheduling when the
overhead is considered.

The contributions of this work include:
• To the best of our knowledge, this is the first extensive

study of IMC and VPMC systems on multiprocessors
for several well-known scheduling approaches includ-
ing partitioned, fpEDF-VD and MC-DP-Fair schedul-
ing. The study covers schedulability analysis for these
methods. We also show that the speedup factors of
partitioned scheduling and fpEDF-VD scheduling are
not changed in the VPMC model.

• An offline precision optimization technique is pro-
posed to minimize errors from using imprecise com-
puting by low-criticality tasks subject to schedulability
constraints. This optimization can be optimally solved
by dynamic programming.

• To the best of our knowledge, this is the first study
of IMC, VPMC and their computing errors with
consideration of overhead. This work includes the
first prototyping implementation of VPMC in contrast
to only software simulations in the related previous
works [10]–[12].

II. RELATED WORK

There are only a few studies on imprecise computing of
low-criticality tasks in mixed-criticality systems. Most of them
are built upon scheduling methods derived for the conventional
MC model. One early work is [9], which is an extension of
adaptive mixed-criticality scheduling [18]. Since this work also
covers the other two approaches, reducing the priorities or
increasing the periods of low-criticality tasks, its discussion
on imprecise computing is restricted to response time analysis.
Later, a mixed-criticality scheduling work dedicated to the
imprecise computing model is introduced in [10]. This is a
uniprocessor scheduling based on the fluid model [15], [16]
and the algorithm is proved to have speedup factor of 4

3 .
Another uniprocessor scheduling considering imprecise com-
puting for low criticality tasks is [11], which is an extension
to EDF-VD (Virtual Deadline) scheduling [2]. It derives a
sufficient condition and speedup factor for allowing imprecise
computing of low-criticality tasks under EDF-VD. All these
works [9]–[11] execute low-criticality tasks with imprecise
computing in high-criticality mode. By contrast, the latest
work [12] allows some low-criticality tasks to be executed with
full precision in high-criticality mode. It formulates an integer
linear programming to decide which low-criticality tasks can
continue with precise computing. Like [10], this work is also
based on the fluid model and is applied with multiprocessors.
The goal of [12] is very close to our work - maximizing precise
computing of low-criticality tasks on multiprocessors. The key
difference is that [12] is more focused on theoretical conditions
while our work emphasizes more on practical realizations.
Moreover, we study IMC and VPMC for other well-known
multiprocessor scheduling techniques that have not been in-
vestigated before. Although fluid-based scheduling is theoret-
ically very competitive, it cannot be directly implemented on
hardware due to its restrictive assumption. Compared to [12],
whose validation is by only software simulation, our work

contains Linux prototyping validation that considers various
overheads.

III. IMPRECISE MC AND VARIABLE-PRECISION MC
SYSTEM MODEL

The system contains a set of independent sporadic tasks
T = {τ1, τ2, ...} with implicit deadlines. Each task τi is
composed by an infinite sequence of jobs {J1

i , J
2
i , ...}, and is

characterized by (Ti, χi, C
LO
i , CHIi ) where Ti is the minimal

time interval between two consecutive jobs of task τi, χi is
the criticality level and Ci is the execution time. If job Jji is
released at time rji , its deadline is rji + Ti. In this work, we
consider dual-criticality system model, which is justified in
[5]. Then, the task set T is composed by two disjoint subsets
of low-criticality tasks Tlo and high-criticality tasks Thi, and
χi ∈ {lo, hi} indicates if task τi has low or high-criticality.
Also, CLOi and CHIi indicate the execution time at low and
high system criticality mode, respectively, and are based on
the Worst Case Execution Time (WCET).

A such system starts with low-criticality mode. Once the
execution time of a high criticality job Jji exceeds its CLOi , the
system is switched to high-criticality mode. If χi = hi, CHIi >
CLOi . In other words, high-criticality tasks are budgeted with
more execution time in high-criticality mode. So far, the model
has no fundamental difference from the conventional one [1],
[6]. The key difference lies in the treatment of low-criticality
tasks in high-criticality mode. We list related schemes below.

1) Conventional MC system [1]–[6]: all low-criticality
tasks are discarded in high-criticality mode. As such,
CHIi for a low-criticality task is equivalent to zero.

2) Imprecise MC (IMC) system [10], [11]: a low-
criticality task τi has a precise computing realization
with execution time Ĉi and an imprecise implemen-
tation with execution time C̃i < Ĉi. The works of
[10], [11] let CLOi = Ĉi and CHIi = C̃i, which
is a non-zero constant. When the system is switched
to high-criticality mode, if a low-criticality job has
executed longer than CHIi , it would be aborted for
this period, otherwise it would continue to execute
till CHIi .

3) Variable-Precision MC (VPMC) system [12]: for a
low-criticality task τi, CLOi = Ĉi and CHIi ∈
{Ĉi, C̃i} corresponds to a decision variable. Since
imprecise computing leads to errors, the objective of
VPMC is to minimize computing errors, or maximize
precise computing, for low-criticality tasks in high-
criticality mode.

Please note VPMC and IMC follow the same schedulability
condition for a scheduling method. When a schedulability
condition is satisfied, there may be some processor utilization
slack in high-criticality mode. IMC ignores the slack and
applies imprecise computing for all low-criticality tasks. In
contrast, VPMC attempts to utilize the slack in exchange for
reducing imprecise computing and associated errors.

For each task τi, its utilizations in low and high-criticality
mode are defined as

ULOi =
CLOi
Ti

, and UHIi =
CHIi
Ti

,

respectively. The total utilizations of all low-criticality tasks
are

ULOlo =
∑
χi=lo

ULOi and UHIlo =
∑
χi=lo

UHIi .



The total utilizations for high-criticality tasks are defined as
ULOhi =

∑
χi=hi

ULOi and UHIhi =
∑
χi=hi

UHIi .

Given m identical processors, a conventional scheduling is
to decide when to execute each job on which processor. We
consider preemptive scheduling, where a low-priority job can
be preempted by a high-priority job during its execution.

IV. BACKGROUND

In this section, we review some existing knowledge, upon
which our work is built.

A. Imprecise/Approximate Computing

Imprecise computing, which is also known as approximate
computing, is to intentionally allow small or occasional com-
puting errors such that either computing time or/and computing
power dissipation is reduced. It can be carried out at circuit,
architecture and algorithm levels for datapath or numerical
computations. Circuit level approximation is mostly focused
on imprecise arithmetic circuit designs [14], [19] or voltage
overscaling [20]. The overscaling [20] and some dedicated
designs [21] make computing accuracy runtime configurable.
Algorithm level imprecise computing is not an explicitly
named discipline although approximation widely exists in
algorithm designs. As an example, algorithmic approximation
can be realized by relaxing the convergence criterion in itera-
tive algorithms. Overall, the substantial progress [14] on im-
precise/approximate computing has made runtime computing
precision reconfiguration feasible.

B. IMC System Scheduling on Uniprocessor

The imprecise mixed-criticality (IMC) scheduling on
uniprocessor [11] is based on EDF-VD (Earliest Deadline First
with Virtual Deadlines) [2]. In EDF-VD, the implicit deadlines
of all high-criticality tasks are scaled by a factor x. That is,
for each high-criticality task τi, its virtual implicit deadline
is T̂i = x · Ti. The sufficient schedulability condition in low-
criticality mode is given by the following theorem.

Theorem 1. (Theorem 1 in [2]) If the following condition
is satisfied, sporadic task set T is schedulable with EDF-VD
method on uniprocessor in low-criticality mode.

ULOlo +
ULOhi
x

≤ 1 (1)

The scaling factor x can be decided by x = ULOhi /(1 −
ULOlo ). In high-criticality mode, the method of [11] continues
to execute low-criticality tasks with imprecise computing, and
derives the following sufficient schedulability condition.

Theorem 2. (Theorem 2 in [11]) If the following condition
is satisfied, sporadic task set T is schedulable with EDF-VD
method on uniprocessor in high-criticality mode.

xULOlo + (1 − x)UHIlo + UHIhi ≤ 1 (2)

Theorem 3. (Theorem 3 in [11]) Given a task set, if ULO
hi

1−ULO
lo

≤
1−(UHI

hi +UHI
lo )

ULO
lo −U

HI
lo

, where UHIhi + UHIlo < 1 and ULOlo < 1 and
ULOlo > UHIlo , then this task set can be scheduled by EDF-VD
with a deadline scaling factor x chosen in the following range

x ∈ [
ULOhi

1− ULOlo
,

1− (UHIhi + UHIlo )

ULOlo − UHIlo

] (3)

C. Partitioned Scheduling on Multiprocessors

In this approach [4], n = |T | tasks are partitioned onto m
unit-speed processors. After the partitioning, each task is never
changed to another processor. As such, there is a fixed subset
of tasks on each processor. Then, uniprocessor scheduling
methods can be applied to each processor individually. In [4],
a 2-phase task partitioning algorithm is described. In phase
1, high-criticality tasks are assigned to each processor one by
one as long as the high-criticality utilization UHIhi for each
processor does not exceed 3

4 . In phase 2, low-criticality tasks
are further assigned to processors one by one following the
condition that the low-criticality utilization ULOlo + ULOhi is
no greater than 3

4 . Alternatively, one can follow a different
order of task assignment, which is applied with the same
schedulability check. This order is obtained by sorting with
non-increasing utilization (ULOi for low-critical tasks and UHIi
for high-critical tasks) regardless task criticality. It is shown
in [22] that this alternative order never sacrifices overall
schedulability and sometimes improves schedulability.

D. Global Scheduling by fpEDF-VD on Multiprocessors

In global scheduling, jobs of the same task can be executed
on different processors. One global scheduling method is
fpEDF (fixed-priority EDF) [23], where the priority of each
job cannot be changed during its execution. For a system with
m unit-speed processors, fpEDF sets at most m−1 tasks with
utilization greater than 1

2 to have the highest priority and the
priorities of the other tasks follow the EDF (Earliest Deadline
First) principle. Based on [23], the schedulability condition of
fpEDF is described as follows.

Lemma 1. Given a task set T and m unit-speed processors,
assume a subset Thp have been assigned with the highest
priority and allocated to mhp = |Thp| processors by fpEDF,
then mEDF = m − mhp is the number of processors for
the remaining tasks TEDF , whose priority follows EDF. Let
U totalEDF and UmaxEDF denote the total utilization and the maximum
utilization of tasks in TEDF . If U totalEDF ≤ mEDF − (mEDF −
1) · UmaxEDF , this task set is schedulable by fpEDF.

In [4], fpEDF is extended to mixed-criticality scheduling
as follows. In low-criticality mode, each low-criticality task
τi is treated with (Ti, C

LO
i ) and each high-criticality task τk

is regarded as (T̂k, C
LO
k ), where T̂k is the virtual implicit

deadline decided by T̂k = x · Tk as in EDF-VD. In high-
criticality mode, all low-criticality tasks are dropped and
each high-criticality task τk is processed as (Tk − T̂k, CHIk ).
Lemma 1 continues to hold for fpEDF-VD scheduling [4]. The
schedulability condition for fpEDF-VD method is that both
task systems (

⋃
χi=lo

(Ti, C
LO
i ))

⋃
(
⋃
χi=hi

(x ∗ Ti, CLOi ))

and
⋃
χi=hi

((1− x) ∗ Ti, CHIi ) are each (separately) schedu-
lable on m processors by fpEDF.

E. MC-DP-Fair Scheduling on Multiprocessors

DP (Deadline Partition) Fair [24] is a scheduling method
for multiprocessor real-time system without mixed-criticality.
Each task τi is defined with a density δi = Ci

Ti
, where Ci

is its WCET and Ti is its period. Time is divided into slices
by deadline partitions, each of which is a distinct job release
time or deadline. A time slice is a time interval between two
consecutive partitions. If the length of a time slice is l, DP-Fair
executes δi ·l amount of task τi in this slice. The schedulability
condition of DP-Fair is specified as follows.



Theorem 4. (Lemma 14 in [15]) A non-MC task set T is
schedulable under DP-Fair iff

∑
τi∈T δi ≤ m, where m is the

number of processors.

MC-DP-Fair [15] is an extension of DP-Fair for mixed-
criticality systems. A main change is that each task τi is
assigned a virtual deadline 0 < Vi ≤ Ti. Let Γ be the earliest
deadline partition after a system is switched to high-criticality
mode. The virtual deadlines and the original deadlines are en-
forced before and after Γ, respectively. By carefully choosing
the values of virtual deadlines, MC-DP-Fair has schedulability
equivalent to MC-Fluid [15], which is speedup-optimal for
dual-criticality scheduling [16].

V. VPMC SYSTEM SCHEDULING ON MULTIPROCESSORS

Since VPMC and IMC systems follow the same schedu-
lability conditions, we sometimes mention only one of them
when a description is applicable for both kinds of models.
Their difference is on how to exploit different computing preci-
sions under the same schedulability constraints. The scheduling
methods can be applied with different error models and almost
any kind of imprecise computing techniques.

A. Partitioned Scheduling

1) VPMC Partitioning with EDF-VD Scheduling: For
EDF-VD on uniprocessor VPMC systems, we introduce a
sufficient schedulability condition that has a form similar to
that in conventional MC systems.

Lemma 2. If a task set in VPMC system satisfies the condition
max(ULOlo + ULOhi , U

HI
lo + UHIhi ) ≤ 3

4 , it is schedulable by
EDF-VD on uniprocessor.

Proof: According to Lemma 2 in [11], if max(b +

αc, λb + c) ≤ S(α, λ), then αc
1−b ≤

1−(c+λb)
b−λb , where

UHIhi = c, ULOhi = αc, ULOlo = b, UHIlo = λb and
S(α, λ) = (1−αλ)((2−αλ−α)+(λ−1)

√
4α−3α2)

2(1−α)(αλ−αλ2−α+1) . Based on The-
orem 4 in [11], S(α, λ) ≥ 3

4 . As such, if max(ULOlo +

ULOhi , U
HI
lo + UHIhi ) ≤ 3

4 , then ULO
hi

1−ULO
lo

≤ 1−(UHI
hi +UHI

lo )

ULO
lo −U

HI
lo

,
which is the sufficient schedulability condition for EDF-VD
according to Theorem 3.

In this method, the given tasks are first partitioned onto
m unit-speed processors in the same order as that described
in Section IV-C. When a task is assigned to a processor, the
schedulability check is based on Lemma 2 instead of the
conventional approach [4]. This change is to accommodate
the IMC/VPMC model. This partitioning method is called
VPMC partitioning. After the partitioning, the tasks on each
processor are scheduled in the same way as EDF-VD under the
IMC model [11] (Section IV-B). Under the same schedulability
constraints, VPMC further allows some low-criticality task to
execute with full precision in high-criticality mode.

Lemma 3. If the VPMC partitioning is successfully completed,
all tasks on each processor are schedulable using EDF-VD
method.

Proof: Each time a task is assigned to a processor in the
VPMC partitioning, the schedulability condition specified by
Lemma 2 is satisfied. If VPMC partitioning is successfully
completed, the tasks on each processor satisfy the schedula-
bility condition of Lemma 2 and therefore are schedulable by
EDF-VD.

It is shown in [4] that the partitioned scheduling of conven-
tional MC model can achieve speedup factor of 8m−4

3m for m
unit-speed processors. We show that the same speedup factor
can be achieved for IMC/VPMC model through a proof similar
to [4].

Theorem 5. The speedup factor for VPMC partitioning with
EDF-VD scheduling on m unit-speed processors is 8m−4

3m .

Proof: Suppose i−1 tasks have been successfully assigned
and we are attempting to assign the ith task τi onto a processor
during the partitioning. Let τ(pk) denote the set of tasks that
have been successfully assigned to processor pk, 1 ≤ k ≤ m.
If the assignment of τi fails according to the schedulability
check, then at least one of the following two inequalities must
hold.

ULOi +
∑

τj∈τ(pk)

ULOj >
3

4
(4)

UHIi +
∑

τj∈τ(pk)

UHIj >
3

4
(5)

We can sum up inequality (4) for all the m processors to get∑i−1
j=1 U

LO
j >

(
3
4 − U

LO
i

)
m⇔

∑i
j=1 U

LO
j > ( 3

4−U
LO
i )m+

ULOi , from which we can conclude

ULOlo + ULOhi >

(
3

4
− ULOi

)
m+ ULOi (6)

Similarly, we can sum up inequality (5) for all the m proces-
sors to obtain

UHIlo + UHIhi >

(
3

4
− UHIi

)
m+ UHIi (7)

If this task set can be scheduled by an optimal scheduling
algorithm on m processors of speed s, we have ULOi ≤
s, UHIi ≤ s, ULOlo + ULOhi ≤ m · s and UHIlo + UHIhi ≤ m · s.

If inequality (6) holds, ULOlo +ULOhi > ( 3
4−U

LO
i )m+ULOi

⇔ m · s > 3
4m − (m − 1)s ⇔ s > 3m

8m−4 . Likewise we can
obtain s > 3m

8m−4 if inequality (7) holds. If s ≤ 3m
8m−4 , this task

set can be scheduled by the partitioning followed by EDF-VD
on m unit-speed processors. Therefore, the speedup factor of
the VPMC partitioning with EDF-VD is 8m−4

3m .

2) Enhanced VPMC Partitioning: We introduce two tech-
niques to enhance the VPMC partitioning described in Sec-
tion V-A1. The first improvement is to change the schedula-
bility check in the partitioning from Lemma 2 to Theorem 3.
From the proof of Lemma 2, we can tell the schedulability
condition in Lemma 2 is sufficient for the schedulability
condition in Theorem 3. We use an example to demonstrate
that the Lemma 2 condition is not necessary for the Theorem 3
condition. The characteristics of this example task set are
shown in Table I. If the partitioning is based on Lemma 2, τ1
and τ2 are first assigned to processor p1 and p2, respectively.
When we try to assign τ3 to processor p1, max(ULOlo +
ULOhi , U

HI
lo + UHIhi ) = 0.9 > 0.75. Alternatively, when we try

to assign τ3 to processor p2, max(ULOlo +ULOhi , U
HI
lo +UHIhi ) =

0.8 > 0.75. Hence, the assignment for τ3 fails for both p1 and
p2 according to Lemma 2. However, the assignment of τ3 to
p2 satisfies the schedulability condition in Theorem 3 since
ULO

hi

1−ULO
lo

= 3
5 ≤

1−(UHI
hi +UHI

lo )

ULO
lo −U

HI
lo

= 2
3 . Thus, the condition in

Lemma 2 is more conservative than Theorem 3 and applying
Theorem 3 can identify more schedulable task sets.

The second enhancement technique is to balance the uti-
lizations of each processor between the two different criticality
modes. More specifically, we attempt to make the difference



TABLE I. SCHEDULING ON 2 UNIT-SPEED PROCESSORS.

Task χi ULO
i UHI

i
τ1 hi 0.4 0.7
τ2 hi 0.3 0.6
τ3 lo 0.5 0.2

between ULOlo + ULOhi and UHIlo + UHIhi on each processor as
small as possible. The intuition is that a small difference or
balanced utilization can avoid one criticality mode being a
bottleneck of the whole system. This is inspired by the work
on conventional MC systems [22], but applies to IMC/VPMC
systems as well. Each time a task τi is to be assigned to a
processor, all the processors are sorted in non-decreasing order
of UHIlo + UHIhi − ULOlo − ULOhi and indexed from 1 to m. If
χi = hi, the attempts of assigning τi to a processor are in the
order from 1 to m. Otherwise, the attempts follow the order
from m to 1.

Lemma 4. If the enhanced VPMC partitioning is successfully
completed, all tasks on each processor are schedulable with
EDF-VD scheduling.

Proof: A successful assignment of tasks to a processor
indicates the satisfaction of the condition in Theorem 3, which
is a sufficient schedulability condition for EDF-VD.

Lemma 5. The speedup factor for the enhanced partitioning
with EDF-VD scheduling is no greater than 8m−4

3m .

Proof: Since the condition of Lemma 2 is sufficient
condition for the condition in Theorem 3, a failure of the
enhanced partitioning, which implies violation of the condition
in Theorem 3, indicates violation of the condition of Lemma 2,
i.e., either inequality (4) or inequality (5) holds. Then, one can
follow the same proof as Theorem 5 to show that the speedup
factor is no greater than 8m−4

3m .

B. Global Scheduling by fpEDF-VD

1) Extension of fpEDF-VD for IMC and VPMC: When
fpEDF-VD scheduling, which is briefly reviewed in Sec-
tion IV-D, is applied with IMC/VPMC, the main change is
that CHIi for each low-criticality task τi is no longer 0.
This execution time change causes utilization change in high-
criticality mode.

The tricky part is the transition from low-criticality mode
to high-criticality mode. Let thi be the moment when the
system enters high-criticality mode. We define dHI as the
earliest deadline (virtual deadline for high-criticality tasks)
among all jobs that are active right after thi. We further
define rHI to be the earliest release time among jobs released
after thi. We call tHI = min(dHI , rHI) the critical moment.
After the critical moment, the schedulability check of high-
criticality mode can be applied without ambiguity. However,
the transition time interval from thi to tHI needs special
consideration for IMC/VPMC systems. During the transition
interval, there can exist carry-over jobs, which are jobs that
are released before thi and have not been completed at thi.
By the EDF-VD algorithm design, high-criticality carry-over
jobs can be guaranteed to complete before their deadlines if
the schedulability check is passed. If a low-criticality carry-
over job Jji has already executed at least C̃i amount of time
at thi, we take its imprecise computing result [13] and quit this
job. If Jji has executed less than C̃i, we continue it till tHI
and then quit. By disallowing low-criticality carry-over jobs
after tHI , the schedulability of all high-criticality jobs can be

maintained. In the worst case, a low-criticality task may lose
its job once during the transition interval.

The schedulability condition for our
fpEDF-VD method is that both task systems
(
⋃
χi=lo

(Ti, C
LO
i ))

⋃
(
⋃
χi=hi

(x ∗ Ti, CLOi )) and
(
⋃
χi=lo

(Ti, C
HI
i ))

⋃
(
⋃
χi=hi

((1− x) ∗ Ti, CHIi )) are
each (separately) schedulable on m processors by fpEDF (for
low-criticality tasks, CHIi = C̃i). The schedulability condition
of fpEDF is Lemma 1 in Section IV-D.

Lemma 6. If a task set satisfies ULO
hi

1−ULO
lo /s

+
UHI

hi

1−UHI
lo /s

≤ s,
then it is schedulable using our fpEDF-VD method on a speed
s processor.

Proof: fpEDF reduces to regular EDF on single proces-
sor [23]. If a task set satisfies ULOlo +

ULO
hi

x ≤ s, or equivalently

x ≥ ULOhi
s− ULOlo

(8)

task collection (
⋃
χi=lo

(Ti, C
LO
i ))

⋃
(
⋃
χi=hi

(x ∗ Ti, CLOi ))
is schedulable using EDF on a speed s processor.

If the task set satisfies UHIlo +
UHI

hi

1−x ≤ s, or equivalently

x ≤ 1− UHIhi

s− UHIlo

(9)

task collection (
⋃
χi=lo

(Ti, C
HI
i ))

⋃
(
⋃
χi=hi

(Ti − x ∗ Ti, CHIi ))
is schedulable using EDF on a speed s processor.

We can prove this lemma when combining inequality (8)
and inequality (9).

Lemma 7. If a task set satisfies max(ULOlo + ULOhi , U
HI
lo +

UHIhi ) ≤ s, then it is schedulable by our fpEDF-VD method
on a speed ks processor , where k =

√
5+1
2 .

Proof: If a task set satisfies ULOlo +UHIhi ≤ ks, we know
that it is schedulable on a speed ks processor, if not we need
to show that (from Lemma 6),

ULO
hi

1−ULO
lo /ks

+
UHI

hi

1−UHI
lo /ks

≤ ks, or equivalently,

ks(ULOlo +ULOhi )+ks(UHIlo +UHIhi )−ULOlo (UHIlo +UHIhi )−
ULOhi U

HI
lo ≤ (ks)2

From max(ULOlo +ULOhi , U
HI
lo +UHIhi ) ≤ s, we have ULOlo +

ULOhi ≤ s, UHIlo + UHIhi ≤ s, and from ULOlo + UHIhi > ks, we
have ULOlo > ks− UHIhi > ks− s, then

ks(ULOlo +ULOhi )+ks(UHIlo +UHIhi )−ULOlo (UHIlo +UHIhi )−
ULOhi U

HI
lo < 2ks2 − (k − 1)s2 = (k + 1)s2 = (ks)2, because

k + 1 =
√
5+3
2 = k2.

Corollary 1. (Corollary 1 in [3]) If a task set cannot be
scheduled by algorithm fpEDF on m unit-speed processors,
then it cannot be scheduled by preemptive uniprocessor EDF
on a processor of speed (m+1)/2.

From Lemma 7 and Corollary 1, we can have Corollary 2
as in [4],

Corollary 2. If a task set satisfies max(ULOlo +ULOhi , U
HI
lo +

UHIhi ) ≤ m, then it is schedulable by our fpEDF-VD method
on m speed (

√
5 + 1) processors.

Corollary 3. Any task set that can be scheduled by an optimal
clairvoyant scheduling algorithm on m unit speed processors



can be scheduled by our fpEDF-VD method on m speed (
√

5+
1) processors.

Proof: If a task set can be scheduled by an optimal
clairvoyant scheduling algorithm on m unit speed processors,
it is necessary that ULOlo + ULOhi ≤ m and UHIlo + UHIhi ≤ m,
then this task set is schedulable by our fpEDF-VD method on
m speed (

√
5 + 1) processors from Corollary 2.

From Corollary 3, we can show that our fpEDF-VD method
for IMC/VPMC has the speedup factor of (

√
5 + 1), which is

the same as the fpEDF-VD scheduling of conventional MC
systems.

2) Dual Virtual-Deadlines for fpEDF (fpEDF-DVD):
As pointed in Section V-B1, a direct extension of fpEDF-
VD to IMC/VPMC model may result in one-time job
abandonment for a low-criticality task during the transition
from low-criticality to high-criticality mode. To avoid this
loss, we propose to apply the virtual-deadline technique for
low-criticality tasks in addition to high-criticality tasks. More
specifically, each low-criticality task τi has deadlines y ·Ti and
(1− y) ·Ti for low-criticality mode and high-criticality mode,
respectively, where y is a scaling factor between 0 and 1. The
value of y is found by sweeping between 0 and 1 and selecting
the one that satisfies schedulability conditions (both task
systems (

⋃
χi=lo

(y ∗ Ti, CLOi ))
⋃

(
⋃
χi=hi

(x ∗ Ti, CLOi )) and
(
⋃
χi=lo

((1− y) ∗ Ti, CHIi ))
⋃

(
⋃
χi=hi

((1− x) ∗ Ti, CHIi ))
are each (separately) schedulable on m processors by
fpEDF). This method is called fpEDF-DVD (fpEDF with dual
virtual-deadlines).

Theorem 6. If the virtual deadline based utilization of all tasks
satisfy schedulability conditions in both low-criticality and
high-criticality mode, the fpEDF-DVD scheduling guarantees
all job completions before their deadlines and no job is
abandoned.

Proof: If the schedulability conditions are satisfied, all
tasks are evidently schedulable by fpEDF in low-criticality
mode and high-criticality mode. Special attention needs to be
paid to carry-over jobs, which are released before the moment
thi entering high-criticality mode and have not been completed
at thi. Then, the low-criticality mode virtual-deadline for each
carry-over job must be after thi. The virtual-deadlines partition
a task period into low-criticality mode portion, which are
x · Ti and y · Ti, and high-criticality mode portion, which are
(1 − x) · Ti and (1 − y) · Ti, respectively. For the carry-over
jobs, one can treat their low-criticality mode virtual-deadlines
as their high-criticality mode release times, which are after
thi. As the schedulability conditions are satisfied, even if the
carry-over jobs start execution at their low-criticality virtual-
deadlines, they are all schedulable for completion by their
actual deadlines.

C. Extension of MC-DP-Fair Scheduling for IMC and VPMC
Systems

MC-DP-Fair is one realization of the fluid-based schedul-
ing [15], which is not directly implementable by itself. Fluid-
based scheduling associating Quality of service for low critical
tasks has been studied for VPMC in [12] and the method is
called MCFQ, however, MC-DP-Fair scheduling for VPMC is
barely discussed in [12]. Here, we show how to extend MC-
DP-Fair scheduling to VPMC-DP-Fair scheduling. In DP-Fair
scheduling, an important concept is task density δi for task
τi, which is usually equal to Ci

Ti
with a few exceptions. Fluid-

based scheduling uses another concept, execution rate θi for

τi, which is the fraction of a unit-speed processor allocated for
executing τi.

For a low-critical task τi in VPMC-DP-Fair, δLOi = θLOi =
ULOi and δHIi = θHIi = UHIi , where the superscripts
LO and HI indicate low-criticality and high-criticality mode,
respectively. Its virtual deadline Vi = Ti. Please note δHIi = 0
in MC-DP-Fair. Let wi be the length of time interval from job
release time of τi to Γ, which is the earliest deadline partition
after the system enters high-criticality mode.

Lemma 8. In VPMC-DP-Fair scheduling, a low-criticality
carry-over job of τi can be executed for at least C̃i time, where
C̃i is the execution time of imprecise implementation.

Proof: Let CTRi denote the actual execution time of a
carry-over job of τi.
CTRi = wi · δLOi + (Ti−wi)δHIi = wi ·ULOi + (Ti−wi)UHIi

≥ wi · UHIi + (Ti − wi)UHIi = Ti · UHIi = C̃i

For a high-criticality task τi, δLOi = θLOi , which is proved
to be no greater than UHIi [12], and virtual deadline Vi =
CLOi /θLOi . Its density in high-criticality mode is specified
by [15]

δHIi =
CHIi − δLOi · wi

Ti − wi
. (10)

Lemma 9. Given a task set that is deemed to be schedulable by
MCFQ [12], if it is scheduled by VPMC-DP-Fair, then δLOi ≤
θLOi and δHIi ≤ θHIi for each task τi.

Proof: For each task τi, we have δLOi = θLOi . For each
low-criticality task τi, we have δHIi = θHIi . For each high-
criticality task τi, since δHIi is a variable depending on wi
according to Equation (10), we need to show that the maximum
value of δHIi is no greater than θHIi . Consider the derivative
of δHIi with respect to wi

dδHIi
dwi

=
CHIi − δLOi · Ti

(Ti − wi)2
=

UHIi − δLOi
Ti · (Ti − wi)2

. (11)

Since δLOi = θLOi ≤ UHIi [12], the derivative is non-negative
and the function of Equation (10) is monotonically increasing.
By definition, we know wi ≤ Vi. Thus, δHIi has the maximum
value when wi = Vi,

δHIi,max =
UHIi − ULOi

1− ULOi /θLOi
(12)

In MCFQ [12], θHIi =
UHI

i −ULO
i

1−ULO
i /θLO

i
, which is equal to δHIi,max,

then we have δHIi ≤ θHIi for high-criticality tasks.

Lemma 10. Given a task set that is deemed to be schedulable
by MCFQ, it is schedulable by VPMC-DP-Fair.

Proof: Given a task set that is deemed to be schedulable
by MCFQ, we have

∑
τi∈T θ

LO
i ≤ m and

∑
τi∈T θ

HI
i ≤

m, then we have
∑
τi∈T δ

LO
i ≤

∑
τi∈T θ

LO
i ≤ m and∑

τi∈T δ
HI
i ≤

∑
τi∈T θ

HI
i ≤ m from Lemma 9. Hence,

low-criticality mode schedulability and high-criticality mode
schedulability by Theorem 4 are satisfied and the task set is
schedulable by VPMC-DP-Fair.

VI. PRECISION OPTIMIZATION FOR VPMC SYSTEMS

A. Optimization Kernel

Under the VPMC model, there can be utilization slack for
some processors when schedulability conditions are satisfied.



The slack allows some low-criticality tasks to be executed
with precise computing in high-criticality mode while the
schedulability conditions are still satisfied. For a low-criticality
task τi, the error of its imprecise computing is denoted by
ei. The error of a low-criticality task τi execution in high-
criticality mode is denoted by eHIi , which is equal to ei if it is
executed with imprecise computing and otherwise 0. If each
task τi has a weighting factor ηi indicating its importance, the
precision optimization problem is stated as follows.

Problem 1. Given a set of independent sporadic tasks T =
{τ1, τ2, ...} in VPMC model and a scheduling method S,
decide if each low-criticality task τi is executed with precise
or imprecise computing in high-criticality mode such that the
total weighted error

∑
χi=lo

ηi · eHIi is minimized while the
schedulability conditions for S are maintained.

For each low-criticality task τi, let ∆Ui denote the addi-
tional processor utilization when its execution is changed from
imprecise to precise computing and thus

∆Ui =
Ĉi − C̃i

Ti
. (13)

Let ŪHIlo denote the maximal possible UHIlo under the schedu-
lability constraint for a scheduling method. The utilization
slack Ψ for low-critical tasks in high-criticality mode is defined
as

Ψ = ŪHIlo − UHIlo (14)
Then, Problem 1 is essentially 0-1 knapsack problem. Let

zi be a binary decision variable for each low-criticality task
τi. When zi = 1, task τi is assigned to precise computing;
otherwise it is executed with imprecise computing in high-
criticality mode. The knapsack problem formulation is as
follows.

maximize
∑
χi=lo

ηi · ei · zi

subject to
∑
χi=lo

∆Ui · zi ≤ Ψ

zi ∈ {0, 1}, ∀τi ∈ Tlo

(15)

In this formulation, the objective is to maximize the error
reduction obtained from using precise computing compared
to IMC model. The 0-1 knapsack problem is a well-known
NP-complete problem. It can be optimally solved by dynamic
programming with pseudo-polynomial complexity.

B. Utilization Slack Estimation and Customization for Differ-
ent Scheduling Methods

1) Slack Estimation and Precision Optimization for Par-
titioned Scheduling: For partitioned scheduling, if ULOlo +
UHIhi ≤ 1, all tasks can be scheduled with EDF and all
low-criticality tasks can be executed with precise computing.
Hence, the slack estimation and precision optimization is
necessary only when ULOlo + UHIhi > 1. For both of the
partitioned scheduling methods introduced in section V-A,
utilization slack is estimated for individual processors. On each
processor, the maximal schedulable utilization ŪHIlo can be
derived according to Theorem 1 and Theorem 2.

Theorem 7. The utilization slack of a processor after the
VPMC partitioning is 1−ULO

lo −U
LO
hi ULO

lo −U
HI
hi +ULO

lo UHI
hi

1−ULO
lo −U

LO
hi

−UHIlo .

Proof: From inequality (1), we can find the range of the
scaling factor as

x ≥ ULOhi
1 − ULOlo

(16)

Further, we know from inequality (2) that

UHIlo ≤ 1 − xULOlo − UHIhi

1 − x
(17)

Taking derivative with respective to x on right-hand-side of
inequality (17), we have

1 − ULOlo − UHIhi

(1 − x)2
(18)

Since ULOlo +UHIhi > 1, the right-hand-side of inequality (17)
is a decreasing function with respect to x. Then, ŪHIlo can
be obtained by plugging RHS of inequality (16) into inequal-
ity (17):

ŪHIlo =
1− ULOlo − ULOhi ULOlo − UHIhi + ULOlo UHIhi

1− ULOlo − ULOhi
(19)

Therefore, the utilization slack is given by:

Ψ =
1− ULOlo − ULOhi ULOlo − UHIhi + ULOlo UHIhi

1− ULOlo − ULOhi
−UHIlo (20)

2) Slack Estimation and Precision Optimization for fpEDF-
VD Based Global Scheduling: Under fpEDF, a subset Thp ⊂ T
of tasks are designated with the highest priority and mhp =
|Thp| processors are allocated for them. Please note this
allocation is not static, i.e., the mhp processors at one time
may be different from the mhp processors at another time.
The other tasks TEDF = T − Thp follow EDF priority and
are executed on mEDF = m − mhp processors. Each low-
criticality task τi ∈ Thp can always execute with precise
computing in high-criticality mode, since an entire processor
is allocated to one task in Thp and this allocation is sufficient
for precise computing.

For the fpEDF-VD-VPMC method described in Sec-
tion V-B1, the utilization slack of TEDF is estimated by the
following statement according to Lemma 1.

Proposition 1. The utilization slack for TEDF on the mEDF

processors under fpEDF-VD-VPMC scheduling is mEDF −
(mEDF − 1) · UmaxEDF − U totalEDF , where UmaxEDF and U totalEDF are
the maximal task utilization and total utilization for TEDF ,
respectively.

This estimation can be applied with fpEDF-DVD-VPMC
method described in Section V-B2. However, the partition
of Thp and TEDF in Section V-B2 is different from that in
Section V-B1 due to the virtual-deadlines applied to low-
criticality tasks.

3) Utilization Slack Estimation for VPMC-DP-Fair
Scheduling: The utilization slack for VPMC-DP-Fair
Scheduling is estimated by Ψ = m−

∑
τi∈T θ

HI
i , where θHIi

is the execution rate of task τi in high-criticality mode, which
is computed according to [12].

VII. EXPERIMENTAL RESULTS

In our experiments, we evaluate the schedulability and
computing errors of the following methods through software
simulations and/or Linux prototyping:
• Partition-MC: Partitioned scheduling with the con-

ventional MC model [4]. Since this method does not
incorporate any approximations, its results are used to
provide a reference level for schedulability, but cannot
be used for comparing computing errors.

• Partition-VPMC: The partitioned scheduling method
in Section V-A1 with precision optimization.



• Partition-VPMC-E: Enhanced partitioned scheduling
(Section V-A2) with precision optimization.

• fpEDF-VD-MC: fpEDF-VD scheduling with the con-
ventional MC model [4]. Since this method drops all
low-criticality tasks in high-criticality mode, it is not
included for error analysis.

• fpEDF-VD-VPMC: fpEDF-VD scheduling (Sec-
tion V-B1) with precision optimization.

• fpEDF-DVD-VPMC: fpEDF dual virtual-deadline
method (Section V-B2), with precision optimization.

• Fluid-VPMC: The MCFQ method [12] with precision
optimization replaced by the dynamic programming
technique in Section VI. Since the fluid-based schedul-
ing is not directly implementable, this method is only
evaluated with software simulation, to conduct the
schedulability check and estimate error.

• VPMC-DP-Fair: The scheduling method described in
Section V-C with precision optimization. Since this
is an implementable realization of Fluid-VPMC, it is
evaluated only through Linux prototyping.

A. Simulation Setup and Results

The testcases are randomly generated as follows:
• For each task set, the probability of a task being low-

criticality (high-criticality) is 0.5.
• For a low-criticality (high-criticality) task τi, its

utilization in low-criticality (high-criticality) mode
ULOi (UHIi ) is randomly chosen within the interval,
[0.05, 0.9], under a uniform distribution.

• The period Ti of each task is randomly chosen from
a uniform distribution in [50, 500].

• For a low-criticality task τi, we set CLOi = Ĉi =
Ti · ULOi , C̃i = klo · Ĉi, where the scaling factor
klo is randomly chosen from a uniform distribution
in [Klo, 0.9], where Klo is a parameter.

• For a high-criticality task τi, we set CHIi = Ti ·UHIi ,
CHIi = khi · CLOi and 1.1 ≤ khi ≤ Khi, where
Khi is a parameter. For each low-criticality task τi, its
imprecise computing error is randomly chosen from a
uniform distribution between 1 and 10.

We set error weighting factors (defined in Section VI) ηi =
1.
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Fig. 1. Acceptance ratio vs. normalized utilization of 4 processors (Klo =
0.1, Khi = 5).

Evaluation of the acceptance ratio: We first evaluate the
acceptance ratio at several values of the utilization, Ui. For
each Ui, we generate 10,000 testcases, and for each testcase,
we iteratively add new tasks till max(ULOlo + ULOhi , U

HI
lo +

UHIhi ) reaches Ui. The acceptance ratios on 4 processors is
depicted in Figure 1.

We see from the plot that Fluid-VPMC provides the best
acceptance ratio (this is not surprising as the fluid-based
scheduling is optimal in theory), while the three variants
of fpEDF-VD have the lowest acceptance ratio due to their
very conservative schedulability conditions. The acceptance
ratio of fpEDF-VD-VPMC is very close to that of fpEDF-
VD-MC. This implies that continuing low-criticality tasks
at high-criticality mode hardly degrades schedulability. The
dual virtual-deadline technique reduces acceptance ratio, but
it guarantees that no low-criticality job is dropped while the
fpEDF-VD-VPMC cannot provide such guarantees. The result
also shows that the enhancement techniques introduced in
Section V-A2 can indeed improve schedulability of partitioned
scheduling.
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Fig. 2. Acceptance ratio versus normalized utilization of 4 processors with
consideration of overhead.

The simulation for Figure 1 does not consider overhead,
which is important in practice. Overhead includes the time on
context switching, job migration among processors, execution
monitoring, scheduling job executions, etc. For each of the
VPMC methods, we estimate its overhead according to the
Linux prototyping (Section VII-B) data. Then, the overhead
is added into the task execution time for the simulation. The
acceptance ratio result with consideration of overhead is shown
in Figure 2. One can see that Fluid-VPMC is no longer the
best due to its large overhead, and the best results are obtained
from partitioned scheduling. The gap between Fluild-VPMC
and fpEDF-VD-VPMC also becomes smaller.
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Fig. 3. Mean error (with standard deviation) vs. normalized utilization of 4
processors (Klo = 0.1, Khi = 5).

Evaluation of errors: Next, we evaluate computing errors
of low-criticality tasks in high-criticality mode for different



methods. Following the same testcase generation for evaluating
the acceptance ratio, 1000 schedulable testcases are obtained
at each utilization value. Figures 3 and 4 show the mean
error with standard deviation among tasks as function of
the normalized utilization. For a single testcase, minimizing
mean error is equivalent to minimizing the total error as the
number of tasks is a constant for the precision optimization.
When evaluating multiple testcases, mean error is more like a
normalized result that can avoid the result being dominated by
a few cases. In both of the figures, errors from IMC is plotted
besides those from other method. IMC is the model where
all low-criticality tasks continue with imprecise computing in
high-criticality mode. Hence, its error is the same for different
scheduling methods. One can see that the VPMC model can
provide large error reductions. Again, Fluid-VPMC provides
the lowest error levels as its optimality allows more utilization
slack for error reduction.
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Fig. 4. Mean error (with standard deviation) vs. normalized utilization of 8
processors (Klo = 0.1, Khi = 5).
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Fig. 5. The effect of Khi on errors for Partition-VPMC-E on 8 processors.

Figures 5 shows the effect of Khi on errors for Partition-
VPMC-E. In general, a large Khi tends to cause large errors.
We also studied the effect of parameter Klo with result shown
in Figure 6. Interestingly, the error decreases as Klo increases.
For a large Klo, the difference between precise and imprecise
computing execution times is small, i.e., the additional utiliza-
tion for changing imprecise computing to precise computing
is small and applying precise computing becomes easier. On
the other hand, a large Klo increases the overall utilization and
degrades schedulability.

B. Prototyping in Linux user space

We evaluate the proposed techniques in the VPMC model
with prototyping in Linux user space. Such prototyping can
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Fig. 6. The effect of Klo on errors for Partition-VPMC-E on 8 processors.

account for the overhead, which is neglected in software
simulation. Moreover, the error model of the prototyping is
more realistic. The prototyping is implemented in the user
space of Linux 4.10 on a 4-processor machine, where each
processor is Intel Core i3 with frequency 1.9GHz.

There are multiple threads for task execution and schedul-
ing, each of which has an associated priority for realizing task
execution or preemption. We create a managing thread that
conducts the task scheduling at runtime. The managing thread
can generate job threads. Each job thread is either in execution
mode, or waiting mode when it is released, not completed and
not being executed. The job thread management is performed
at every time unit of 0.01 second, which allows sufficient
resolution for the testcases. At each time unit, the managing
thread checks if a new job is released, a job execution is
completed, a job execution exceeds its WCET and if there is
deadline violation. According to specific scheduling method,
the managing thread decides if to start a waiting job, if a low-
priority job being executed needs to be preempted, if to switch
low-criticality mode to high-criticality mode, etc. Processor
affinity is employed to assign a thread to certain processor.

For partitioned scheduling, the partition is performed of-
fline in advance and there is one managing thread for each
processor. For global scheduling like fpEDF-VD-VPMC and
VPMC-DP-Fair, only one managing thread is needed for all
processors. For the VPMC-DP-Fair method, the managing
thread needs to maintain and update the deadline partitions,
which are rounded to the time unit.

TABLE II. TESTCASE CHARACTERISTICS FOR THE LINUX
PROTOTYPING(THE UNIT OF EXECUTION TIME IS SECOND).

Case 1 Case 2
Task χi CLO

i CHI
i ei χi CLO

i CHI
i ei

τ1 LO 0.76 0.47 20 LO 0.76 0.47 20
τ2 HI 0.95 1.42 - HI 0.95 1.42 -
τ3 LO 0.67 0.21 0.5 LO 0.67 0.21 0.5
τ4 HI 2.32 5.80 - HI 2.32 5.80 -
τ5 LO 1.65 0.98 5 LO 1.65 0.98 5
τ6 HI 2.36 3.33 - HI 2.36 3.33 -
τ7 LO 1.40 0.71 8 LO 2.55 0.33 5
τ8 HI 1.89 2.63 - HI 4.10 5.10 -
τ9 LO 0.76 0.27 5 LO 1.83 0.38 3
τ10 LO 2.09 0.48 5 HI 1.07 2.31 -
τ11 HI 0.47 0.73 - LO 3.18 0.66 2
τ12 - - - - HI 1.63 3.71 -

Two testcases are generated for the experiment in the Linux
system. In the first case, all tasks are solving equations by the
Newton-Raphson method. The second case is composed by
tasks of both Newton-Raphson and the steepest decent method
computing. For each case, tasks are randomly designated with



low-criticality or high-criticality. We run these cases repeat-
edly to find the maximum execution time of each task. The
WCET is obtained by adding safety margins to the measured
maximum execution time. Since both Newton-Raphson and the
steepest decent method are iterative algorithms, their imprecise
computing is realized by relaxing the termination criterion. The
precise computation, which has a tight termination criterion,
also results in a small errors, which is negligible in comparison
with that of imprecise computing. The imprecise computing
errors from low-criticality tasks are obtained from the results
of the prototyped implementation. The characteristics of the
two cases are summarized in Tables II.
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Fig. 7. Overhead ratio vs. utilization (overhead includes scheduling overhead
and system overhead).

TABLE III. OVERHEAD COMPONENTS.

Scheduling overhead System overhead
Partition-VPMC-E 52% 48%
fpEDF-VD-VPMC 66% 34%

VPMC-DP-Fair 27% 73%
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Fig. 8. Number of context switchings vs. utilization.

During the experiment, we vary the period Ti of each task
τi to obtain different utilizations. For each scheduling method,
its schedulability condition is checked offline. For only the
utilization conditions where the check is successfully passed,
the tasks are run in the Linux system, and each high-criticality
job has an overrun probability of 0.9, so as to trigger system
mode switching from low-criticality mode to high-criticality
mode. In the first part of the Linux experiment, we investigate
two components of overhead:

(1) Scheduling overhead: the time on scheduling job
executions, execution monitoring, etc.

(2) System overhead: the time on context switching, job
migration among processors, etc.

In Figure 7, we show the average results of overhead ratio,
which is the ratio of system time expended on the overhead to
the total computation time. The VPMC-DP-Fair has quite large
overhead, as large as 16% when utilization is high. Partitioned
scheduling has the lowest overhead, and its overhead does
not change much as the utilization increases. One advantage
of partitioned scheduling is that there is no inter-processor
migration overhead. Since the fpEDF-VD-VPMC method has
relatively low schedulability, it does not produce much data for
this figure. The proportions of different overhead components
are shown in Table III, which indicates that VPMC-DP-Fair
has a relatively high ratio of system overhead due to frequent
context switchings. In Figure 8, we compare the numbers
of context switchings for different methods. A large number
implies large overhead and the results are indeed correlated
with the overhead ratio in Figure 7.
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Fig. 9. Mean error (with standard deviation) versus utilization from Linux
prototyping.

We further evaluated the errors under imprecise computing
for different methods on the two cases. The average results
are plotted in Figure 9. The largest errors correspond to
IMC-DP-Fair, where all low-criticality tasks are continued
with imprecise computing in high-criticality mode, while the
smallest errors are from Partition-VPMC-E. The errors from
fpEDF-VD-VPMC are not good mostly due to its conservative
schedulability, which does not allow much utilization slack for
converting imprecise computing to precise computing for low-
criticality tasks. The errors from VPMC-DP-Fair are generally
small, but greater than Partition-VPMC-E. This is because its
large overhead leads to lower slack for precise computing.

VIII. CONCLUSIONS

The conventional mixed-criticality system model, despite
its popularity, is controversial as it drops all low-criticality
tasks in high-criticality mode. Recently, there are a few works
for overcoming this drawback by continuing low-criticality
tasks with imprecise computing or even precise computing.
In this work, we develop such graceful degradation techniques
for partitioned scheduling and fpEDF-VD scheduling on mul-
tiprocessors. The proposed techniques are evaluated with both
software simulations and Linux prototyping where overhead is
considered. The results show that the graceful degradation ap-
proach can significantly improve computing quality with little
sacrifice on schedulability. When the overhead is considered,
the proposed partitioned scheduling outperforms the previous
approach of fluid-based scheduling.
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