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Abstract—Mixed-criticality system is a popular model for
reducing pessimism in real-time scheduling while providing
guarantee for critical tasks in presence of unexpected overrun.
However, it is controversial due to some drawbacks. First, a
single high-criticality job overrun leads to the pessimistic mode
for all high-criticality tasks and consequently resource utilization
becomes inefficient. Second, all low-criticality tasks are dropped
in high-criticality mode, although they are still needed. These
two issues have been addressed in several recent works, which
are mostly focused on uniprocessor scheduling. In this work, we
attempt to tackle these two issues in multiprocessor scheduling
for dual-criticality systems. A deferred switching protocol is
introduced so that the chance of switching to high-criticality mode
is significantly reduced. Moreover, a service preserving technique
is developed such that all low-criticality tasks can continue to
execute in high-criticality mode. Further, the two techniques are
unified into a single framework. Schedulability of these methods is
studied so that the Quality-of-Service is improved with guarantee
of satisfying all deadline constraints. The effectiveness of the
proposed techniques is confirmed through simulations.

I. INTRODUCTION

A well-known drawback of conventional realtime schedul-
ing is its overly pessimistic WCET (Worst Case Execution
Time) estimation. This drawback is largely overcome in
Mixed-Criticality (MC) systems [1], where both tasks and sys-
tem operation modes are categorized into different criticality
levels. In normal low-criticality mode, high-criticality tasks are
scheduled using less pessimistic estimate on execution time.
In the event that the execution time of a high-criticality job
exceeds its estimation in low-criticality mode, i.e., an overrun
occurs, the system switches to high-criticality mode, where
very pessimistic WCET is applied for all high-criticality tasks.
As such, high-criticality tasks still have guarantee for meeting
their deadlines. However, such appealing advantage of MC
systems comes with expensive price [2].

1) All low-criticality tasks are dropped in high-criticality
mode to facilitate the guarantee for high-criticality
tasks. Despite their low-criticality, these tasks are still
very much needed and completely abandoning them
is a heavy loss of Quality of Service (QoS).

2) The overrun of a single high-criticality job can
force all the other high-criticality jobs (even without
overrun) into high-criticality mode with the very
pessimistic WCET, which undermines efficiency of
resource utilization.

Both of the limitations recently received research attention.

New techniques have been proposed [3]–[8] to continue exe-
cuting low-criticality tasks in high-criticality mode with grace-
ful degradation. Other approaches [9], [10] define new proto-
cols to prevent all high-criticality tasks from simultaneously
entering high-criticality mode. Most of these works are geared
toward uniprocessor scheduling. In reality, multiprocessor is a
growing trend due to its performance advantage. There are few
previous works addressing the aforementioned limitations for
multiprocessors. A partitioning-based multiprocessor schedul-
ing approach is introduced in [11]. However, after a load-
balancing-based partitioning, its kernel techniques are actually
for uniprocessor scheduling. Moreover, it can retain only some
but not all low-criticality tasks in high-criticality mode. In
[8] and [12], all low-criticality tasks can continue in high-
criticality mode for multiprocessors, by improvements on fluid
scheduling and global scheduling, respectively. However, none
of them addresses the second limitation that all high-criticality
tasks simultaneously enter the very pessimistic high-criticality
mode.

There are three main approaches to MC multiproces-
sor scheduling: (1) partitioning-based [11], [13], (2) fluid-
based [8], [14], [15] and (3) global scheduling [12], [13],
[16]. Each of them has its strength and weakness, and no
one is absolutely superior to the others. Partitioning-based
scheduling is appealing for its simplicity. On the other hand,
it lacks flexibility and tends to cause under-utilization of
resources. Fluid-based scheduling can reach the theoretically
optimal solution, but may incur frequent job preemptions
and context switchings, which incur non-negligible overhead.
Global scheduling has both its performance and practicality
between partitioning and fluid-based scheduling.

In this work, we focus on how to address the two
limitations of dual-criticality system, the basic version of
MC system, in global scheduling. First, a service preserving
technique is developed to let all low-criticality tasks execute
in high-criticality mode with imprecise computing, while all
deadline constraints are satisfied. This is to improve QoS for
high-criticality mode. Second, a deferred switching scheme
is proposed to prevent high-criticality tasks from simultane-
ously entering high-criticality mode while all deadlines are
still guaranteed to be enforced. This is to extend the low-
criticality mode, which has better QoS than high-criticality
mode. Further, these two techniques are combined into a uni-
fied framework such that the two limitations are concurrently
mitigated. To the best of our knowledge, this is the first
work that simultaneously addresses both of the limitations



for multiprocessors. Our service preserving technique alone
outperforms the previous approach of DVD (Dual Virtual
Deadline) [12] in term of schedulability. The effectiveness of
our work is confirmed through simulations.

The rest of this paper is organized as follows. Related
previous works are briefly reviewed in Section II. Section III
introduces system model and background knowledge. Our
techniques for improving QoS are described in Section IV. Ex-
perimental results are shown in Section V. Finally, Section VI
provides the conclusion.

II. RELATED PREVIOUS WORK

The MC model was first described in [1]. Early works on
MC scheduling are mostly for uniprocessors. One such work
is EDF-VD [17], which extends the Earliest Deadline First
scheduling with Virtual Deadlines such that time resource is
reserved for meeting deadlines during low-criticality mode,
high-criticality mode and the transition time at the beginning of
high-criticality mode. This method is designed for the classic
MC model [1] where all low-criticality tasks are dropped
in high-criticality mode. The limitations of the classic MC
model have been identified [2] and several recent works are
developed for corresponding mitigation. An online adjustment
technique [9] is developed to reduce the number of low-
criticality tasks that are dropped in high-criticality mode.
In [10], multiple intermediate-criticality levels are introduced
between low-criticality mode and high-criticality mode such
that there is no need to simultaneously switch all high-
criticality tasks to high-criticality mode. The work of [18]
enables return to low-criticality mode from high-criticality
mode. Another approach is to continue low-criticality tasks
in high-criticality mode with graceful degradation, such as
imprecise computing [7]. All these techniques are developed
for uniprocessors.

For multiprocessors, an EDF-VD-based global scheduling
method is proposed in [16] using the classic MC model. There
are very few previous works on multiprocessor scheduling
for addressing the limitations of the classic MC model. The
work of [11] is a partitioning-based scheduling that aims to
alleviate some limitations of the classic MC model. It first
partitions tasks to processors in an effort for load balancing.
Then, uniprocessor scheduling is performed for tasks assigned
to the same processor. Tasks of the same processor are further
divided into multiple groups, each of which contains only one
high-criticality task so as to achieve isolation among high-
criticality tasks. Processor time is allocated to different groups,
where scheduling is performed separately. In high-criticality
mode, low-criticality jobs are executed opportunistically with-
out guarantee. As such, the limitation of dropping all low-
criticality tasks is not well solved. It has an intermediate
mode before entering high-criticality mode. However, all low-
criticality tasks are suspended in this mode. In [19], new pro-
tocols are proposed for systems to return from high-criticality
mode to low-criticality mode. A fluid-based scheduling [8] and
a global scheduling [12] are introduced to allow execution
of low-criticality tasks in high-criticality mode for multi-
processors. However, both of them follow the conservative
model where all high-criticality tasks simultaneously enter
high-criticality mode. Fluid-based scheduling tends to cause
frequent job preemptions and context switchings, which cost

performance overhead. The global scheduling method [12]
enforces dual virtual deadline, which is quite conservative and
thereby sacrifices schedulability.

III. PRELIMINARIES

A. System Model

The baseline model used in this work is very similar as
the classic MC model, although only two criticality levels are
considered here. We suggest some changes to the model, which
will be elaborated. In the baseline dual-criticality system, there
are a set of independent sporadic tasks T = {τ1, τ2, ...} to be
performed on m identical processors. This task set is composed
by two disjoint subsets of low-criticality tasks TL and high-
criticality tasks TH . The system may operate in either low-
criticality mode or high-criticality mode. In this paper, we use
subscript in {L,H} to indicate task criticality and superscript
in {lo, hi} to differentiate low-criticality and high-criticality
modes.

Each task τi ∈ T consists of an infinite sequence of jobs
{J1
i , J

2
i , ...}, and is characterized by (Ti, χi, Q

lo
i , Q

hi
i ), where

Ti is the minimal time interval between two consecutive jobs
of task τi, χi ∈ {L,H} indicates its criticality level, and Qloi
and Qhii are estimated job execution time in low-criticality and
high-criticality mode, respectively. If job Jji is released at time
aji , its deadline is aji + Ti. Therefore, Ti implicitly specifies
job deadline, and is also called period for convenience.

A system starts with low-criticality mode, which is also
the ordinary operation mode. In order to reduce the pessimism
of WCET (Worst Case Execution Time) in conventional real-
time scheduling, execution time Qloi is chosen to be less
conservative for high-criticality tasks. Consequently, there is
a low but non-zero probability that the actual execution time
exceeds Qloi . The condition for switching to high-criticality
mode and the treatment of high-criticality mode are where
several recent works, as well as our work, diverge from the
classic MC model. In the classic MC model, as long as any
high-criticality job Jji has actual execution time exceeding
Qloi , the system switches to high-criticality mode. In high-
criticality mode, all high-criticality tasks are scheduled with
very pessimistic Qhii , i.e., Qhii > Qloi , such that there exists a
guarantee for meeting deadlines of all high-criticality tasks.

Similar to the imprecise computation model, we assume
that each low-criticality job consists of two parts: a mandatory
part and an optional part. Since we need to allocate more
processing time for high-criticality tasks when the system is
running in the high-criticality mode, we assume that low-
criticality tasks only require the completions of mandatory
parts in the high-criticality mode, while they require the
completions of both mandatory and optional parts in the low-
criticality mode. As a result, we have Qloi > Qhii ≥ 0
for each low-criticality task τi. We note most classic MC
models assume that all low-criticality tasks are dropped when
the system enters the high-criticality mode. Effectively, these
models correspond to the special case when Qhii = 0 for
all low-criticality tasks. By allowing Qhii to be larger than 0,
our model enables a much richer description about the system
requirements in the high-criticality mode.

The scheduling is to decide when to execute each job on
which processor. We consider global scheduling, where the



jobs of a task can be assigned to different processors. The
scheduling is preemptive such that a low-priority job can be
preempted by a high-priority job during its execution.

For each task τi, its utilizations in low and high-criticality
modes are defined as

uloi =
Qloi
Ti

, and uhii =
Qhii
Ti

,

respectively. Then, the total utilizations of all low-criticality
tasks are given by

U loL =
∑
τi∈TL

uloi and UhiL =
∑
τi∈TL

uhii .

Likewise, the total utilizations for high-criticality tasks are
defined as

U loH =
∑
τj∈TH

uloj and UhiH =
∑
τj∈TH

uhij .

Please note in classic MC model, UhiL = 0 since Qhii = 0 for
all low-criticality tasks τi ∈ TL.

B. Global Scheduling and Fluid-Based Scheduling

Our work mainly improves a conventional global schedul-
ing, fpEDF-VD [16], for mitigating the two limitations of
classic MC model. DP-Fair scheduling [20], which is an
implementation of fluid-based scheduling, is also adopted in a
very limited fashion. Both of these techniques are summarized
here for the completeness of the description.

1) Global fpEDF Scheduling on Multiprocessors: The
method of fpEDF (fixed-priority EDF) [21] is a state-of-art
global scheduling approach for multiprocessor in traditional re-
altime systems without mixed-criticality. Fixed-priority means
the priority of one job can not be changed during execution.
For a task set

⋃
τi∈T (Ti, Qi) to be scheduled on m identical

processors, fpEDF first chooses a subset Thp ⊂ T of at
most m − 1 tasks, each with utilization greater than 1

2 , and
assigns them on mhp processors with the highest priority. The
priorities of remaining tasks Tlp ⊂ T are lower and scheduled
according to EDF (Earliest Deadline First) principle on the
other mlp = m−mhp processors. The schedulability condition
for fpEDF is given in Lemma 1( [21]).

Lemma 1. Consider a task set
⋃
τi∈T (Ti, Qi) to be scheduled

on m identical processors. Let U totallp be the total utilization
of the tasks in Tlp, and Umaxlp be the maximum utilization of
tasks in Tlp. If U totallp ≤ mlp − (mlp − 1) · Umaxlp is satisfied,
this task set T is schedulable by fpEDF method.

2) Global Scheduling by fpEDF-VD on Multiprocessors:
fpEDF-Virtual Deadline (fpEDF-VD) [16] is an extension
of fpEDF to mixed-criticality systems. Virtual deadlines are
enforced for high-criticality tasks. Each high-criticality task
τj is mapped to (T̂j , Q

lo
j ) in low-criticality mode, where

T̂j = x ·Tj(0 < x < 1) is the virtual deadline that is enforced
in both offline schedulability test and online execution. Each
low-criticality task τi is mapped to a regular implicit deadline
task (Ti, Q

lo
i ) in low criticality mode, and all low-criticality

tasks are dropped in high-criticality mode. The schedulability
conditions for fpEDF-VD are as follows.

• Task set (
⋃
τi∈TL (Ti, Q

lo
i ))

⋃
(
⋃
τj∈TH (x · Tj , Qloj ))

is schedulable on m processors in low-criticality mode
according to Lemma 1.

• Task set
⋃
τj∈TH ((1− x) · Tj , Qhij ) is schedulable on

m processors in high-criticality mode according to
Lemma 1.

For a high-criticality task τj ∈ TH in high-criticality mode, its
implicit deadline (1−x)·Tj is used in the offline schedulability
check. However, only its original deadline Tj needs to be
enforced during online execution. By default, virtual deadline
of a high-criticality task τj ∈ TH refers to x · Tj .

The schedulability condition in high-criticality mode leads
to the following important conclusion, which is heavily used
in our work.

Lemma 2. ( [16]) If a mixed-criticality task set T is schedu-
lable by fpEDF-VD, each of its high-criticality job Jkj in high-
criticality mode can start from its virtual deadline d̂kj and
guarantee to finish by actual deadline dkj with execution time
Qhij following fpEDF-VD scheduling.

3) DP-Fair Scheduling on Multiprocessors: DP (Deadline
Partition)-Fair [20] is a scheduling method based on propor-
tional fairness for regular (non-MC) multiprocessor systems.
In DP-Fair, the density of each task τi is computed as δi = Qi

Ti
,

where Qi and Ti are the worst case execution time and period
of task τi, respectively.

Theorem 1. (Lemma 14 in [14]) A non-MC task set T is
schedulable under DP-Fair iff

∑
τi∈T δi ≤ m, where m is the

number of processors.

MC-DP-Fair [14] is an extension of DP-Fair for MC
systems. It is a fluid-based scheduling and can be speedup-
optimal for dual-criticality system scheduling [14], [15]. In
this work, we make use of DP-Fair in the proposed service
preserving technique, while MC-DP-Fair is implemented for
comparison in the experiment.

C. Imprecise Computing

Imprecise computing, also known as approximate com-
puting, intentionally allows limited computing errors so as
to shorten computing time. In high-criticality mode, high-
criticality tasks are allocated with increased processor time.
In order to maintain schedulability, processor time allocated
to low-criticality tasks must decrease. Instead of completely
dropping low-criticality tasks in high-criticality mode as in
classic MC model, one can execute low-criticality tasks with
imprecise computing for graceful service degradation. Re-
cent technology progress on imprecise computing makes such
approach increasingly realistic. Imprecise computing can be
implemented at circuit, architecture and algorithm levels for
datapath or numerical computations. At circuit level approxi-
mation, people developed techniques on imprecise arithmetic
circuit designs [22], [23] and voltage overscaling [24]. Re-
cently, new methods also make computing accuracy runtime
configurable [25]. Architectural approximation techniques in-
clude approximate data types [26], dedicated instructions [27]
and approximate storage [28]. Algorithm level approximation
has been extensively studied as well. For example, relaxing the
convergence criterion for iterative algorithms can significantly
reduce computing time under allowable computing errors.
Overall, the significant progress [23] has made imprecise
computing ready for use in mixed-criticality systems.



IV. QOS DRIVEN GLOBAL SCHEDULING

We introduce two main techniques to mitigate the limi-
tations of classic MC model and thereby improve QoS of
dual-criticality systems. Both techniques are mostly built upon
the fpEDF-VD (fixed priority Earliest Deadline First - Virtual
Deadline) framework [16]. The first is a service preserving
technique (Section IV-A) that allows all low-criticality tasks
to execute in high-criticality mode with imprecise computing.
Compared to the DVD (dual virtual deadline) approach [12],
the proposed service preserving technique is less conservative
and thereby facilitates improved schedulability. The second is a
deferred switching scheme (Section IV-B), which has not been
studied for multiprocessors, to the best of our knowledge. It
will reduce the chance that a system switches into the very pes-
simistic high-criticality mode. The two techniques are unified
into a single method, which is described in Section IV-C.

A. Service Preserving Method

The goal of this technique is to continue executing low-
criticality tasks in high-criticality mode while all task deadlines
are guaranteed to be met. To facilitate this goal, all low-
criticality tasks are executed with imprecise computing in
high-criticality mode. The imprecise computing costs shorter
execution time than precise computing and therefore Qloi >
Qhii > 0,∀τi ∈ TL.

The key issue is how to guarantee schedulability while low-
criticality tasks are continued and consume processor time.
In this technique, fpEDF-VD scheduling policy is used in
low-criticality mode and high-criticality mode, and DP-Fair
scheduling policy is used during the transition. In order to
ensure schedulability for low-criticality mode, task set

(
⋃

τi∈TL

(Ti, Q
lo
i ))

⋃
(

⋃
τj∈TH

(x · Tj , Qloj ))

must be schedulable on m processors according to Lemma 1.
Please note by scaling Ti by x ∈ (0, 1), virtual deadline x ·Ti
is applied for all high-criticality tasks. We define the high-
criticality mode condition as that task set

(
⋃

τi∈TL

(Ti − P,Qhii ))
⋃

(
⋃

τj∈TH

((1− x) · Tj , Qhij )) (1)

must be schedulable on m processors according to Lemma 1,
where P is a service preserving interval we introduce and will
be elaborated later.

The transition from low-criticality to high-criticality mode
is subtle and deserves a lot of attention [7]. The treatment of
high-criticality tasks is the same as fpEDF-VD [16]. Consider
a high-criticality job Jkj that is active at moment t∗ of mode
switching. Its virtual deadline satisfies d̂kj = akj + x · Tj ≥ t∗,
otherwise this job would have finished. Right after time t∗,
the system enters high-criticality mode and the actual deadline
dkj = akj + Tj is enforced. According to Lemma 2, the
extra time budget (1 − x) · Tj is sufficient for Jkj to finish
with execution time Qhij . Therefore, high-criticality tasks are
guaranteed to satisfy their deadlines.

The challenging part is how to handle low criticality tasks
during the transition, where they can no longer be dropped as
in the classic MC model. The non-zero Qhii for low-criticality
tasks makes the schedulability guarantee quite difficult. In

[12], two techniques were proposed. The first technique may
result in a one-time dropping of low-criticality jobs during
transition. This is against the original intention of continuing
all low-criticality tasks. The other technique in [12] is dual
virtual deadline (DVD) for avoiding such job loss. Unlike the
original fpEDF-VD, where virtual deadline is applied only
for high-criticality tasks, the DVD approach enforces virtual
deadline for low-criticality tasks as well. Virtual deadline
is effective for providing guarantee on meeting deadlines.
However, it is basically a conservative resource reservation
approach that makes schedulability condition more strict and
hence causes under-utilization of resources. Applying virtual
deadlines for both low-criticality tasks and high-criticality
tasks would exacerbate the inefficiency and is an expensive
price paid for avoiding one-time loss of low-criticality jobs.

We suggest a service preserving interval [t∗, t∗+P ], when
only the active (carry-over) low-criticality jobs are executed
by DP-Fair scheduling, all active high-criticality jobs are
suspended and no newly arrival jobs are started. This is to
facilitate that all active low-criticality jobs can be finished with
imprecise computing during the transition. Meanwhile, the
interval P is designed in a way that the schedulability of all the
other jobs are still maintained. A critical basis for the service
preserving interval is that execution time Qhij is accommodated
after virtual deadline d̂kj for a high-criticality job Jkj in high-
criticality mode according to Lemma 2 by fpEDF-VD [16].
The service preserving interval length is defined as

P = min
∀τj∈TH

Qloj (2)

Next, we will discuss schedulability of active jobs and those
involving the service preserving interval.

Lemma 3. By following fpEDF-VD, all high-criticality jobs
can guarantee to meet their deadlines in high-criticality mode
even if they are not executed in [t∗, t∗ + P ].

Proof: The high-criticality jobs involving the service
preserving interval [t∗, t∗ + P ] can be categorized into three
cases, all of which will be discussed as follows.

Case 1: Overrun jobs. These are the high-criticality jobs that
have executed Qlo time but have not finished (see Figure 1).
At the end of the Qlo time, the system enters high-criticality
mode when the moment is t∗. According to the schedulability
conditions of fpEDF-VD, the virtual deadline d̂oj of an overrun
job Joj satisfies d̂oj ≥ t∗. The method of fpEDF-VD (Lemma 2)
also indicates that all high-criticality jobs can execute Qhi after
their virtual deadlines and finish before their actual deadlines
in high-criticality mode. Since time Qloj has already been
executed for job Joj at t∗, deferring the rest of its execution
by Qloj maintains the schedulability. In other words, the rest of
the overrun job can start from d̂oj+Q

lo
j = d̂oj+Q

lo
j + t∗− t∗ =

t∗+Pj , where Pj = d̂oj +Qloj − t∗. Since d̂oj ≥ t∗, Pj ≥ Qloj .
Therefore, postponing the execution of the rest of Joj by Qloj
will maintain the schedulability of overrun jobs.

Case 2: Active high-criticality jobs without overrun (see Fig-
ure 2). A high-criticality job Jkj has been executed qkj < Qloj by
t∗. Then, its rest portion can start from d̂kj +q

k
j with guarantee

of meeting its deadline according to fpEDF-VD. Like Case 1,
d̂kj +q

k
j = t∗+Pj , where Pj = d̂kj +q

k
j − t∗. By schedulability
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Fig. 1. Case 1: service preserving interval for an overrun job.

condition in low-criticality mode, qkj + d̂kj − t∗ ≥ Qloj , then
Pj ≥ Qloj . Hence, such a job can be suspended in [t∗, t∗+Qloj ]
without affecting its schedulability.

𝑎𝑗
𝑘  𝑑𝑗

𝑘  𝑑𝑗
𝑘  𝑞𝑗

𝑘  𝑡∗ 

𝑃𝑗  

𝑞𝑗
𝑘  

Fig. 2. Case 2: service preserving interval for an active high-criticality job
without overrun.

Case 3: High-criticality jobs arriving during the service pre-
serving interval (see Figure 3). The arrival time akj of such a
job Jkj satisfies

t∗ ≤ akj ≤ t∗ + P. (3)
The schedulability conditions in fpEDF-VD require that

akj +Qloj ≤ d̂kj . (4)
Combing inequality (3) and (4), we have

Qloj ≤ d̂kj − akj ≤ d̂kj − t∗ = Pj

Since Jkj can guarantee finish before its deadline even if it
starts from d̂kj according to fpEDF-VD, its start time can be
deferred by Pj , which is lower bounded by Qloj .

Overall, all high-criticality jobs involving the service pre-
serving interval can be deferred by Qlo without affecting their
schedulability. Hence, deferring by P = min∀τj∈TH Q

lo
j for

all these jobs can still guarantee to meet their deadlines.

 𝑎𝑗
𝑘   𝑑𝑗

𝑘   𝑑𝑗
𝑘   𝑡∗ 

 𝑃𝑗  

Fig. 3. Case 3: service preserving interval for an immediate newly coming
high-criticality job.

Next, we describe schedulability conditions for active low-
criticality jobs during the service preserving interval [t∗, t∗ +
P ]. At t∗, if a low-criticality job Jki has already been executed
for at least Qhii , it is terminated with imprecise computing
result. An active (carry-over) low-criticality job Jki means

that it has been executed for qki < Qhii by t∗. The active
low-criticality jobs are scheduled by the fluid-based DP-Fair
method (see Section III-B3) in the service preserving interval,
while fpEDF-VD is employed all the other time. Although
fluid scheduling tends to entail frequent job preemptions, it
is utilized only within the limited service preserving interval.
The schedulability for DP-fair method is largely decided by
the job density.

Lemma 4. The density δki of an active low-criticality job Jki
in [t∗, t∗ + P ] is no greater than max(

Qhi
i

P ,
Qhi

i

Qlo
i

).

Proof: This bound is derived from two cases. In one case,
deadline dki ≥ t∗+P as shown in Figure 4. In the worst case
for the service preserving interval, entire job Qhii is executed
by t∗ + P , the density of this case is upper bounded as

δki |dki≥t∗+P ≤
Qhii
P

. (5)

𝑎𝑖
𝑘   𝑑𝑖

𝑘   𝑞𝑖
𝑘  

P

𝑡∗ 

Fig. 4. Active low-criticality job with deadline after t∗ + P .

In the other case, dki < t∗+P as shown in Figure 5. If qki
has been executed by t∗, the density is estimated by

δki |dki<t∗+P =
Qhii − qki
dki − t∗

(6)

By the schedulability condition in low-criticality mode, Qloi −
qki ≤ dki − t∗. Therefore,

δki |dki<t∗+P =
Qhii − qki
dki − t∗

≤ Qhii − qki
Qloi − qki

(7)

𝑎𝑖
𝑘   𝑑𝑖

𝑘   𝑞𝑖
𝑘  

P

𝑡∗ 

Fig. 5. Active low criticality job with deadline before t∗ + P .

Consider a function

f(x) =
Qhii − x
Qloi − x

, 0 ≤ x < Qhii < Qloi . (8)

Since derivative f
′
(x) =

Qhi
i −Q

lo
i

(Qlo
i −x)2

< 0, f(x) is a monotone
decreasing function and its maximum is at x = 0. Hence,

δki |dki<t∗+P ≤
Qhii − qki
Qloi − qki

≤ Qhii
Qloi

(9)

By combining the two cases, we have

δki ≤ max(
Qhii
P

,
Qhii
Qloi

) (10)



In the worst case, every low-criticality task has an active
job at t∗. According to Theorem 1 and Lemma 4, a sufficient
condition for DP-Fair method to successfully schedule all the
active jobs on m processors in [t∗, t∗ + P ] is∑

∀τi∈TL

max(
Qhii
P

,
Qhii
Qloi

) ≤ m (11)

Last, we discuss new low-criticality jobs that arrive in
[t∗, t∗ + P ]. Our method does not allow such jobs to be
executed until t∗ + P . In other words, their execution is
deferred by at most P . We specify that task set

(
⋃

τi∈TL

(Ti − P,Qhii ))
⋃

(
⋃

τj∈TH

((1− x) · Tj , Qhij ))

must be schedulable according to Lemma 1 in high-criticality
mode. More specifically, a low-criticality task τi is scheduled
with period (implicit deadline) Ti−P . Thus, with deferral of P ,
a low-criticality job arriving in [t∗, t∗+P ] is still schedulable.

Putting everything together, the service preserving policy
is stated as follows.

Service preserving policy: From the moment t∗ switching to
high-criticality mode to t∗ + P , where P = min∀τj∈TH Q

lo
j ,

only active low-criticality jobs are executed with DP-Fair
scheduling and all the other jobs can not be executed.

From Lemmas 3 and 4, we can reach the following
conclusion.

Theorem 2. When applying the service preserving policy with
fpEDF-VD scheduling, a task set T is schedulable on m
identical processors if T satisfies the following schedulability
conditions.

• task set
(
⋃

τi∈TL

(Ti, Q
lo
i ))

⋃
(

⋃
τj∈TH

(x · Tj , Qloj ))

must be schedulable on m processors according to
Lemma 1.

•
∑
∀τi∈TL max(

Qhi
i

P ,
Qhi

i

Qlo
i

) ≤ m during [t∗, t∗ + P ],
where P = min∀τj∈TH Q

lo
j .

• task set
(
⋃

τi∈TL

(Ti − P,Qhii ))
⋃

(
⋃

τj∈TH

((1− x) · Tj , Qhij ))

must be schedulable on m processors according to
Lemma 1.

B. Deferred Switching Scheme

Although high-criticality mode guarantees that high-
criticality tasks complete before deadlines in the worst case,
it entails expensive price that the execution time estimation
of all high-criticality tasks becomes overly pessimistic even if
many of them do not have overrun. Moreover, low-criticality
tasks would run in imprecise mode or are even dropped.
The threshold of switching to high-criticality mode in the
conventional protocol is quite low. That is, any single high-
criticality job overrun triggers the mode switching. Generally,
there are two approaches that can address this issue. One is
to allow a system to switch back to low-criticality mode like

bailout mode protocol [18], [19]. The other is to defer the
switching into high-criticality mode like the work of [10]. We
take the latter approach for multiprocessors while the work of
[10] is for uniprocessor scheduling.

Our approach is built upon fpEDF-VD [16] with the
observation that the conservativeness of fpEDF-VD allows
room for such deferral. In the proposed scheme, a single high-
criticality job overrun does not warrant immediate switching
to high-criticality mode. Instead, the system enters a vigilant
mode, which is almost identical as low-criticality mode except
that the overrun job is monitored to decide if the system can
recover back to low-criticality mode or must switch to high-
criticality mode. The online monitoring and decision can still
guarantee satisfaction of all deadline constraint even though
Qhii is applied with the overrun job, while all low-criticality
tasks are retained and all the other high-criticality tasks are
scheduled with less pessimistic Qloj .

Vigilant mode is defined by the following characteristics.

• At low-criticality mode, if any high-criticality job
Joj ∈ τj ∈ TH does not finish after being executed
Qloj , i.e., has overrun, then the system enters vigilant
mode at this moment t′.

• Every low-criticality task τi ∈ TL continues to execute
with precise computing with estimated execution time
Qloi .

• Each non-overrun high-criticality job Jkj continues to
execute with estimated execution time Qloj .

• Each overrun high-criticality job Joj is scheduled with
estimated execution time Qhij and priority lower than
any low-criticality job and non-overrun high-criticality
jobs.

• Each overrun high-criticality job Joj is assigned a
series of checkpoints ch(J

o
j ), h = 0, 1, 2, ..., when

some conditions are checked with constant time to
decide if Joj allows to return to low-criticality mode,
demands high-criticality mode or needs to stay at
vigilant mode.

• The system switches to high-criticality mode if any
overrun high-criticality job demands high-criticality
mode.

• When no overrun high-criticality job demands high-
criticality mode, the system stays at vigilant mode as
long as any overrun high-criticality job needs so.

• The system returns to low-criticality mode when all
overrun high-criticality jobs allow so.

The initial checkpoint for an overrun job Joj is defined as

c1(J
o
j ) = d̂oj +Qloj (12)

where d̂oj is the virtual deadline by fpEDF-VD [16] for job Joj .
An example of checkpoint is shown in Figure 6. Later on, it
is likely that the checkpoint is updated to c2(J

o
j ) > c1(J

o
j )

and c3(J
o
j ) > c2(J

o
j ), and so on. For the convenience of

representation, we specify c0(J
o
j ) = d̂oj and q0(J

o
j ) = Qloj .

When time reaches the checkpoint ch(Joj ), h = 1, 2, ..., the
amount of execution of Joj from the previous checkpoint



ch−1(J
o
j ) to ch(J

o
j ) is examined with constant time and the

result determines three different outcomes.

1) If job Joj is completed by ch(Joj ), it allows the system
to return to low-criticality mode.

2) Zero amount has been done, then high-criticality
mode is demanded.

3) If qh(Joj ) processor time has been spent on execut-
ing Joj yet it is not completed, the job needs to
stay at vigilant mode with the next checkpoint as
ch+1(J

o
j ) = ch(J

o
j ) + qh(J

o
j ), h = 0, 1, 2, ....

 𝑎𝑗
𝑜  

 𝑑𝑗
𝑜   𝑑𝑗

𝑜  

checkpoint

 𝑡 ′  
 𝑄𝑗
𝑙𝑜         𝑄𝑗

𝑙𝑜  

Fig. 6. Illustration of checkpoint.

By introducing the vigilant mode, our approach can defer
the switching to high-criticality mode. As the system can return
to low-criticality mode from vigilant mode, the overall prob-
ability of entering high-criticality mode is also reduced. As
such, low-criticality tasks are executed with improved quality
and less conservative execution time estimation is applied for
high-criticality jobs without overrun. Next, we will show that
all jobs are guaranteed to satisfy their deadline constraints
under this scheme. The key idea is to let overrun jobs have
low priority in the vigilant mode so that the schedulability of
the other jobs are not affected. At the same time, an overrun
job reclaims time slack at runtime in an opportunistic manner.
The online checking has constant complexity.

Lemma 5. The deferred switching scheme guarantees that
all jobs complete before their deadlines if they satisfy the
schedulability conditions of fpEDF-VD and Qhii = 0 for all
low-criticality tasks τi ∈ TL .

Proof: We prove this for three kinds of jobs - all low-
criticality jobs, non-overrun high-criticality jobs and overrun
high-criticality jobs, in all three modes - low-criticality mode,
vigilant mode and high-criticality mode.

The low-criticality mode in this scheme is handled in the
same way as fpEDF-VD for all kinds of jobs. Hence, all tasks
can guarantee to satisfy deadlines if they meet the fpEDF-VD
schedulability conditions.

The high-criticality mode in this scheme is also identical to
that for fpEDF-VD. As such, all non-overrun high-criticality
jobs can finish before their deadlines. In the classic MC system
model, all low-criticality tasks are dropped in high-criticality
mode. In Section IV-C, we will show how to unify the deferred
switching scheme with the service preserving technique such
that low-criticality tasks can continue to execute with imprecise
computing.

In the vigilant mode, low-criticality tasks and non-overrun
high-criticality jobs are treated in the same way as in low-
criticality mode, except the presence of overrun high-criticality

jobs. However, overrun high-criticality jobs have lower prior-
ity. Thus low-criticality tasks and non-overrun high-criticality
jobs are not affected by those overrun high-criticality jobs, and
their deadline can still be met with guarantee.

Last, we discuss overrun high-criticality jobs in the vigilant
mode and high-criticality mode. The worst case execution
time of an overrun job Joj is Qhij , of which Qloj has already
been executed. According to fpEDF-VD [16], entire execution
time Qhij can be accommodated from its virtual deadline d̂kj
to its actual deadline dkj for any high-criticality job Jkj in
high-criticality mode. As the overrun job has already been
executed Qloj , time interval [d̂oj + Qloj , d

o
j ] is sufficient to

accommodate the rest execution time Qhij −Qloj . Please note
the first checkpoint c1(Joj ) = d̂oj +Qloj . Even if nothing of Joj
has been executed in [t′, c1(J

o
j )] the remaining Qhij −Qloj part

of the overrun job can guarantee to meet its deadline if the
system switches to high-criticality mode at c1(Joj ).

When a new checkpoint is added with augmenting qh(Joj )
to the previous checkpoint, the condition is that qh(Joj ) has
been executed from the previous checkpoint. As such, the
amount of deferral of high-criticality mode start time is equal
to the reduction of remaining execution time of the overrun
job. Therefore, switching to high-criticality mode at the new
checkpoint still guarantees the satisfaction of deadline con-
straint for this overrun job. Overall, if an overrun job finishes
after switching to high-criticality mode, it can guarantee to be
completed before its actual deadline.

Since each checkpoint update is extended by qh(J
o
j ) that

has been executed, the total extension after the virtual deadline
cannot be greater than Qhij . In other words, the maximum
possible checkpoint is d̂oj+Q

hi
j . If the system has not switched

to high-criticality mode at d̂oj+Q
hi
j , job Joj must have finished

by d̂oj + Qhij . Since fpEDF-VD entails that d̂oj + Qhij ≤ doj ,
the job must have finished before its deadline during vigilant
mode.

Although we propose to perform low-criticality jobs with
precise computing in vigilant mode, sometimes, it is bene-
ficial to execute them with imprecise computing. Since the
execution time of imprecise computing is usually shorter than
precise computing, more processor time can be saved and the
chance of switching to high-criticality mode is decreased. The
choice between precise computing and imprecise computing
may depend on how low-criticality tasks are treated in high-
criticality mode. If they are dropped, then even imprecise
computing in vigilant mode is a QoS improvement. If low-
criticality tasks are continued with imprecise computing in
high-criticality mode, then it makes more sense to run them
with precise computing in vigilant mode to have the advantage
of deferring the mode switching to high-criticality mode.

C. Unified Deferred Switching and Service Preserving

When unifying the deferred switching and service preserv-
ing methods, a couple of changes need to made to the deferred
switching part. Both of the techniques make use of Lemma 2
that fpEDF-VD accommodates Qhij after virtual deadline d̂oj
for a high-criticality job Joj in high-criticality mode. When



both the techniques are applied at the same time, the same
property cannot be utilized twice. This is the key reason
for changing the deferred switching method here. The first
change is that each overrun job can only have one checkpoint
as opposed to possibly multiple checkpoints described in
Section IV-B. Since there is only one checkpoint, an overrun
job not finished by the checkpoint immediately demands high-
criticality mode. The second change is that the checkpoint is
defined as c(Joj ) = d̂oj in contrast to c1(J

o
j ) = d̂oj + Qoj in

Section IV-B. In the unification, the service preserving part is
the same as introduced in Section IV-A.

Since the change in the unified method is restricted to
the deferred switching part, which is an online technique, the
offline schedulability conditions of the unified method is the
same as that for the service preserving method, which is stated
in Theorem 2.

Lemma 6. If the schedulability conditions in Theorem 2 are
satisfied, the modified deferred switching in the unified method
still maintains the schedulability.

Proof: In the unified method, low-criticality mode and the
high-criticality mode after the service preserving interval are
identical to each stand-alone method. The vigilant mode is the
same as low-criticality mode except the handling of overrun
jobs. Overrun jobs are executed opportunistically in vigilant
mode with their deadline guarantee provided by switching to
high-criticality mode in time. The vigilant mode in the unified
method is never longer than that in the stand alone deferred
switching scheme. As such, the deadline guarantee of overrun
jobs still relies on the scheduling in high-criticality mode. In
the unified method, t∗ is at a checkpoint c(Joj ) = d̂oj , which
is covered in Case 1 in the proof of Lemma 3. The other
kinds of jobs and cases discussed in the proof of Lemma 3
still hold in the unified method. The schedulability condition
for the service preserving interval in the unified method is
unchanged. Therefore, the unified method can guarantee that
all tasks meet their deadlines if the schedulability conditions
in Theorem 2 are satisfied.

V. EXPERIMENTAL RESULTS

In the experiments, we evaluate and compare the following
methods through software simulations.

• Partitioning: Partitioning-based scheduling
method [13], where all low-criticality tasks are
dropped in high-criticality mode.

• fpEDF-VD: fpEDF-VD scheduling [16], where all
low-criticality tasks are dropped in high-criticality
mode.

• MC-DP-Fair: The fluid-based MC-DP-Fair
method [14], where all low-criticality tasks are
dropped in high-criticality mode.

• Dual-VD: This is an extension to the fpEDF-VD
scheduling such that virtual deadline is applied for
both low-criticality and high-criticality tasks [12]. In
this method, low-criticality tasks continue to execute
with imprecise computing in high-criticality mode.

• Deferred-Switching: Our deferred switching method
based on fpEDF-VD scheduling (Section IV-B). Low-
criticality tasks are dropped in high-criticality mode.

• Deferred-Switching-Apprx: This method is the same
as Deferred-Switching except that all low-critical tasks
execute with imprecise computing in vigilant mode.

• Service-Preserving: Our service preserving method
based on fpEDF-VD scheduling (Section IV-A). In
this method, low-criticality tasks continue to execute
with imprecise computing in high-criticality mode.

• Unified: The unified deferred switching and service
preserving scheme based on fpEDF-VD scheduling
(Section IV-C). In this method, low-criticality tasks
continue to execute with imprecise computing in high-
criticality mode.

A. Testcase Generation

The testcases in the experiments are randomly generated.
For each testcase, the probability of a task being low-criticality
(high-criticality) is 0.5. For each low-criticality task, we set its
low-criticality mode utilization randomly in [0.1, 0.9] under
uniform distribution. Likewise, the high-criticality mode uti-
lization of each high-criticality task is also randomly generated
in [0.1, 0.9], under uniform distribution. The period Ti of each
task τi is randomly chosen in [100, 500] according to uniform
distribution. For each low-criticality task τi, its execution times
are set as Qloi = Ti · uloi and Qhii = kL · Qloi , where the
scaling factor kL is randomly chosen in [0.1, 0.9] following
uniform distribution. For each high-criticality task τj , we set
its high-criticality mode execution time Qhij = Tj · uhij . Its
low-criticality mode execution time is obtained according to
Qhij = kH ·Qloj , where 1.1 ≤ kH ≤ 7.5.

B. Evaluation of Service Preserving

We evaluated the acceptance ratio of our service preserving
technique and compared with the dual-VD method. Please note
our unified scheme should have the same acceptance ratio as
that of service preserving method, as both apply the same
offline schedulability test. The deferred switching part is an
online technique that does not affect the acceptance ratio.
The other methods are not compared as they all drop low-
criticality tasks in high-criticality mode. Therefore, they are
not comparable with our method, which retains low-criticality
tasks in high-criticality mode. The results for 4 processors and
8 processors are shown in Figure 7 and Figure 8, respectively.
At each utilization, 10,000 testcases are randomly generated
for evaluation. The difference between the two methods mainly
exhibit around utilization 0.6, where our service preserving can
improve as much as 50%.

C. Evaluation of Deferred Switching and Unified Method

In this part of experiment, we compare our deferred switch-
ing and the unified method with several previous works. The
comparison is performed on two metrics. One is the number
of completed low-criticality jobs before switching to high-
criticality mode and the other is the mode switching time.
Compared to methods that drop low-criticality tasks in high-
criticality mode, the deferred switching or more completed
low-criticality jobs improves overall QoS. For each utilization,
1000 schedulable testcases are generated and each case is
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Fig. 7. Acceptance ratio vs normalized utilization of 4 processors.
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Fig. 8. Acceptance ratio vs normalized utilization of 8 processors.

simulated 10 times to account for the random job execution
time.
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Fig. 9. Number completed low-criticality jobs before mode switching vs
normalized utilization of 4 processors, with overrun rate 0.2.

Figures 9 and 10 show the number of completed low-
criticality jobs before mode switching for 4 processors with
overrun rate of 0.2 and 0.5, respectively. The overrun rate is
the probability that a high-criticality job has overrun. Both our
deferred switching and unified methods complete significantly
more low-criticality jobs than the previous works. Since the
unified method needs to continue low-criticality jobs in high-
criticality mode, it is more conservative than the stand alone
deferred switching method. When the utilization is high, task
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Fig. 10. Number of completed low-criticality jobs before mode switching vs
normalized utilization of 4 processors, overrun rate 0.5.

period T is relatively short. Consequently, the number of low-
criticality jobs active in vigilant mode becomes large and
the number of completed low-criticality jobs also increase
accordingly. Therefore, the advantage of our proposed method
is much more significant in heavily loaded cases. The results
for 8-processor cases are shown in Figure 11 and 12, and
similar trends as 4-processor cases can be observed, since
the schedulability condition on 8-processor is relatively more
conservative and it does not produce so much data as 4-
processor. These figures also indicate that performing low-
criticality tasks with imprecise computing in vigilant mode
allows more low-criticality jobs to be completed than precise
computing. Hence, our framework provides options with dif-
ferent tradeoff between computing precision and number of
completed jobs.
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Fig. 11. Number of completed low-criticality jobs before mode switching vs
normalized utilization of 8 processors with overrun rate 0.2.

In Figures 13 and 14, we compare the switching time to
high-criticality mode among different methods. The overrun
rate is 0.5 for the cases in both of the figures. Again, our
methods can delay the switching for a long time compared
to the previous works. This delay reduces the QoS loss in
high-criticality mode. In choosing the value for x, which is
the scaling factor for virtual deadline, we sweep from a small
value toward large values, and stop whenever schedulability
conditions are satisfied. When utilization is low, even small
x values are sufficient for schedulability. When utilization is
high, x must be chosen as greater or more balanced value.
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Fig. 12. Number of completed low-criticality jobs before mode switching vs
normalized utilization of 8 processors, with overrun rate 0.5.

Since the checkpoints in deferred switching and the unified
method largely depend on virtual deadlines, a relatively late
virtual deadline contributes to greater deferral by our methods.
By imprecise computing for low-criticality jobs in vigilant
mode, the amount of deferral is increased according to the
results shown in the figures.
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Fig. 13. Mode switching time vs normalized utilization of 4 processors.
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Fig. 14. Mode switching time vs normalized utilization of 8 processors.

VI. CONCLUSIONS

The classic mixed-criticality model adopts a very pes-
simistic high-criticality mode where all low-criticality tasks

are abandoned. Moreover, a single high-criticality job overrun
causes immediate switching to high-criticality mode where
all high-criticality tasks are scheduled with overly pessimistic
execution time estimate. Most of previous works address
these problems for uniprocessors while we focus on global
scheduling on multiprocessors. We developed a service pre-
serving technique in the fpEDF-VD framework that allows all
low-criticality tasks to execute with imprecise computing in
high-criticality mode. It is less conservative and remarkably
improves acceptance ratio compared to the previous work of
dual virtual deadline. Moreover, a vigilant mode and online
checkpoint method is proposed to deferred the switching to
high-criticality mode. These two techniques are further unified
into a single method. These techniques significantly improve
Quality of Service (QoS) for low-criticality tasks in mixed-
criticality systems.
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