
The Certainty of Unertainty: Randomness inNanometer DesignHongliang Changy, Haifeng Qianz, and Sahin S. Sapatnekarzy CSE Department z ECE DepartmentUniversity of Minnesota, Minneapolis, MN 55455, USAAbstrat. Randomness and unertainty are rearing their heads in sur-prising and ontraditory ways in nanometer tehnologies. On the onehand, unertainty and variability is beoming a dominant fator in thedesign of integrated iruits, and on the other hand, algorithms based onrandomness are beginning to show great promise in solving large saleproblems. This paper overviews both aspets of this issue.1 IntrodutionA historial look at integrated iruit tehnologies shows several inetion pointsthat have haraterized the 250nm, 180nm and 130nm nodes. The move to thesub-100nm regime is projeted to bring about the most revolutionary of thesehanges, in terms of how it impats the way in whih design is arried out. Mostnotably, randomness will beome a fat of life that designers will be fored toonfront, and perhaps, paradoxially, the only ertainty in nanometer designswill be the presene of unertainty. Several issues related to unertainty andrandomness will be disussed in this paper.We will begin, in Setion 2, by exploring the origins of randomness in nanome-ter iruits, and will then disuss methods that must be used in next-generationdesigns to handle suh variations in Setion 3. This �rst aspet of randomness,aused by proess and environmental variations, is \problemati" and requiresnew solutions to overome its e�ets, sine suh variations manifest themselvesas hanges in the delay and power dissipation of a iruit. As a onsequene, theanalysis of timing will move from a purely deterministi setting to a statistialanalysis, as will the analysis of leakage power, whih is beoming a major om-ponent of the total power dissipation. This has already lead to intense e�ortsin statistial stati timing analysis (SSTA) and statistial power analysis in re-ent years. Finding eÆient solutions to these problems presents numerous newhallenges, and while some �rst steps have been taken, many problems remainunsolved.Amid all these problems also lies an opportunity: there is a seond faet ofrandomness that is likely to have very positive onsequenes in the future, asdisussed in Setion 4. As the eletroni design automation world beomes moreeduated in the use of stohasti tehniques, new opportunities will arise on thealgorithmi side, as novel statistial approahes will be developed for solving



design problems. This has already been set into motion: problems as diverse asapaitane extration, power estimation, Vdd net analysis, rosstalk analysis,plaement, and ESD analysis are seeing viable stohasti solution tehniques.An attrative feature of the random tehniques is that when used in appropriatesettings, they an sale extremely well with inreasing problem sizes, and forseveral problems, they have the potential for loalized omputation. This paperwill overview suh algorithms and raise the hallenge of harnessing the power ofsuh methods for solving the problems of tomorrow.2 Soures of UnertaintyCurrent-day integrated iruits are a�ited with a wide variety of variationsthat a�et their performane. Essentially, under true operating onditions, theparameters hosen by the iruit designer are perturbed from their nominalvalues due to various types of variations. As a onsequene, a single SPICE-level transistor or interonnet model (or an abstration thereof) is seldom anadequate preditor of the exat behavior of a iruit. These soures of variationan broadly be ategorized into two lassesProess variations result from perturbations in the fabriation proess, dueto whih the nominal values of parameters suh as the e�etive hannellength (Leff ), the oxide thikness (tox), the dopant onentration (Na), thetransistor width (w), the interlayer dieletri (ILD) thikness (tILD), andthe interonnet height and width (hint and wint, respetively).Environmental variations arise due to hanges in the operating environmentof the iruit, suh as the temperature or variations in the supply voltage(Vdd and ground) levels. There is a wide body of work on analysis tehniquesto determine environmental variations, both for thermal issues [8, 7, 20, 10℄,and for supply net analysis [18℄.Both of these types of variations an result in hanges in the timing and powerharateristis of a iruit.Proess variations an also be lassi�ed into the following ategories:Inter-die variations are the variations from die to die, and a�et all the de-vies on same hip in the same way, e.g., they may ause all of the transistorgate lengths of devies on the same hip to be larger or all of them to besmaller.Intra-die variations orrespond to variability within a single hip, and maya�et di�erent devies di�erently on the same hip, e.g., they may result insome devies having smaller oxide thiknesses than the nominal, while othersmay have larger oxide thiknesses.Inter-die variations have been a longstanding design issue, and for severaldeades, designers have striven to make their iruits robust under the unpre-ditability of suh variations. This has typially been ahieved by simulating thedesign at not just one design point, but at multiple \orners." These orners are



hosen to enapsulate the behavior of the iruit under worst-ase variations,and have served designers well in the past. In nanometer tehnologies, designsare inreasingly subjeted to numerous soures of variation, and these variationsare too omplex to apture within a small set of proess orners.p2
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Fig. 1. The feasible region in (a) the performane parameter spae and (b) the de-sign/proess parameter spae.To illustrate this, onsider the design of a typial iruit. The spei�ationson the iruit are in the form of limits on performane parameters, pi, suh asthe delay or the stati or dynami power dissipation, whih are dependent on aset of design or proess parameters, di, suh as the transistor width or the oxidethikness. In Figure 1(a), we show the behavior of a representative iruit in theperformane spae of parameters, pi, whose permissible range of variations lieswithin a range of [pi;min; pi;max℄ for eah parameter, pi, whih orresponds to aretangular region. However, in the original spae of design parameters, di, thismay translate into a muh more omplex geometry, as shown in Figure 1(b).This may onservatively be aptured in the form of proess orners at whih theiruit is simulated.In nanometer tehnologies, intra-die variations have beome signi�ant andan no longer be ignored. As a result, a proess orner based methodology, whihwould simulate the entire hip at a small number of design orners, is no longersustainable. A true piture of the variations would use one proess orner in eahregion of the hip, but it is lear that the number of simulations would inreaseexponentially with the number of suh regions. If a small number of proessorners are to be hosen, they must be very onservative and pessimisti. Fortrue auray, a larger number of proess orners may be used, but this numbermay be too large to permit omputational eÆieny.The soures of these variations may be used to reate another taxonomy:



Random variations (as the name implies) depit random behavior that anbe haraterized in terms of a distribution. This distribution may either beexpliit, in terms of a large number of samples provided from fabriation linemeasurements, or impliit, in terms of a known probability density funtion(suh as a Gaussian or a lognormal distribution) that has been �tted tothe measurements. Random variations in some proess or environmental pa-rameters (suh as those in the temperature, supply voltage, or Leff ) anoften show some degree of loal spatial orrelation, whereby variations inone transistor in a hip are remarkably similar in nature to those in spa-tially neighboring transistors, but may di�er signi�antly from those thatare far away. Other proess parameters (suh as tox and Na) do not showmuh spatial orrelation at all, so that for all pratial purposes, variationsin neighboring transistors are unorrelated.Systemati variations show preditable variational trends aross a hip, andare aused by known physial phenomena during manufaturing. Stritlyspeaking, environmental hanges are entirely preditable, but pratially,due to the fat that these may hange under a large number (potentiallyexponential in the number of inputs and internal states) of operating modesof a iruit, it is easier to apture them in terms of random variations. Exam-ples of systemati variations inlude those due to (i) spatial intra-hip gatelength variability, also known as aross-hip linewidth variation (ACLV),whih observes systemati hanges in the value of Leff aross a retile dueto e�ets suh as hanges in the stepper-indued illumination and imagingnonuniformity due to lens aberrations [15℄, and (ii) ILD variations due to thee�ets of hemial-mehanial polishing (CMP) on metal density patterns:regions that have uniform metal densities tend to have more uniform ILDthiknesses than regions that have nonuniformities.The existene of orrelations between intra-die variations ompliates thetask of statistial analysis. These orrelations are of two types:Spatial orrelations To model the intra-die spatial orrelations of parameters,the die region may be tesselated into n grids. Sine devies or wires lose toeah other are more likely to have similar harateristis than those plaedfar away, it is reasonable to assume perfet orrelations among the devies[wires℄ in the same grid, high orrelations among those in lose grids andlow or zero orrelations in far-away grids. Under this model, a parametervariation in a single grid at loation (x; y) an be modeled using a singlerandom variable p(x; y). For eah type of parameter, n random variables areneeded, eah representing the value of a parameter in one of the n grids.Strutural orrelations The struture of the iruit an also lead to orrela-tions that must be inorporated in SSTA. Consider the reonvergent fanoutstruture shown in Figure 2. The iruit has two paths, a-b-d and a--d. If,for example, we assume that eah gate delay is a Gaussian random variable,then the PDF of the delay of eah path is easy to ompute, sine it is thesum of Gaussians, whih admits a losed form. However, the iruit delay isthe maximum of the delays of these two paths, and these are orrelated sine
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Fig. 2. An example to illustrate strutural orrelations in a iruit.the delays of a and d ontribute to both paths. It is important to take suhstrutural orrelations, whih arise due to reonvergenes in the iruit, intoaount while performing SSTA.3 Analysis of UnertaintyAs an example, we will now illustrate the onepts involved in the statistialanalysis of timing; similar tehniques are being developed for power analysis.The geometrial parameters assoiated with the gate and interonnet anreasonably be modeled as normally distributed random variables. Before weintrodue how the distributions of gate and interonnet delays will be modeled,let us �rst onsider an arbitrary funtion d = f(P) that is assumed to be afuntion on a set of parameters P, where eah pi 2 P is a random variable witha normal distribution given by pi � N(�pi ; �pi). We an approximate d linearlyusing a �rst order Taylor expansion:d = d0 + X8 parameters pi � �f�pi �0�pi (1)where d0 is the nominal value of d, alulated at the nominal values of parametersin the set P, h �f�pi i0 is omputed at the nominal values of pi, �pi = pi��pi is anormally distributed random variable and �pi � N(0; �pi). The delay funtionhere is arbitrary, and may inlude, for example, the e�ets of the input transitiontime on the gate/wire delay.If all of the parameter variations an be modeled by Gaussian distributions,this approximation implies that d is a linear ombination of Gaussians, whih istherefore Gaussian. Its mean �d, and variane �2d are:�d = d0 (2)�2d =X8i � �f�pi �20 �2pi + 2X8i6=j � �f�pi �0 � �f�pj �0 ov(pi; pj) (3)



where ov(pi; pj) is the ovariane of pi and pj .This approximation is valid when�pi has relatively small variations, in whihdomain the �rst order Taylor expansion is adequate and the approximation isaeptable with little loss of auray. This is generally true of the impat ofintra-hip variations on delay, where the proess parameter variations are rela-tively small in omparison with the nominal values, and the funtion hanges bya small amount under this perturbation. For this reason, the gate and interon-net delays, as funtions of the proess parameters, an be approximated as anormal distributions when the parameter variations are assumed to be normal.The existene of on-hip variations requires an extension of traditional STAtehniques to move beyond their deterministi nature. The SSTA approah,whih overomes these problems, treats delays not as �xed numbers, but asprobability density funtions (PDF's), taking the statistial distribution of para-metri variations into onsideration while analyzing the iruit. The simplest wayto ahieve this, in terms of the omplexity of implementation, may be throughMonte Carlo analysis. While suh an analysis an handle arbitrarily omplexvariations, its major disadvantage is in its extremely large run-times. Therefore,more eÆient methods are alled for.The task of stati timing analysis an be distilled into two types of operations:{ A gate is being proessed in STA when the arrival times of all inputs areknown, at whih time the andidate delay values at the output are omputedusing the \sum" operation that adds the delay at eah input with the input-to-output pin delay.{ One these andidate delays have been found, the \max" operation is appliedto determine the maximum arrival time at the output.In SSTA, the operations are idential to STA; the di�erene is that the pin-to-pindelays and the arrival times are PDFs instead of single numbers.The �rst method for statistial stati timing analysis to suessfully proesslarge benhmarks under probabilisti delay models was proposed by Berkelaar in[4℄. In the spirit of stati timing analysis, this approah was purely topologial,and ignored the Boolean struture of the iruit. It assumed that eah gate inthe iruit has a delay distribution that is desribed by a Gaussian PDF, andassumed that all proess variations were unorrelated.The approah maintains an invariant that expresses all arrival times as Gaus-sians. As a onsequene, sine the gate delays are Gaussian, the \sum" operationis merely an addition of Gaussians, whih is well known to be a Gaussian. Theomputation of the max funtion, however, poses greater problems. The set ofandidate delays are all Gaussian, so that this funtion must �nd the maximumof Gaussians. In general, the maximum of two Gaussians is not a Gaussian. How-ever, given the intuition that if a and b are Gaussian random variables, if a� b,max(a; b) = a, a Gaussian; if a = b, max(a; b) = a = b, a Guassian, it may bereasonable to approximate this maximum using a Gaussian. In later work in [11℄,a preise losed-form approximation for the mean and variane was utilized.



Another lass of methods inludes the work in [3℄, whih uses bounding teh-niques to arrive at the delay distribution of a iruit, but again, these ignore anyspatial orrelation e�ets, and it is important to take these into onsideration.Figure 3 shows a omparison of the PDF yielded by an SSTA tehnique thatis unaware of spatial orrelations, as ompared with a Monte Carlo simulationthat inorporates these spatial orrelations. The lear di�erene between theurves demonstrates the need for developing methods that an handle thesedependenies.
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Fig. 3. A omparison of the results of SSTA when the random variables are spatiallyorrelated. The line on whih points are marked with stars represents the aurateresults obtained by a lengthy Monte Carlo simulation, and the the solid urve showsthe results when spatial orrelations are entirely ignored. The upper plot shows theCDFs, and the lower plot, the PDFs [6℄.The approah in [6℄ presents a novel and simple method based on the appli-ation of prinipal omponent analysis (PCA) tehniques [13℄ to onvert a set oforrelated random variables into a set of unorrelated variables in a transformedspae; the PCA step an be performed as a preproessing step for a design. Theoverall idea is similar to that of Berkelaar's, but the use of PCA permits rapidand eÆient proessing of spatial orrelations. In reality, some parameters maybe spatially orrelated and others (suh as Tox and Nd) may be unorrelated:this method is easily extended to handle these issues.The overall ow of the algorithm is shown in Figure 4. The omplexity of themethod is p � n times the omplexity of CPM, where n is the number of squaresin the grid and p is the number of orrelated parameters, plus the omplexity of�nding the prinipal omponents, whih requires very low runtimes in pratie.



Input: Proess parameter variationsOutput: Distribution of iruit delay1. Partition the hip into n = nrow � nol grids, eah modeled by spatiallyorrelated variables.2. For eah type of parameter, determine the n jointly normally distributedrandom variables and the orresponding ovariane matrix.3. Perform an orthogonal transformation to represent eah random variablewith a set of prinipal omponents.4. For eah gate and net onnetion, model their delays as linear ombinationsof the prinipal omponents generated in step 3.5. Using \sum" and \max" funtions on Gaussian random variables, performa CPM-like traversal on the graph to �nd the distribution of the statistiallongest path. This distribution ahieved is the iruit delay distribution.Fig. 4. Overall ow of the PCA-based statistial timing analysis method.The overall CPU times for this method have been shown to be low, and themethod yields high auray results.4 Unertainty as a virtue4.1 IntrodutionThe onept of unertainty an also be harnessed to advantage in providingeÆient solutions to many diÆult problems. Examples of suh problems are asfollows:Randomized algorithms have been proposed in [14℄ for the solution of manyombinatorial problems, inluding problems suh as partitioning that arisein CAD. However, these have not been signi�antly developed in EDA.Monte Carlo methods have been used very suessfully to ompute the av-erage power dissipation of a iruit by applying a small fration of the expo-nentially large spae of possible input vetors to a iruit [5℄. Suh methodshave also been employed for SSTA, as desribed earlier.Random walk methods have been used to analyze large systems with loal-ized behavior, suh as in apaitane extration [9℄, power grid analysis [16℄,and we are urrently investigating their appliation to the analysis of eletro-stati disharge (ESD) networks and to the problem of plaement in physialdesign.Other misellaneous appliations of randommethods inlude tehniques forrosstalk analysis [19℄ and in the probabilisti analysis of routing ongestion[12, 21℄.All of these point to the fat that the use of statistial methods in design isa vibrant and growing �eld with many upoming hallenges, partiularly as,when used in the right ontexts (e.g., when the omputation is loalized), these



methods an sale extremely well. We will illustrate one suh method in thefollowing setion.4.2 Case Study: Power grid analysis using random walksOn-hip power grids play an important role in determining iruit performane,and it is ritial to analyze them aurately and eÆiently to hek for signalintegrity, inreasingly so in nanometer tehnologies.A typial power grid onsists of wire resistanes, wire indutanes, wire apa-itanes, deoupling apaitors, VDD pads, and urrent soures that orrespondto the urrents drawn by logi gates or funtional bloks. There are two sub-problems to power grid analysis: DC analysis to �nd steady-state node voltages,and transient analysis whih is onerned with �nding voltage waveforms on-sidering the e�ets of apaitors, indutors and time-varying urrent waveformpatterns.The DC analysis of a power grid is formulated as a problem of solving asystem of linear equations: GX = E (4)where G is the ondutane matrix for the interonneted resistors, X is thevetor of node voltages, and E is a vetor of independent soures. Traditionalapproahes exploit the sparse and positive de�nite nature of G to solve thissystem of linear equations for X. However, the ost of doing so an beomeprohibitive for a modern-day power grid with hundreds of millions of nodes,and this will only beome worse as the iruit size is ever growing from onetehnology generation to the next.
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(b)Fig. 5. (a)A representative power grid node. (b) An instane of a random walk \game."For the DC analysis of a VDD grid, let us look at a single node x in theiruit, as illustrated in Figure 5(a). Applying Kirho�'s Current Law, Kirho�'s



Voltage Law and the devie equations for the ondutanes, we an write downthe following equation: degree(x)Xi=1 gi(Vi � Vx) = Ix (5)where the nodes adjaent to x are labeled 1; 2; � � � ; degree(x), Vx is the voltageat node x, Vi is the voltage at node i, gi is the ondutane between node i andnode x, and Ix is the urrent load onneted to node x. Equation (5) an bereformulated as follows:Vx = degree(x)Xi=1 giPdegree(x)j=1 gj Vi � IxPdegree(x)j=1 gj (6)We an see that this implies that the voltage at any node is a linear funtionof the voltages at its neighbors. We also observe that the sum of the linearoeÆients assoiated with the Vi's is 1. For a power grid problem with N non-VDD nodes, we have N linear equations similar to the one above, one for eahnode. Solving this set of equations will give us the exat solution.We will equivalene this problem to a random walk \game," for a given �niteundireted onneted graph (for example, Figure 5(b)) representing a street map.A walker starts from one of the nodes, and goes to an adjaent node i every daywith probability px;i for i = 1; 2; � � � ; degree(x), where x is the urrent node,and degree(x) is the number of edges onneted to node x. These probabilitiessatisfy the following relationship:degree(x)Xi=1 px;i = 1 (7)The walker pays an amount mx to a motel for lodging everyday, until he/shereahes one of the homes, whih are a subset of the nodes. If the walker reaheshome, he/she will stay there and be awarded a ertain amount of money, m0.We will onsider the problem of alulating the expeted amount of money thatthe walker has aumulated at the end of the walk, as a funtion of the startingnode, assuming he/she starts with nothing.The gain funtion for the walk is therefore de�ned asf(x) = E[total money earned jwalk starts at node x℄ (8)It is obvious that f(one of the homes) = m0 (9)For a non-home node x, assuming that the nodes adjaent to x are labeled1; 2; � � � ; degree(x), the f variables satisfyf(x) = degree(x)Xi=1 px;if(i)�mx (10)



For a random-walk problem with N non-home nodes, there are N linear equa-tions similar to the one above, and the solution to this set of equations will givethe exat values of f at all nodes.It is easy to draw a parallel between this problem and that of power gridanalysis. Equation (10) beomes idential to (6), and equation (9) redues tothe ondition of perfet VDD nodes ifpx;i = giPdegree(x)j=1 gj i = 1; 2; � � � ; degree(x)mx = IxPdegree(x)j=1 gj m0 = VDD f(x) = Vx (11)A natural way to approah the random walk problem is to perform a ertainnumber of experiments and use the average money left in those experiments asthe approximated solution. If this amount is averaged over a suÆiently largenumber of walks by playing the \game" a suÆiently large number of times, thenby the law of large numbers, an aeptably aurate solution an be obtained.This is the idea behind the proposed generi algorithm that forms the mostbasi implementation. Numerous eÆieny-enhaning tehniques are employedin the implementation, and these have been desribed in [16, 17℄. The DC solutionabove has also been extended to solve the transient analysis problem, whih anbe handled similarly, and with greater eÆieny.5 ConlusionThe e�ets of variability and unertainty are here to stay in nanometer VLSIdesigns, and CAD tehniques must be found to overome them. This paper hasoutlined the basis of how a CAD engineer will have to deal with randomnessin the future: not only in terms of dealing with it during design, but also in thesense of exploiting it by using algorithms that exploit randomness. This paperonly skims the very surfae of this issue, and there is likely to be onsiderablework in this �eld in the future.Referenes1. A. Agarwal, D. Blaauw, V. Zolotov, and S. Vrudhula. Computation and re�nementof statistial bounds on iruit delay. In Proeedings of the ACM/IEEE DesignAutomation Conferene, pages 348{353, June 2003.2. A. Agarwal, D. Blaauw, V. Zolotov, and S. Vrudhula. Statistial timing analysisusing bounds. In Proeedings of Design and Test in Europe, pages 62{67, February2003.3. A. Agarwal, V. Zolotov, and D. T. Blaauw. Statistial timing analysis using boundsand seletive enumeration. IEEE Transations on Computer-Aided Design of In-tegrated Ciruits and Systems, 22(9):1243{1260, September 2003.
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