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Abstract— Fast and accurate routing congestion estimation
is essential for optimizations such as floorplanning, placement,
buffering, and physical synthesis that need to avoid routing
congestion. Using a probabilistic technique instead of a global
router has the advantage of speed and easy updating. Previously
proposed probabilistic models [1] [2] do not account for wiring
that may already be fixed in the design, e.g., due to macro
blocks or power rails. These “partial wiring blockages” certainly
influence the global router, so they should also influence a
probabilistic routing prediction algorithm. This work pro poses a
probabilistic congestion prediction metric that extends the work
of [2] to model partial wiring blockages. We also show a new
fast algorithm to efficiently generate the congestion map and
demonstrate the effectiveness of our methods on real routing
problems.

I. I NTRODUCTION

Routability is a key factor when performing floorplanning
or trying to close on timing via physical synthesis. A designer
could expend considerable effort trying to get the design into
a good state in terms of timing and signal integrity, only to
subsequently find that it is unroutable. Ideally, the designer
should be able to invoke snapshot routability analysis that
allows him or her to understand the routability issues involved
from making floorplanning or optimization decisions.

There are three ways to obtain this kind of analysis: (i)
empirical models [3] [4], (ii) global routers [5] [6], or (iii)
probabilistic analysis [1] [2]. Among them, only probabilistic
routing congestion analysis can efficiently provide since it
avoids actually performing global routing. Instead, givena
placement, it examines the set of nets in the design and uses
probability theory to compute the expected congestion for each
routing tile.

Lou et al. [1] propose an algorithm that consider all possible
pin-to-pin routes within the bounding box of the pins; each
route is then assigned an equal probability. Westraet al.
[2] recognize that this approach invariably produces biases
congestion towards the middle of the bounding box instead
of the periphery. It turns out that since routers also try to
minimize the insertion of vias, the periphery of the bounding
box actually has more congestion than the interior. Westraet
al. [2] propose to use onlyL- andZ-routes for the non-obvious
routes. Each possibleL shape and each possibleZ shape share
equal probability in their model. Similar models are also used
in [6] [7]. Our approach also adopts this philosophy.

Lou et al. and Westraet al. both briefly mention techniques
to handle complete wiring blockage. In practice, blockages
with absolutely no available tracks are rarely seen. Before

global routing, several resources may stake claim to wiring
resources which then become fixed for global routing. They
include: 1) local wiring on the bottom layers for the internal
pin connections for a gate, 2) power grids on multiple layers,
3) pre-routed clock wires, planned buses, or datapaths, 4) and
hierarchical logic, memory, or IP blocks. These may already
have been completely routed. Even if not, their routes may
be hidden from the top-level routing congestion map. These
blocks are unlikely to block 100% of the routing resources
since generally there should be some routing resources allo-
cated on the top layers. Previous approaches fail to model
that essentially every tile of a routing congestion map is
neither completely empty or completely full. There is almost
always some amount of wiring blockage that the global router
must take into account. Thus, it is certainly reasonable fora
probabilistic router to do the same. A global router is more
likely to route a net in a lower congestion region than in
a higher one; our proposed probabilistic router achieves the
same behavior. We also propose a new method to improve
the complexity of generating the probabilistic congestionmap
proposed in [2].

The remainder of the paper is as follows. Section II
overviews previous work in probabilistic routing congestion.
Section III presents definitions and notation. Section IV ex-
plains how to extend previous work to handle partial wiring
blockages; several toy examples are presented to show how
the probability computation leads to a more intuitive result. A
new fast algorithm for congestion map updating is proposed.
Finally, we show our experimental results in Section V.

II. OVERVIEW OF PREVIOUS WORK

The work of Westraet al. [2] adopts a scheme similar to
that of Lou et al. [1]. Probabilistic routing analysis is done
exclusively for two-pin nets. Multi-pin nets are broken up
into sets of two-pin nets by constructing either a minimum
spanning tree (MST) or rectilinear steiner tree (RST) over the
pins. Also both approaches do not model detours since they
account for a small fraction of the total global routing wire
length. Louet al. [1] consider all possible detour free paths
between two pins, while Westraet al. only considerL-shaped
andZ-shaped for non-obvious routes. For their testcases, only
1.2% of the two-pin nets have more than two bends, meaning
only that percentage of nets did not have anL- or Z- shape.
Westraet al.’s model suggests high probabilistic routing usage
along the boundary of a net’s bounding box.



Westraet al. classifies nets into four different categories:
short nets, flat nets,L-shaped nets, andZ-shaped nets. A short
net is a net that locates in one tile. A flat net spans at most
one tile in either the vertical or horizontal direction. AnL-
shaped net and aZ-shaped net spans more than one tile in
either direction and have one and two bends, respectively. See
Figure 1(a) for examples of each. For each net, a number
of likely paths is considered and the probabilistic usages are
assigned to each bucket in the bounding box of the net. The
net can be seen as spreading over its possible paths where each
path has the same probability. Routing congestion is defined
as the ratio of usage to capacity. If there are partial blockages
in some buckets, the usage of these buckets are not changed
at all. Instead, Westraet al. apply a simple model in which
the number of blocked tracks are subtracted from the capacity
of a bucket.
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Fig. 1. (a) Different nets considered in this paper. (b) The bucket (i, j) with
total vertical capacity 6 and partial blockages 2 (darken lines). The available
vertical capacity is 4.

III. D EFINITIONS

We divide the layout into rows and columns ofbuckets (or
tiles or bins). Each bucket contains a set of wiring tracks;
the bucket size can be varied to trade off speed for solution
quality. Following previous works, the height and width of
all buckets are assumed to be same, and defined asH and
W . Let the distance between the left, right, bottom, and top
border of a bucket and a pinp be denoted bylp, rp, bp, and
tp, respectively. The pin’s coordinates are given by(xp, yp).
A 2-pin net f may span a number of buckets. The number
of horizontal and vertical buckets netf spanned are defined
as the width and height of the bounding box containingf ,
respectively.

Let Uf
h (i, j) and Uf

v (i, j) be the horizontal and vertical
usages due to a netf in the bucket with coordinates (i, j),
with i being the coordinates in vertical direction. Define the
available horizontal and vertical capacity of the bucket (i, j)
asAh(i, j) andAv(i, j), whereAh(i, j) andAv(i, j) are the
number of available horizontal and vertical wiring tracks inside
bucket (i, j). Fig 1(b) shows one bucket withAv(i, j) = 4. The
(probabilistic) horizontal and vertical congestion of a bucket
is defined to be the ratio of its total (probabilistic) usages
contributed by all nets to its available capacity. We use the
term congestion or usage to denote the average of horizontal
and vertical congestion or usage.

Following the convention of [1] and [2], assume that for
analysis purposes, two pins of a net lie in the lower-left and
upper-right corners of their bounding boxes.

IV. H ANDLING PARTIAL WIRING BLOCKAGE

We now present the probabilistic computation for the four
different classes of nets: short, flat,L-shaped, andZ-shaped.

A. Short Nets

A short net is a net that two pins are located in one tile.
We handle short nets in the same way as in [2]. Figure 2(a)
illustrates the usage computation.

B. Flat Nets

A flat net spans at most one tile in either the vertical or
horizontal direction, and is defined as a horizontal or vertical
flat net.

Consider a vertical flat net that spans from (i, j) to (i+k, j),
as shown in Figure 2(b). The vertical usage of the each bucket
is as same as in [2],Uv(i, j) = ta/H , Uv(i + k, j) = bb/H ,
Uv(i + m, j) = 1, 0 < m < k. Note that the wire traveling
through the bucket will occupy a full vertical track.
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Fig. 2. (a) A short net. (b) A vertical flat net.

The short horizontal route betweena and b could occur in
any of the buckets. We assume that it is more likely to occur
in a bucket with less partial routing blockage. We choose to
make it proportional to available routing capacity,

Uh(i + m, j) =
|xa − xb| · Ah(i + m, j)

W · S
, 0 ≤ m ≤ k

where S =
∑k

m=0
Ah(i + m, j). Note that if one assumes

equal bucket capacities, the formula becomesUh(i + m, j) =
|xa − xb|/(W · hf ), which was given in [2].

C. L-Shaped Nets

Nets with wf > 1 and hf > 1 need to have at least one
bend. AnL-shaped route has two possible configurations as
shown in Figure 3. Letα be the probability of using routeA
and1−α be the probability of using RouteB. In [2], α was
implicitly assumed to be 0.5. Clearly, if one of the two routes
has more wiring blockage than the other, this needs to take an
alternative value.

Let ShA and SvA be the number of available tracks at
the horizontal and vertical directions for theL-shaped route
A shown in Fig. 3, whereShA = min0≤n≤l Ah(i, j + n),
SvA = min0≤m≤k Av(i + m, j + l). Let ShB and SvB be
the number of available tracks at the horizontal and vertical
directions for anotherL-shaped routeB derived similarly, then
α = min(ShA, SvA)/(min(ShA, SvA) + min(ShB , SvB)).



The horizontal and vertical usage of each bucket onA route
in Fig. 3 are as same as in [2], whereUh(i, j) = ra/W ,
Uh(i, j + l) = lb/W , Uv(i, j + l) = ta/H , Uv(i + k, j + l) =
bb/H , Uh(i, j +n) = 1, 0 < n < l, andUv(i+m, j + l) = 1,
0 < m < k.

As mentioned in [2],L-shapes withwf = hf = 2 are
different from otherL-shapes since noZ-shape is possible.
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Fig. 3. An L-shaped net

D. Z-Shaped Nets

Z-shapes are the most complicated case. If bothwf andhf

are greater than 2, we can have two orientations: horizontal
and vertical, named after their orientation of the center piece
of the Z-shapes.

Now let consider the usage of verticalZ-shapes as shown in
Fig. 4(a). The routing graph which shows all possible choices
of the verticalZ-shape in Fig. 4(a) is also shown in Fig. 4(b),
which is a directed graph. In the figure,Q = wf−2, each edge
un corresponds a part of the net entering from the bucket (i,
j +n−1) to the bucket (i, j +n), each edgedn corresponds a
part of the net entering from the bucket (i, j+n) to the bucket
(i+ k, j + n), and each edgeen corresponds a part of the net
entering from the bucket (i + k, j + n) to the bucket (i + k,
j + n + 1), n = 1, . . . , Q. There is a capacityF associated
with each edge, where

F (un) = min(Ah(i, j + n − 1), Ah(i, j + n)),

F (dn) = min
0≤m≤l

Av(i + m, j + n),

F (en) = min(Ah(i + k, j + n), Ah(i + k, j + n + 1)).

Given Q possible routes R(n) =
{u1, . . . , un, dn, en, . . . , eQ}, n = 1, . . . , Q, a vertical
Z-shaped net routed by global router must be one of the
shape. DefineP (n) as the probability of a verticalZ-shaped
net routed with the shapeR(n). ThenP (n) must satisfy the
following properties: 1)0 ≤ P (n) ≤ 1, n = 1, . . . , Q; 2)
∑Q

n=1
P (n) = 1. Suppose allP (n)s are already known, then

the usage of each bucket can be derived as follows.
For the leftmost bucket in the bottom row, the horizontal and

the vertical cost areUh(i, j) = ra/W , Uv(i, j) = 0. For the
other buckets in the bottom row, the horizontal usage consists
of two terms: the first for the case the vertical segmentd(n)
on routeR(n) will start in this bucket. The horizontal usage
in that case would be 0.5 since the bend would on average
be in the middle of the bucket. The other term is for the case
d(n) is at theright of the bucket and the usage would be 1.

Only if the bend occurs in a bucket, it gets vertical usage.
The total vertical usage ofta/H is spread over the candidate
buckets. Therefore, we haveUh(i, j+n) = 1/2P (n)+PR(n),
Uv(i, j + n) = ta · P (n)/H , 1 ≤ n < l, wherePR(n) =
∑Q

m=n+1
P (m).

For the top row, the reasoning is similar. Horizontal bucket
usage consists of two terms. One for the case that the bend oc-
curs in that bucket, and one for the case the bend occurs to its
left. Vertical usage is spread over the buckets. The horizontal
and vertical cost for these buckets areUh(i+k, j+l) = lb/W ,
Uv(i + k, j + l) = 0, Uh(i + k, j + n) = 1/2P (n) + PL(n),
1 ≤ n < l, andUv(i + k, j + n) = bb · P (n)/H , 1 ≤ n < l.
wherePL(n) =

∑n−1

m=1
P (m).
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Fig. 4. (a) A verticalZ-shaped net. (b) The routing graph ofZ-shaped net.

The horizontal and vertical usage for bucket (i + m, j + n)
in the center of the netbox are

Uv(i + m, j + n) = P (n),

Uh(i + m, j + n) = 0, (1)

where0 < m < k, 0 < n < l.
Define Sv and Sh as the total capacities of vertically and

horizontally orientedZ-shapes. In order to find the totalZ-
usage, we therefore scale the horizontal and verticalZ-usages
with β = Sh/(Sh + Sv) and 1 − β = Sv/(Sh + Sv),
respectively, as we did with a factorα for the L-shapes, and
sum them all up.

In previous work [2],P (n) = 1/Q for every route, and
β = (wf − 2)/(wf + hf − 4). This assumption is only valid
when there is no partial blockage. Look at the example in
Fig. 5(a), based on the model of [2], each route has same
probability1/3. However, it is more intuitive for global router
to route a net in the area with less wiring blockages.

We propose a new metric to defineP (n) taken into con-
sideration of the partial blockage information. Since there
are many different assumptions that one could make that
lead to different probabilities assigned to routes, we define
P (n) based on the minimum capacities of each route. For
each verticalZ-shaped routeR(n), its probability P (n) is
P (n) = F (n)/Sv, where F (n) is the minimum capacity
of route R(n) and Sv =

∑Q
n=1

F (n) is the total minimum
capacities of the all verticalZ-shaped routes. It is obvious
that F (n) is related to the capacities of every edge on route
R(n). However, for every edgeum, its capacity is shared by
Q−m−1 routes, and for every edgeem, its capacity is shared



by m routes. Therefore, for one specific routeR(n), it is hard
to know the exact capacities of edgesum andem contributed
to R(n). If the capacities of allu and e edges are infinity,
F (n) is equal to the capacity of unique edgedn of each route.
In other cases, for each routeR(n), n = 1, . . . , Q, we will
redistribute the capacity of every edgeum, m = 1, . . . , n,
on routeR(n) according to the ratio between the capacity of
unique edgedn of R(n) and the total capacities of all unique
edges of routes sharing edgeum. The capacity of every edge
em, m = n, . . . , Q is redistributed in a similar way. After we
get new capacity of every edge on routeR(n), the minimum
capacityF (n) can be easily computed.
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Fig. 5. Two examples ofZ-shaped nets. The capacity of each edge is shown
on the graph.

For n = 1, . . . , Q, defineFL(dn) and FR(dn) as the total
vertical capacities of all edgesdm to the left and right of
edgedn including edgedn itself, FL(dn) =

∑n

m=1
F (dm),

FR(dn) =
∑Q

m=n F (dm). The minimum capacityF (n) of
each routeR(n) can be computed as

F (n) = min{F (u1)
F (dn)

FR(d1)
, . . . , F (un)

F (dn)

FR(dn)
, F (dn),

F (en)
F (dn)

FL(dn)
, . . . , F (eQ)

F (dn)

FL(dQ)
}.

We can also rewrite as F (n) = F (dn) ·
min{Ku(n), 1, Ke(n)}. where

Ku(n) = min{
F (u1)

FR(d1)
, . . . ,

F (un)

FR(dn)
},

Ke(n) = min{
F (en)

FL(dn)
, . . . ,

F (eQ)

FL(dQ)
}.

Similar analysis can be done for horizontalZ-shaped routes,
andSh andβ can be derived accordingly. It is easy to prove
when there is no partial blockages and the capacities of each
bucket are same, our model will give exactly the sameP (n)
as in [2].

The example in Fig. 5(a) is used to illustrate our algorithm.
It is easy to getFL(d1) = FR(d3) = 20, FL(d2) = FR(d2) =
25, FL(d3) = FR(d1) = 45.

F (1) = 20 · min

(

20

45
, 1, 1,

20

25
,
20

45

)

=
400

45
,

F (2) = 5 · min

(

20

45
,
20

25
, 1,

20

25
,
20

45

)

=
100

45
,

F (3) =
400

45
.

ThereforeP (1) = 4/9, P (2) = 1/9 and P (3) = 4/9.
Compared to the method in [2], the probability of pathR(2)
is reduced by 2/9 and are evenly distributed toR(1) andR(3).

Suppose we try to route 20 two-pin nets where all lower left
pins are in the same bucket, and all upper right pins are in
the same buckets. The vertical probabilistic congestion ofd1,
d2 and d3 are 4/9 · 20/20 = 4/9, 1/9 · 20/5 = 4/9, and
4/9 · 20/20 = 4/9, respectively. The congestion ofd1, d2

and d3 derived from previous method [2] are1/3, 4/3 and
1/3, respectively. Our model predicts that the congestion of
all three routes are equal. This is more likely to happen since
this solution leaves evenly space for each route and predicts
the router will take less probability to route thisZ-shaped net
with the second route. We expect a clever enough global router
behaves more like our predicted model than the one proposed
in [2].

For another example in Fig. 5(b), with similar analysis, we
can getP (1) = 0.4447, P (2) = 0.1779 andP (3) = 0.3774.
Suppose we try to route 10 two-pin nets where all lower left
pins are in the same bucket, and all upper right pins are in the
same buckets. The horizontal probabilistic congestion ofe2 (
the edge on the top row with capacity 5 ) is0.996 compared
to 1.067 derived from [2]. Our metric will put more routes on
the third route than the second since the first route occupies
most of tracks ofe2 and therefore the probability of the second
route is decreased.
E. Algorithm and Fast Map Updating

Following the work of [2], it is necessary to decide what
the relative probabilities ofL-shapes versusZ-shapes should
be. Letγ = #netsL/(#netsL + #netsZ) be the probability
of taking an L-route over aZ-route. The valueγ can be
chosen by previous design experience, i.e., how many routes
are optimally routed or fixed by the designer. The combination
probabilistic usages areULZ = γUL + (1 − γ)UZ .

The algorithmCPPB (Congestion Prediction with Partial
Blockage) to predict the congestion map of given nets is
illustrated as follows.

Algorithm CPPB
Input Nets SetN
Output The Congestion Map forN
Begin
1: Create maps with loaded partial wiring blockage
2: For each netf ∈ N
3: pin-pairs = MST(n) or pin-pairs = RST(n)
4: For each pin-pair(a, b)
4: If (a, b) is a short net
5: update short-congestion((a, b))
6: Else if (a, b) is a flat net
7: update flat-congestion((a, b))
8: Else
9: updateγ × L-shape-congestion((a, b))
10: update(1 − γ) × Z-shape-congestion((a, b))

It is easy to see that for short nets, flat nets andL-shape
nets the algorithm takes linear time with respect to the
maximum between horizontal buckets and vertical buckets the
net spanned,max(wf , hf ). For Z-shaped nets, with dynamic
programming it takesO(max(wf , hf )) in the bounding box
to compute allFL(dn), FR(dn), Ku(n), Ke(n), F (n), P (n),



PL(n) andPR(n)s for both vertical and horizontalZ-shaped
nets, i.e.,FL(dn) = FL(dn − 1) + F (d1). Also, it takes
O(max(wf , hf )) to update the usage value of the top and
bottom rows for the verticalZ-shaped net, and the left and
right columns for the horizontalZ-shaped net. However, it still
takesO(wf · hf ) time to update the usage value for all other
buckets. Thus the total complexity isO(#nets · #buckets),
which is the same as the one proposed in [2].

We propose a new algorithm to improve this complexity
and the one in [2]. Using verticalZ-shaped net as example,
we know that the horizontal usage of all center buckets are
zero. The vertical usage for all buckets on edgedn are the
same as show in Eq. 1, which isP (n). Instead of updating
them explicitely, for all buckets in one column, we can create a
temporary usage map with initial value zero in every buckets,
and store a positive value, e.g.,P (n) before bucket (i+k+1,
j + n), and a negative value,−P (n) after bucket (i, j + n).
After the temporary map is derived, the usage of each bucket in
the final map can be derived by scanning from the top bucket
in the temporary map and summing up all usage values in
the temporary map before this bucket. Note that the tempory
map has one more row and one more column than original
map since all values stored in the tempory map exist in the
interval of every two buckets in the final usage map and forn
buckets, there aren+1 intervals. The usage value for buckets
in short nets, flat nets,L-shaped nets and the buckets in the
peripheral ofZ-shaped nets can be directly stored in the final
usage map. Since the usage updating process for all center
buckets inZ-shaped nets can be done inO(max(wf , hf )) with
this tempory map method, the total algorithm complexity is
O(#nets ·max(hf , wf )+MapSize), whereMapSize is the
total number of buckets in the whole map. Our new algorithm
dramaticaly speeds up the congestion map construction when
there are many global nets across the chip.

It should be pointed out that for a high congested design,
detour can not be avoided, and the assumption of Westraet
al. may be not valid. Global router also need several iterations
to reroute the detour net. Note that probabilistic approachcan
be extended to handle detour net by multiple iterations. The
high congested area is identified. In next iteration, all nets
going over that area are identified. For each net, the bounding
box are expanded (like creating two qseudo pins in the corner
of expanding box) and the congestion of each bucket in this
expanding box are recomputed.

V. EXPERIMENTAL RESULTS

The probabilistic congestion router was implemented in
C++ in an AIX environment on an IBM RX6000 machine (1.1
GHz) with 2G memory. For our experiments we consider two
designs, Chip A, a random logic macro with 60801 routable
nets and Chip B, an industrial ASIC with 225100 routable nets.
The size of buckets for Chip A and B are 22500 and 172638,
respectively. Before performing global routing or probabilistic
routing estimation, we first load the wiring blockage map,
which includes wiring for internal pin connections, power
grid, IP blocks, and I/O cells. Figures 7(a) and 8(a) show the

wiring blockages before routing. Brighter color means more
blockages (part with yellow color has more blockage than
green). Note how clearly partial wiring blockages caused by
macro blocks can be seen for Chip A. For Chip B the wiring
blockage is dispersed across blockages in the middle of the
chip and C4 pads.

To construct the predicted probabilistic map, we use aγ
value of 0.6, which is also the average ratio ofL routes toZ
routes observed by [2]. Figures 7(b) and 8(b) show the results
from the probabilistic congestion map predicted by our method
while Figures 7(c) and 8(c) show the usage constructed by
the industrial global router. We use MST to break multi-pin
nets to 2-pin nets. The comparison between these maps shows
that our predicted congestion and the real congestion seen by
global router match quite well. For each bucket, we compute
the relative error of the probabilistic congestion map relative
to the global router map. The error histograms for these setsof
buckets are shown in Figure 6. We observe that in both cases
85% of the buckets have relative error less than 5% error and
that less than 1% of the buckets have more than 15% error.

The running time of Chip B for different bucket sizes is
shown in Table I. We can see it is linear with respect to the
number of buckets.

TABLE I
THE CPUTIME OF CHIP B FOR DIFFERENT BUCKET SIZES. THE BUCKET

SIZE IS REPSENTED BY#COLUMNS× #ROWS

Grid size Running time (second)
97× 96 31

278× 276 45
417× 414 68
556× 552 100
834× 828 189

1112× 1105 311
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Fig. 6. Error Distribution for (a) Chip A and (b) Chip B
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(a) Original Usage

(b) Predicted Usage

(c) Usage according to global router

Fig. 7. Usage map for Chip A

(a) Original Usage

(b) Predicted Usage

(c) Usage according to global router

Fig. 8. Usage map for Chip B


