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ABSTRACT
Traditional approaches to analyzing electromigration (EM) in on-
chip interconnects are largely driven by semi-empirical models.
However, such methods are inexact for the typical multisegment
lines that are found in modern integrated circuits. This paper
overviews recent advances in analyzing EM in on-chip interconnect
structures based on physics-based models that use partial differen-
tial equations, with appropriate boundary conditions, to capture the
impact of electron-wind and back-stress forces within an intercon-
nect, across multiple wire segments. Methods for both steady-state
and transient analysis are presented, highlighting approaches that
can solve these problems with a computation time that is linear in
the number of wire segments in the interconnect.

CCS CONCEPTS
•General and reference→Reliability; •Hardware→Metallic
interconnect; Very large scale integration design; Electronic
design automation; Physical design (EDA); Aging of circuits
and systems.
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1 INTRODUCTION
Electromigration (EM) is a very significant problem for current-day
and future integrated circuits [1–3]. Aswire widths have shrunk due
to scaling (these width reductions are further exaggerated by the
need to create cladding and capping layers in copper interconnects),
the current densities in on-chip wires have increased tremendously.
Moreover, while older technologies largely required EM checks
in upper metal layers that carry the largest currents, in today’s
technologies, as transistors drive increasing amounts of current
through narrow wires, EM is a bottleneck in lower metal layers [4,
5], potentially affecting a large number of on-chip wire segments.

The conventional method for EM analysis for interconnects in-
volves a two-stage process. In the first stage, immortal wires are
filtered out using the Blech criterion [6], which recognizes that
stress in a metal wire can settle to a steady-state value due to the
counterplay between the electric field and the back-stress. In the
second stage, potentially mortal wires undergo further analysis
using the semi-empirical Black’s equation to check whether or not
the EM failure may occur during the product lifespan [7]. The limits
used in each check are typically characterized on test structures
with a single segment and extrapolated to multisegment lines. To
overcome the limitations of these models, there has been increasing
interest in using physics-based analysis for EM in interconnects.
The roots of such analysis lies in decades-old work by [8–10], and
culminated in the work of Korhonen et al. in [11], which presented
a canonical treatment of EM equations in a metallic interconnect,
with solutions for a semi-infinite and finite line. These results were
further refined for single-segment lines in [12, 13] by using an
infinite series solution to the equations to predict EM failures.

The EM solution for single-segment lines does not carry over to
multisegment lines. Consider the two-segment structure of Fig. 1(a),
with current densities of 𝑗1 = 𝑗 and 𝑗2 = 2 𝑗 in the two segments,
where 𝑤1 = 𝑤2 = 𝑤 , and 𝑙1 = 𝑙2 = 𝑙 . In [14], it was observed that
the time-to-failure of the segment with the lower current density
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was shorter, and the discrepancy was explained by stating that
the underlying cause is that Segment 1 provides atomic flux to
Segment 2, leading to higher depletion at its cathode. Empirical
approaches fail to capture this stress accumulation, but physics-
based methods do so. The steady-state stress profile obtained from
Korhonen’s equation is shown in Fig. 1(b), using notation to be
defined in Section 2: even though the segment at right has lower
current density, it experiences higher stress, 𝜎 (𝑥) at its right end,
due to the accumulation of stress over the two segments.

Analogous to the traditional semi-empirical methodology, physics-
based EM approaches must solve two types of problems:
(1) The steady-state analysis problem considers the case when all
transients have settled, and determines the steady-state stress in
the wire. If this stress is below the critical stress for void formation,
the wire is considered to be immortal. This analysis can be seen
as a generalization of the Blech criterion, which solves the steady-
state analysis problem for a single-segment wire. By filtering out
immortal wires [15], the number of wires that must be considered
for more detailed analysis is reduced to a more manageable number.
(2) The transient analysis problem is solved on potentially mortal
wires (which pass the above immortality filter), and determines
the evolution of stress as a function of time in these wires. This
solution is obtained by solving Korhonen’s equation, together with
the corresponding boundary conditions, over time and over all seg-
ments in a multisegment interconnect. While Korhonen’s equation
provides the time to void formation, during the post-voiding phase
that follows, it is possible for a wire to remain functional. A modifi-
cation to Korhonen’s equation that accounts for void formation was
proposed in [16] and numerical solutions based on the so-called
extended Korhonen model (EKN) were provided in [17].

Early methods for solving for EM failure on large structures [13,
15, 18–20], such as multisegment interconnects with a large num-
ber of segments, were either computationally expensive or insuffi-
ciently accurate. However, there has been a great deal of progress
in recent years that enables the accurate analysis of the transient
and steady-state analysis problems with a computation time that
is linear in the number of segments. In this paper, we present an
overview of methods that perform fast analysis of large multiseg-
ment interconnects. In Section 2, we present the physics-based
formulation for EM. Sections 3 and 4 overview recent progress in
solving the steady-state and transient EM problems, respectively,
and we conclude the paper in Section 5.

2 BACKGROUND
2.1 Korhonen’s Equation
Fig. 2 shows the cross-section of a Cu dual-damascene (DD) wire
and illustrates the electromigration mechanism in terms of two
driving forces i.e. the electron wind force and the back-stress force.
When current flows in the wire, the momentum of the electrons
drive metal atoms from the cathode towards the anode, in the
direction of electron flow. The movement of migrating atoms is
limited to a single metal layer since the barrier layer acts as a
blocking boundary for mass transport [21, 22] and prevents atoms
from migrating to other metal layers. Due to this electron wind
force, the cathode is depleted of metal atoms and a tensile stress
is built up near the cathode, which may lead to void formation.

Figure 1: (a) A two-segment interconnect topology. (b) The
results of a physics-based analysis of its steady-state stress.
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Figure 2: Illustration of electromigration in a Cu wire [15].

Simultaneously, migrating atoms accumulate at the anode terminal
and a compressive stress is created near the anode. As metal atoms
migrate towards the anode, the resulting concentration gradient
(sometimes referred to in the literature as the chemical potential
gradient) creates a stress-induced reverse flow of atoms to the
cathode. This force, which acts against the electron wind force, is
proportional to the stress gradient and known as back-stress force.

A single interconnect segment injects electron current from the
cathode towards the anode. Since the length of a wire is typically
much larger than the other two dimensions, the temporal evolution
of EM-induced stress,𝜎 (𝑥, 𝑡), at any point in the segment is modeled
by the 1–D partial differential equation (PDE) [11] that relates the
stress 𝜎 to 𝑥 , the distance from the cathode:

𝜕𝜎

𝜕𝑡
=

𝜕

𝜕𝑥

[
𝜅

(
𝜕𝜎

𝜕𝑥
+ 𝛽 𝑗

)]
(1)

Here, 𝛽 = 𝑍 ∗𝑒𝜌/Ω, and 𝜅 = 𝐷𝑎BΩ/(𝑘𝑇 ), where 𝑗 is the current
density through the wire, 𝑍 ∗ is the effective charge number, 𝑒 is
the electron charge, 𝜌 is the resistivity, Ω is the atomic volume for
the metal, B is the bulk modulus of the material, 𝑘 is Boltzmann’s
constant,𝑇 is the temperature, and𝐷𝑎 = 𝐷0𝑒−𝐸𝑎/𝑘𝑇 is the diffusion
coefficient, with 𝐸𝑎 being the activation energy.

As in [11], the sign convention for 𝑗 is in the direction of electron
current, i.e., opposite to conventional current and the electric field.
There are two terms on the right hand side of (1). The second term,
𝛽 𝑗 , represents atomic flux attributable to the electron wind force,
while the first term containing the stress gradient 𝜕𝜎/𝜕𝑥 accounts
for the flux related to the back-stress force. The sum, (𝜕𝜎/𝜕𝑥 + 𝛽 𝑗),
is proportional to the net atomic flux.

2.2 Equations for a Multisegment Interconnect
A general interconnect structure consists of a set of segments of
wires between vias and junctions, each associated with a current
density. In general, for a multisegment interconnect structure, cur-
rents may be injected (or drawn) at intermediate nodes through
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vias. For an intermediate node 𝑛𝑖 of the structure with degree 𝑑𝑖 ,
we denote the set of incident segments as 𝑆𝑖 = {𝑠1, 𝑠2, · · · , 𝑠𝑑𝑖 }.

Stress evolution in each segment is described by the partial
differential equation (1). These equations are supplemented by a
set of boundary conditions (BCs) that relate the stress at various
segments, and a temporal boundary condition that initializes the
segment stresses to zero at 𝑡 = 0. The spatial boundary conditions,
which must be obeyed over all time points, are as follows [17]:
(1) Continuity constraints: At any intermediate node, the stress must
be continuous. For each segment 𝑠𝑘 incident on node 𝑛𝑖 , if 𝜎𝑠𝑘 |𝑛𝑖 is
its stress at 𝑛𝑖 , then

𝜎𝑠1 |𝑛𝑖 = 𝜎𝑠2 |𝑛𝑖 = · · · = 𝜎𝑠𝑑𝑖
|𝑛𝑖 (2)

(2) Flux constraints: The net atomic flux entering each node 𝑛𝑖 must
sum to zero, i.e., ∑︁

𝑠𝑘 ∈𝑆𝑖
𝑤𝑠𝑘𝜏𝑠𝑘

(
𝜕𝜎𝑠𝑘

𝜕𝑥

����
𝑛𝑖

+ 𝛽 𝑗𝑠𝑘

)
= 0 (3)

where 𝑆𝑖 is the set of segments incident on 𝑛𝑖 . The term 𝑗𝑠𝑘 is
the current density through segment 𝑠𝑘 , which is positive when
directed away from 𝑛𝑖 and negative when directed into 𝑛𝑖 , and𝑤𝑠𝑘

and 𝜏𝑠𝑘 are, respectively, the segment width and thickness.
For a line with uniformwidth and thickness, this condition becomes:(

𝜕𝜎𝑠𝑖

𝜕𝑥

����
𝑛𝑖

+ 𝛽 𝑗𝑠𝑖

)
=

(
𝜕𝜎𝑠𝑖+1

𝜕𝑥

����
𝑛𝑖

+ 𝛽 𝑗𝑠𝑖+1

)
(4)

for every node 𝑛𝑖 connecting segments 𝑠𝑖 and 𝑠𝑖+1.
A special case of condition (3) is that at any end-point (terminal)
node 𝑛𝑖 of the structure with degree 1, the boundary conditions
dictate that there is zero atomic flux through the boundaries at the
end points over all time, i.e.,

𝜕𝜎

𝜕𝑥

����
𝑛𝑖

+ 𝛽 𝑗𝑠 = 0 (5)

where 𝑗𝑠 is the current density in the segment 𝑠 incident on 𝑛𝑖 .
(3) Mass conservation constraint: Finally, the total flux over the entire
interconnect must be conserved:∑︁

all segments 𝑠𝑘

∭
𝜎𝑠𝑘 (𝑥) 𝑑𝑥 𝑑𝑤 𝑑𝜏 = 0 (6)

where 𝜎𝑠𝑘 (𝑥) is the stress at location 𝑥 in segment 𝑠𝑘 . The triple
integral is taken over the volume of each segment 𝑠𝑘 .

3 STEADY-STATE ANALYSIS
When the electron wind and back-stress forces reach equilibrium
in the steady state, then for each segment 𝑖 , over its entire length,

𝜕𝜎𝑖

𝜕𝑥
+ 𝛽 𝑗𝑖 = 0, i.e.,

𝜕𝜎𝑖

𝜕𝑥
= −𝛽 𝑗𝑖 (7)

Thus, after all transients have dissipated, the stress varies linearly
along a segment, with a gradient of the stress that is proportional
to the segment current density, as observed in [23–26].

The Blech immortality criterion for a single-segment line asserts
that if the maximum steady-state stress falls below the critical
stress, 𝜎𝑐𝑟𝑖𝑡 , required to nucleate a void, then the wire is considered
immortal. This translates to the check [6]:

𝑗𝑙 ≤ ( 𝑗𝑙)𝑐𝑟𝑖𝑡 (8)

Figure 3: A three-segment example to illustrate the intuition
behind fast steady-state computation.

Figure 4: Inaccuracy of the traditional Blech filter for the
ibmpg6 benchmark [30].
where ( 𝑗𝑙)𝑐𝑟𝑖𝑡 is a function of the critical stress, 𝜎𝑐𝑟𝑖𝑡 .

For a general multisegment interconnect, the stress function is
continuous at segment boundaries (Eq. (2)) and the stress varies
linearly along the wire, as shown for a three-segment interconnect
in Fig. 3. The steady-state stresses can be represented by a set of
difference equations [27–29]. The steady-state stresses at the two
ends of edge 𝑒𝑘 , directed from node 𝑎 to node 𝑏, are related by:

𝜎𝑏 − 𝜎𝑎 = −𝛽 𝑗𝑘𝑙𝑘 (9)

If we know the stress 𝜎1 at the left end of a multisegment intercon-
nect line without branches, every node stress can be analytically
computed in terms of 𝜎1. To find 𝜎1, we can apply the mass conser-
vation constraint (6); this yields all stresses in the line.

In [29], a current-based formulation was presented, using the
fact that the stress difference across a wire segment is a function
of its current. For tree topologies, it was shown that the stress
computation can be performed through a linear-time tree traversal,
which is both fast and very inexpensive in its memory footprint;
furthermore, it was shown that for any mesh, it is adequate to
analyze a spanning tree because the total “stress drop” around any
cycle is zero for the currents in the network at any point in time.

Fig. 4 [30] plots the current density 𝑗 vs. the wire length 𝑙 within
the segments of the ibmpg6 benchmark in Cu DD technology. The
currents in the Vdd and Vss lines may be either positive or neg-
ative, and their magnitude affects EM. The black triangles show
the contours of 𝑗𝑙 = ( 𝑗𝑙)𝑐𝑟𝑖𝑡 : when the magnitude lies within this
frontier for a segment of the grid, the traditional Blech criterion (8)
would label the wire as immortal; otherwise it is potentially mortal.
The figure shows green markers for correct predictions and red
markers for incorrect predictions. It is immediately obvious that
the Blech criterion shows significant inaccuracy on multisegment
wires, but since the figure shows the 1.6M edges of the ibmpg6
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benchmarks, the scatter points of several segments are hidden due
to overlaps. Quantitatively, 29% of the predictions from the Blech
criterion are inaccurate. The root cause for such mispredictions can
be understood based on the qualitative description in Fig. 1.

An alternative voltage-based formulation has been proposed
in [26], but its potential for linear-time computation was not re-
alized in this work as it was applied to a set of very small test
structures. This formulation was used again in [31], and applied to
a wider set of structures, but their results show a quadratic to cubic
growth in runtime with problem size. In [28], the voltage-based
formulation was shown to admit a linear-time stress computation
by relating the steady-state stress at a node to its voltage. An al-
ternative formulation of the same voltage-based formulation was
presented in [30]: this exposition directly relates the current-based
formulation to the voltage-based formulation.

For mesh structures, the above techniques are applicable for the
case where all branch currents are specified in a way that satisfies
Kirchhoff’s voltage law (KVL), with zero net voltage drop across
any cycle. However, in EM analysis, it is possible that the inputs
are provided in the form of worst-case currents. The net voltage
drop across any cycle is zero at a given time instant, but since these
worst-case currents can occur at different times, it is possible that
the summation of the current-resistance products across a cycle
may not be zero. In this case, the method in [29] can be adapted
by choosing a worst-case tree that results in the largest stress. In
contrast, voltage-based methods, which depend on KVL, cannot
directly capture this scenario.

4 TRANSIENT ANALYSIS
4.1 Analytical Solutions for Multisegment Lines
Transient analysis attempts to calculate the temporal evolution
of stress by solving Korhonen’s equation (1) with the appropriate
boundary conditions for the given interconnect structure. For a line
with multiple segments (such as those typically found in power
grids), the analytical calculation of stress involves finding the gen-
eral solution of (1) with appropriate unknown constants in every
line segment, and then applying the BCs (2)-(5) to assemble and
solve (symbolically) the resulting algebraic system of equations in
the unknown constants (which are twice as many as the number of
segments). Until recently, this has only been possible for very small
structures of up to four segments [13, 18], beyond which the size
and complexity of symbolic algebraic equations to be assembled
and solved becomes prohibitive.

The work in [32] is the first to provide fully analytical solutions
of stress for lines with an arbitrary number of segments. This is
achieved by ascribing a novel wave-kind physical analogy to stress.
Specifically, at every via where current is drawn from or injected
to the line, there is a source of stress flux 𝜕𝜎/𝜕𝑥 that generates
buildup of stress along the line1. This stress buildup can be thought
of as a wave that starts from the sources and travels along the
line, undergoing reflections at the line terminals which are then
superposed to the fundamental waves and lesser-order reflections
(analogous to multiple interfering “stress waves”).

1Since Korhonen’s equation is a PDE similar to the heat or diffusion equation, the
source of stress flux will be like injecting a prescribed heat flux or flux of a diffusant at
the point of the via.

Figure 5: A single-segment line illustrating fundamentals and
three reflections of stress flux originating at side boundaries.

To explain the concept behind the method of [32], consider first
two semi-infinite lines from 𝑥 = 0 to +∞, and from 𝑥 = 𝐿 to −∞,
carrying currents with constant density 𝑗 . At location 𝑥 at time
𝑡 , the solution to the stress equation is derived in [11] and [32]
respectively as:

𝜎 (𝑥, 𝑡) = 𝐺 ·𝑔(𝑥, 𝑡) (10)

𝜎 (𝑥, 𝑡) = −𝐺 ·𝑔(𝐿 − 𝑥, 𝑡) (11)

where 𝑔(𝑥, 𝑡) = 2
√︂

𝜅𝑡

𝜋
exp

(
− 𝑥2

4𝜅𝑡

)
− 𝑥 · erfc

(
𝑥

2
√
𝜅𝑡

)
(12)

with 𝐺 = 𝛽 𝑗 , and erfc(𝑥) = 2√
𝜋

∫ ∞
𝑥

𝑒−𝑡
2
𝑑𝑡 being the complemen-

tary error function.
Consider now a finite single-segment line of length 𝐿 that injects

current with density 𝑗 from the cathode terminal to the anode
terminal. It is shown in [32] (using the Laplace transform of (1)
and (5) along with some clever use of geometric series expansion)
that the solution for the stress at location 𝑥 at time 𝑡 takes the form
of the infinite series2:

𝜎 (𝑥, 𝑡) = 𝐺

∞∑︁
𝑛=0

(−1)𝑛 [𝑔(𝑛𝐿 + 𝑥, 𝑡) − 𝑔((𝑛 + 1)𝐿 − 𝑥, 𝑡)] (13)

The terms𝐺 ·𝑔(𝑥, 𝑡) and −𝐺 ·𝑔(𝐿 − 𝑥, 𝑡) that result by taking 𝑛 = 0
in (13) are the exact solutions (10) and (11) of the semi-infinite lines
from 0 to +∞ (where the distance from the left edge is 𝑥 ), and from
𝐿 to −∞ (where the distance from the right edge to 𝑥 is 𝐿 − 𝑥).
These can be considered as fundamentals of two sources of stress
flux equal to 𝜕𝜎/𝜕𝑥 = −𝐺 originating at the boundaries 𝑥 = 0 and
𝑥 = 𝐿, traveling down in semi-infinite lines of opposite directions.

Now for 𝑛 = 1 the resulting terms 𝐺 ·𝑔(2𝐿 − 𝑥, 𝑡) and −𝐺 ·𝑔(𝐿 +
𝑥, 𝑡) can be regarded as reflections of the aforementioned funda-
mentals at the opposite boundaries, which then travel back to the
variable point 𝑥 and are superposed to the original fundamentals.
Specifically, the term𝐺 ·𝑔(2𝐿 − 𝑥, 𝑡) is the fundamental originating
at 𝑥 = 0 after being reflected at 𝑥 = 𝐿 and going back at 𝑥 (traveling
total distance 𝐿 + (𝐿 − 𝑥) = 2𝐿 − 𝑥), while −𝐺 ·𝑔(𝐿 + 𝑥, 𝑡) is the
fundamental originating at 𝑥 = 𝐿 after being reflected at 𝑥 = 0 and
going back at 𝑥 (traveling total distance 𝐿 + 𝑥 ).

Analogously for 𝑛 = 2, the term𝐺 ·𝑔(2𝐿+𝑥, 𝑡) is the fundamental
from 𝑥 = 0 after two reflections (at 𝑥 = 𝐿 and then at 𝑥 = 0) before
traveling to location 𝑥 (having traveled distance 2𝐿 + 𝑥), while
−𝐺 ·𝑔(3𝐿 − 𝑥, 𝑡) is the fundamental from 𝑥 = 𝐿 after reflections
at 𝑥 = 0 and then 𝑥 = 𝐿 before going back to location 𝑥 (having
traveled distance 2𝐿 + (𝐿 − 𝑥) = 3𝐿 − 𝑥 ).

2This is a different infinite series solution than the one obtained by the method of
Separation of Variables and which was originally given in [11].
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(a) (b)

Figure 6: Plots of fundamental and first two reflections of
stress flux at 𝑥 = 0 in a single-segment line, as functions of
the distance from the source, for times (a) 𝑡 = 107𝑠, (b) 𝑡 = 108𝑠.

The fundamentals along with reflections of up to third order
are illustrated in Fig. 5 for the single-segment line. Higher-order
reflections are obtained from (13) for larger values of 𝑛. By this
conceptual process we can build up the entire infinite series so-
lution, but in practice only a small number of terms suffices for
near-perfect approximation since the function (12) decreases expo-
nentially with distance (while it only increases weakly with time).
This is demonstrated in Fig. 6 where reflections of order as low as
2nd are typically negligible, and they only become appreciable for
very large times (reflections of order greater than 2nd can be safely
ignored in nearly all practical cases).

The wave-like view of fundamentals and reflections enables the
construction of analytical expressions of stress for lines with an
arbitrary number of segments. Consider the case of a two-segment
finite line (illustrated in Fig. 7), consisting of one segment from
𝑥 = 0 to 𝑥 = 𝐿1 with current density 𝑗1 and another from 𝑥 = 𝐿1 to
𝑥 = 𝐿2 with current density 𝑗2. The via at the intersection 𝑥 = 𝐿1
draws from or injects current to the line, so that 𝑗1 ≠ 𝑗2. At 𝑥 = 𝐿1,
the line must obey boundary conditions (2) and (4) that enforce the
continuity of stress and continuity of atomic flux respectively.

The sources of stress flux 𝜕𝜎/𝜕𝑥 = −𝐺1 at 𝑥 = 0, and 𝜕𝜎/𝜕𝑥 =

−𝐺2 at 𝑥 = 𝐿2 (where𝐺1 = 𝛽 𝑗1,𝐺2 = 𝛽 𝑗2) are handled in exactly the
same way as the single-segment line, by considering fundamentals
and successive reflections at the two boundaries. At the intersection
𝑥 = 𝐿1, the boundary condition (4) indicates that there is a discon-
tinuity in the stress gradient equal to 𝜕𝜎1

𝜕𝑥 − 𝜕𝜎2
𝜕𝑥 = 𝐺2 −𝐺1 (due to

the current being injected or drawn at the via there). This acts as
another source of stress flux, creating two fundamental components
that travel sideways from 𝑥 = 𝐿1 and along the semi-infinite parts
of a two-segment infinite line, i.e. from 𝑥 = 𝐿1 to +∞ and from
𝑥 = 𝐿1 to −∞. It was shown in [32] that the fundamental travel-
ing left (for 𝑥 < 𝐿1) is 𝐺2−𝐺1

2 𝑔 (𝐿1 − 𝑥, 𝑡), while the fundamental
traveling right (for 𝑥 > 𝐿1) is 𝐺2−𝐺1

2 𝑔 (𝑥 − 𝐿1, 𝑡).
Like the fundamentals originating at the boundaries, the funda-

mentals originating at 𝑥 = 𝐿1 are also reflected at the boundaries
𝑥 = 0 and 𝑥 = 𝐿2. Specifically, the leftward traveling fundamental
undergoes a 1st reflection at 𝑥 = 0 before arriving (again or for the
first time) at location 𝑥 (having traveled distance 𝐿1 +𝑥 ), then a 2nd
reflection at the boundary 𝑥 = 𝐿2 before arriving once again at 𝑥
(with distance traveled 𝐿1 + 𝐿2 + (𝐿2 − 𝑥) = 𝐿1 + 2𝐿2 − 𝑥), and so
on. The rightward traveling fundamental undergoes a 1st reflection
at 𝑥 = 𝐿2 before arriving (again or for the first time) at location
𝑥 (having traveled distance (𝐿2 − 𝐿1) + (𝐿2 − 𝑥) = −𝐿1 + 2𝐿2 − 𝑥),

Figure 7: A two-segment line illustrating fundamentals and
first three reflections of stress flux originating at the side
boundaries and the intersection point.

Figure 8: Fundamental and first three reflections of stress
flux originating at an intermediate via for an𝑁 -segment line.

then a 2nd reflection at 𝑥 = 0 before arriving once again at 𝑥 (with
distance traveled (𝐿2 − 𝐿1) + 𝐿2 + 𝑥 = −𝐿1 + 2𝐿2 + 𝑥 ), and so on.

Taking the superposition of fundamentals and reflections of up
to 2nd-order for all sources of stress flux, one can construct the
following analytical approximation of stress for the two-segment
line that gives almost perfect accuracy:

𝜎 (𝑥, 𝑡) ≈ 𝐺1 [𝑔 (𝑥, 𝑡) + 𝑔 (2𝐿2 − 𝑥, 𝑡) + 𝑔 (2𝐿2 + 𝑥, 𝑡)]
−𝐺2 [𝑔 (𝐿2 − 𝑥, 𝑡) + 𝑔 (𝐿2 + 𝑥, 𝑡) + 𝑔 (3𝐿2 − 𝑥, 𝑡)]

+ 𝐺2 −𝐺1
2

[𝑔 ( |𝐿1 − 𝑥 | , 𝑡) + 𝑔 (𝐿1 + 𝑥, 𝑡)

+ 𝑔 (𝐿1 + 2𝐿2 − 𝑥, 𝑡) + 𝑔 (−𝐿1 + 2𝐿2 − 𝑥, 𝑡)
+𝑔 (−𝐿1 + 2𝐿2 + 𝑥, 𝑡)] (14)

The above expression can be easily adapted to include more re-
flections if needed. In fact, if all reflections up to infinite order are
included, it can be shown [32] that the resulting expression exactly
matches the full infinite series solution. However, reflections of
order higher than 2nd are hardly ever necessary in practice.

The described concept of constructing the solution in a wave-like
fashion, by source fundamentals and reflections, can be straightfor-
wardly extended to a line with an arbitrary number of segments.
Consider a multisegment line of length 𝐿𝑁 (illustrated in Fig. 8)
being composed of 𝑁 line segments with parameters𝐺1 to𝐺𝑁 (cor-
responding to current densities 𝑗1 to 𝑗𝑁 ) and intersection points
at locations 𝑥 = 𝐿1 to 𝑥 = 𝐿𝑁−1 (where the length of the 𝑘𝑡ℎ-
segment is 𝐿𝑘 − 𝐿𝑘−1). The analytical approximation of stress will
be a straightforward generalization of (14), consisting of the funda-
mentals from the two boundaries 𝑥 = 0 and 𝑥 = 𝐿𝑁 and the 𝑁 − 1
intersection points, along with their reflections of up to 2nd order
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(which are more than sufficient in practice):

𝜎 (𝑥, 𝑡) ≈ 𝐺1 [𝑔 (𝑥, 𝑡) + 𝑔 (2𝐿𝑁 − 𝑥, 𝑡) + 𝑔 (2𝐿𝑁 + 𝑥, 𝑡)]
−𝐺𝑁 [𝑔 (𝐿𝑁 − 𝑥, 𝑡) + 𝑔 (𝐿𝑁 + 𝑥, 𝑡) + 𝑔 (3𝐿𝑁 − 𝑥, 𝑡)]

+
𝑁−1∑︁
𝑖=1

𝐺𝑖+1 −𝐺𝑖

2
[𝑔 ( |𝐿𝑖 − 𝑥 | , 𝑡) + 𝑔 (𝐿𝑖 + 𝑥, 𝑡)

+ 𝑔 (𝐿𝑖 + 2𝐿𝑁 − 𝑥, 𝑡) + 𝑔 (−𝐿𝑖 + 2𝐿𝑁 − 𝑥, 𝑡)
+𝑔 (−𝐿𝑖 + 2𝐿𝑁 + 𝑥, 𝑡)] (15)

where 𝑔(.) is the function defined in (12). The above expression can
be easily adapted to include more (or fewer) reflected terms, and
even different number of reflected terms for each individual source.

The work in [32] reports the solution of EM stress, using the
above analytical expression (15), for entire power grids with ap-
proximately 200K segments in only a few seconds, and with per-
fect accuracy against commercial numerical solvers like COMSOL.
Results also demonstrate significant pessimism of steady state pre-
dictions vs. the actual EM failures at the end of chip lifetime. The
present challenge is to extend the described reflections framework
and stress-wave analogy to more general interconnect structures.

4.2 Semi-Analytical Solutions for Multisegment
Lines

Semi-analytical approaches for transient analysis discretize the
PDE (1) in one independent variable (either the spatial or the tem-
poral one) while keeping the other continuous. Keeping time con-
tinuous here is much more important as it allows the calculation
of stress at any future time directly (especially for long chip life-
times in the order of decades, which can render numerical time
integration completely prohibitive). On the other hand, spatial dis-
cretization is much less of an issue, because even in fully analytical
methods we still compute stress at specific discrete spatial points.

The work in [33] presents a semi-analytical approach that can
calculate stress for any future time in an arbitrary 𝑁 -segment line,
providing a simple closed-form matrix equation which can be eval-
uated in O(𝑛 log𝑛) computational time (where 𝑛 is the number of
discretization points). Fig. 9 shows an example of a two-segment
line discretized in the spatial coordinate with step Δ𝑥 into 𝑛 = 6
discrete points (two non-physical or ghost points are also shown,
which are solely used for application of the blocking BCs (5) at the
line terminals).

Figure 9: A two-segment line and its spatial discretization.

A finite-difference-method (FDM) approximation of the spatial
derivative in (1), for any discretization point 𝑖 = 1, . . . , 𝑛 (other than
via points) of the line, results in:

𝑑𝜎𝑖

𝑑𝑡
≡ ¤𝜎𝑖 = 𝜅

(𝜎𝑖+1−𝜎𝑖
Δ𝑥

)
−

(𝜎𝑖−𝜎𝑖−1
Δ𝑥

)
Δ𝑥

=
𝜅

Δ𝑥2
(𝜎𝑖+1 − 2𝜎𝑖 + 𝜎𝑖−1)

(16)

The equations for the endpoints 𝑖 = 0 and 𝑖 = 𝑛 are obtained by
eliminating, in (16), the ghost points through the FDM approxima-
tions of the terminal BCs (5). The latter become for 𝑖 = 0 and 𝑖 = 𝑛

respectively:

𝜎1 − 𝜎0
Δ𝑥

+ 𝛽 𝑗1 = 0;
𝜎𝑛+1 − 𝜎𝑛

Δ𝑥
+ 𝛽 𝑗𝑁 = 0 (17)

Note that the spatial derivatives in (5) are approximated in the
direction of increasing 𝑥 (the convention used in [11] is that 𝑥
increases in the direction of electron current, i.e. opposite to the
conventional current). By applying (16) for 𝑖 = 1 and 𝑖 = 𝑛, and
eliminating 𝜎0 and 𝜎𝑛+1 from (17), the FDM equations for 𝜎1 and
𝜎𝑛 become:

¤𝜎1 =
𝜅

Δ𝑥2
(𝜎2 − 𝜎1) +

𝜅

Δ𝑥
𝛽 𝑗1

¤𝜎𝑛 =
𝜅

Δ𝑥2
(−𝜎𝑛 + 𝜎𝑛−1) −

𝜅

Δ𝑥
𝛽 𝑗𝑁

(18)

For the via intersection points, since adjacent discretization
points belong to segments with different current densities, the
FDM equations result by spatially discretizing (1) while simultane-
ously applying the continuous-flux BCs (4). Specifically, for a via
point 𝑖 with adjacent points 𝑖 − 1 and 𝑖 + 1 belonging to segments 𝑘
and 𝑘 + 1, the FDM equation is:

¤𝜎𝑖 =
𝜅

Δ𝑥2
(𝜎𝑖−1 − 2𝜎𝑖 + 𝜎𝑖+1) +

𝜅

Δ𝑥
𝛽 ( 𝑗𝑘+1 − 𝑗𝑘 ) (19)

Writing the FDM equations for all discrete points from (16), (18),
and (19), the following system of ordinary differential equations
(ODEs) is obtained:



¤𝜎1
¤𝜎2
.
.
.

¤𝜎𝑛−1
¤𝜎𝑛


=

𝜅

Δ𝑥2



−1 1 0 · · · 0 0
1 −2 1 · · · 0 0
.
.
.

.

.

.
. . .

. . .
.
.
.

.

.

.

0 0 · · · 1 −2 1
0 0 · · · 0 1 −1





𝜎1
𝜎2
.
.
.

𝜎𝑛−1
𝜎𝑛


+ 𝜅𝛽

Δ𝑥
D


𝑗1
.
.
.

𝑗𝑁


(20)

where D is an 𝑛 × 𝑁 matrix with elements 𝑑11 = 1, 𝑑𝑛𝑁 = −1, and
𝑑𝑖𝑘 = −1, 𝑑𝑖,𝑘+1 = 1 for the discrete points 𝑖 that connect segments
𝑘 and 𝑘 + 1 (and zeros everywhere else). For example, the matrix D
for the six-point two-segment wire of Fig. 9 is:

D =



1 0
0 0
−1 1
0 0
0 0
0 −1


(21)

The ODE system (20) has the familiar form of a linear time-
invariant (LTI) system:

¤𝝈 (𝑡) = A𝝈 (𝑡) + Bj (22)
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with B =
𝜅𝛽

Δ𝑥 D and:

A =
𝜅

Δ𝑥2



−1 1 0 · · · 0 0
1 −2 1 · · · 0 0
.
.
.

.

.

.
. . .

. . .
.
.
.

.

.

.

0 0 · · · 1 −2 1
0 0 · · · 0 1 −1


(23)

The analytical solution of (22) can be obtained as the convolution
integral:

𝝈 (𝑡) = 𝑒A𝑡𝝈 (0) +
∫ 𝑡

0
𝑒A(𝑡−𝜏 ) Bj𝑑𝜏 (24)

where 𝝈 (0) is the vector of initial stress conditions at the 𝑛 dis-
cretization points.

If A = VΛV−1 is the eigendecomposition of A, then it is well-
known that 𝑒A𝑡 = V𝑒Λ𝑡V−1, and thus (24) becomes (assuming,
without loss of generality, that 𝝈 (0) = 0):

𝝈 (𝑡) =
∫ 𝑡

0
V𝑒Λ(𝑡−𝜏 )V−1Bj𝑑𝜏 = V

(∫ 𝑡

0
𝑒Λ(𝑡−𝜏 ) 𝑑𝜏

)
V−1Bj (25)

Since 𝚲 is diagonal, the matrix integral in the above equation has
the form:

∫ 𝑡

0
𝑒Λ(𝑡−𝜏 ) 𝑑𝜏 =


∫ 𝑡

0 𝑒𝜆1 (𝑡−𝜏 ) 𝑑𝜏
. . . ∫ 𝑡

0 𝑒𝜆𝑛 (𝑡−𝜏 ) 𝑑𝜏

 (26)

where 𝜆 𝑗 , 𝑗 = 1, . . . , 𝑛 are the (not generally distinct) eigenvalues
of A. Each of the above integrals can be computed analytically as:∫ 𝑡

0
𝑒𝜆 𝑗 (𝑡−𝜏 ) 𝑑𝜏 =

[
−𝑒

𝜆 𝑗 (𝑡−𝜏 )

𝜆 𝑗

]𝜏=𝑡
𝜏=0

=
𝑒𝜆 𝑗 𝑡 − 1

𝜆 𝑗
(27)

Note that if one eigenvalue equals zero, then the corresponding
integral is simply

∫ 𝑡

0 𝑑𝜏 = 𝑡 .
Now, for the specific matrix A with the form (23), it was shown

in [34] that its eigendecomposition can be determined beforehand.
Specifically, A has 𝑛 distinct eigenvalues which are given by:

𝜆 𝑗 =
𝜅
Δ𝑥2

(
2 cos ( 𝑗−1)𝜋

𝑛 − 2
)
, 𝑗 = 1, . . . , 𝑛 (28)

while its eigenvectors are orthonormal (satisfying V−1 = V𝑇 ) and
are such that the products V𝑇 r and Vr of the matrices V𝑇 ,V with
an arbitrary vector r amount to performing respectively a Discrete
Cosine Transform of type-II (DCT-II) and an Inverse Discrete Co-
sine Transform of type-II (IDCT-II) [35] on r. Both of these can
be computed with near-linear complexity O(𝑛 log𝑛) (instead of
the quadratic complexity O(𝑛2) of general matrix-vector products)
using Fast Fourier Transform, in a fashion similar to a fast Poisson
solver like [36] in one dimension.

By inserting (27) into (25), the following analytical solution for
stress at any given time for the pre-selected discrete points of a
multisegment line is obtained:

𝝈 (𝑡) = VL(𝑡)V𝑇 Bj (29)

Figure 10: A three-segment tree and its spatial discretization.

where:

L(𝑡) =


𝑡

𝑒𝜆2𝑡−1
𝜆2

. . .

𝑒𝜆𝑛𝑡−1
𝜆𝑛


(30)

and 𝜆 𝑗 , 𝑗 = 2, . . . , 𝑛 are given by (28), while the matrix-vector
products are computed through DCT-II/IDCT-II in O(𝑛 log𝑛) time.
The work in [33] has used the above expression to simulate EM
stress in the largest of IBM power grid benchmarks [37], with over
1M line segments, for a time of 20 years in the future in only a few
seconds.

4.3 Semi-Analytical Solutions for Interconnect
Trees

While power grid lines are considerably more susceptible to EM
due to the flow of large unidirectional currents, EM is becoming
increasingly important in signal interconnect trees carrying bidirec-
tional currents [38]. For interconnect trees, a similar semi-analytical
approach to the one presented in Section 4.2 can be formulated,
which discretizes only space while keeping time continuous. The
FDM approximations (16) and (18) for internal discretization points
and terminal points still hold. The additional complication for trees
are the equations for junctions (with or without vias).

Considering the simple three-segment interconnect tree of Fig. 10
as an example, at the junction point 𝑖 = 4 the FDM equation is ob-
tained by taking the sum of finite difference approximations for the
spatial derivatives along the three directions, while approximating
the temporal derivative of stress along each incident discrete seg-
ment by the average of the temporal derivatives at its endpoints3.
The net result is:

3
2
¤𝜎4 =

𝜅

Δ𝑥2
(𝜎3 + 𝜎5 + 𝜎7 − 3𝜎4) +

𝜅

Δ𝑥
𝛽 (− 𝑗1 + 𝑗2 − 𝑗3) (31)

Writing the equations for the other discrete points 𝑖 = 1 to 𝑖 = 7 of
the tree, the following system of ODEs is obtained:

3This is analogous to the familiar 𝜋 -model approximation of discrete segments in
distributed RC networks
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

1
2 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 3

2 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1

2 0
0 0 0 0 0 0 1

2





¤𝜎1
¤𝜎2
¤𝜎3
¤𝜎4
¤𝜎5
¤𝜎6
¤𝜎7


+

𝜅

Δ𝑥2



1 −1 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 3 −1 0 −1
0 0 0 −1 2 −1 0
0 0 0 0 −1 1 0
0 0 0 −1 0 0 1





𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6
𝜎7


=

𝜅𝛽

Δ𝑥



𝑗1
0
0

− 𝑗1 + 𝑗2 − 𝑗3
0

− 𝑗2
𝑗3


(32)

Note that if the widths and thicknesses of the three segments are not
equal, then these would be part of the BC (3) enforcing continuity
of atomic flux at the junction, and thus they would appear in both
matrices above.

For a general interconnect tree, the ODE system (32) takes the
generalized state-space form:

E ¤𝝈 (𝑡) + 𝜅

Δ𝑥2
G𝝈 (𝑡) = 𝜅𝛽

Δ𝑥
Dj (33)

Since the matrix E is nonsingular and diagonal, it can easily be
inverted, leading to the same LTI system form of (22), where A =

− 𝜅
Δ𝑥2 E−1G and B =

𝜅𝛽

Δ𝑥 E−1D, and whose solution is given by (24).
If now the segment current densities are assumed constant, and

if the matrix A is nonsingular, it can be shown by integrating the
power series expansion of the matrix exponential that the solu-
tion (24) can be written analytically (assuming 𝝈 (0) = 0)) as:

𝝈 (𝑡) =
(
𝑒A𝑡 − I

)
A−1Bj (34)

Of course the matrix A here is singular, since its rows and columns
add up to zero, the reason being that the stress equations for dis-
cretized points are not independent. One such independent equation
relating stresses at all discrete points is the conservation of mass
condition (6), whose discretized form and approximation at discrete
points (rather than discrete segments) is [26]:

𝑛∑︁
𝑖=1

©­«12
∑︁
𝑠𝑘 ∈𝑆𝑖

𝑤𝑠𝑘𝜏𝑠𝑘Δ𝑥
ª®¬𝜎𝑖 = 0 (35)

This can be solved with respect to stress at any discrete point
(preferably an internal one, e.g. 𝜎2), and the resulting expression
substituted to the other equations of (32) containing this point, so
that a (𝑛−1) × (𝑛−1) ODE system is obtained whose system matrix
is now nonsingular. Apart from that, a computational challenge in
evaluating (34) is the cost of computing the matrix exponential for
large orders of 𝑛. Since only the product of the matrix exponen-
tial with a vector is needed here, very efficient techniques can be
used [39]. Both the above issues were addressed in the work [40].

Theworks in [41–43] can also fall into the class of semi-analytical
approaches. These attempt to analytically solve Korhonen’s equa-
tion (without space or time discretization) for multisegment inter-
connect trees by the method of Separation of Variables. However,
the application to general interconnect trees requires the calculation
of unknown eigenvalues of a matrix with nonlinear functions in-
volving a nonstandard (and rather expensive) numerical algorithm
referred to as Wittrick-Williams (along with QR factorization).

Finally, we note purely numerical approaches that discretize time
as well as space, and attempt to either solve the complete system
with a numerical time integration method [17], or perform model
order reduction and solve a reduced-order system [44].

4.4 Mapping EM Stress Analysis to Circuits
Transient analysis typically assumes that each segment in an inter-
connect carries a constant current density 𝑗 . As a result, 𝜕(𝛽 𝑗)/𝜕𝑥 =

0, and Korhonen’s equation (1) for each segment becomes:

𝜕𝜎

𝜕𝑡
= 𝜅

𝜕2𝜎

𝜕𝑥2
(36)

The above equation is similar to the heat equation, which is often
solved under the finite-difference method (FDM) [45]; this was
briefly observed earlier in Section 4.1. Under an FDM discretization,
the heat equation can be mapped to an electrical circuit where each
element corresponds to a node. Adjacent elements are connected
by resistors, and capacitors lie between elements and the ground
node. The value of the “thermal resistance” depends on the thermal
conductivity and the dimensions of the element, while that of the
“thermal capacitance” depends on physical constants for themedium
and the volume of the element. The excitations to this system are
the points where power is dissipated, which are modeled using
“thermal current sources” connected to the RC network. We solve
for the node voltages in this network, which correspond to the
temperature in each element.

A similar analogy may be made for EM stress analysis [46],
where the stress corresponds to the node voltages in an equivalent
RC circuit. In a modification to the model in [46], the parameter
𝜅 maps one-to-one with thermal conductivity and provides the
“stress resistance”; the “stress capacitance” depends on the element
volume; the excitations correspond to a set of current sources that
model currents in the wire segments. Boundary conditions on con-
tinuity (2) map naturally to the electrical circuit: end points of
adjacent segments are connected to the same node and must have
the same voltage (i.e., stress). Flux conditions (3) are captured by
appropriately setting the values of the current sources, and mass
conservation (6) translates into a requirement that a weighted sum
of node voltages is zero. Under this mapping, the stress PDE maps
on to an RC electrical circuit that can be solved using standard
electrical analysis methods to determine transient stress.

5 CONCLUSION
This paper has presented a summary of recent computationally
efficient physics-based approaches to solving the problem of EM
analysis of multisegment interconnect wires. Solutions to both the
steady-state problem, used to identify immortal wires, and the tran-
sient problem, which determines stress evolution as a function of
time, are presented. Based on the resurgence of interest in this area,
its importance to modern chip design, and the development of fast,
linear-time approaches for solving these problems, we anticipate
significant developments in this area in the near future. An open
question remains as to how physics-based methods can interact
with foundry models. This is a topic for future investigation.
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