
The ALIGN Automated Analog Layout Engine:
Progress, Learnings, and Open Issues

Sachin S. Sapatnekar
Department of Electrical & Computer Engineering

University of Minnesota
Minneapolis, MN (USA)

sachin@umn.edu

ABSTRACT
The ALIGN (Analog Layout, Intelligently Generated from Netlists)
project [1, 2] is a joint university-industry effort to push the en-
velope of automated analog layout through a systematic new ap-
proach, novel algorithms, and open-source software [3]. Analog
automation research has been active for several decades, but has not
found widespread acceptance due to its general inability to meet
the needs of the design community. Therefore, unlike digital design,
which has a rich history of automation and extensive deployment
of design tools, analog design is largely unautomated.

ALIGN attempts to overcome several of the major issues associ-
ated with this lack of success. First, to mimic the human designer’s
ability to recognize sub-blocks and specify constraints, ALIGN has
used machine learning (ML) based methods to assist in these tasks.
Second, to overcome the limitation of past automation approaches,
which are largely specific to a class of designs, ALIGN attempts
to create a truly general layout engine by decomposing the layout
automation process into a set of steps, with specific constraints
that are specific to the family of circuits, which are divided into
four classes: low-frequency components (e.g., analog-to-digital con-
verters (ADCs), amplifiers, and filters); wireline components for
high-speed links (e.g., equalizers, clock/data recovery circuits, and
phase interpolators); RF/Wireless components (e.g., components
of RF transmitters and receivers), and power delivery components
(e.g., capacitor- and inductor-based DC–DC converters and low
dropout (LDO) regulators). For each class of circuits, different sets
of constraints are important, depending on their frequency, para-
sitic sensitivity, need for matching, etc., and ALIGN creates a unified
methodological framework that can address each class. Third, in
each step, ALIGN has generated new algorithms and approaches
to help improve the performance of analog layout. Fourth, given
that experienced analog designers desire greater visibility into the
process and input into the way that design is carried out, ALIGN is
built modularly, providing multiple entry points at which a designer
may intervene in the process.

The ALIGN technique is inherently hierarchical, and functions
in the same style as the human designer. It first identifies layout
hierarchies in the netlist, then generates correct-by-construction
layouts at the lowest level of hierarchy, and finally assembles blocks

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ISPD ’23, March 26–29, 2023, Virtual Event, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9978-4/23/03.
https://doi.org/10.1145/3569052.3578916

at each level of hierarchy during placement and routing. The hi-
erarchy goes from the lowest level of an individual transistor or
passive device, to larger structures (“primitives”) that are a collec-
tion of a regular connection of these devices (e.g., differential pairs,
current mirrors, resistor arrays, capacitor arrays), up to the level of
sub-blocks (e.g., OTAs, LNAs, VCOs), and then to higher levels that
recursively assemble groups of sub-blocks.

We overview the ALIGN flow, while highlighting novel tech-
niques developed as part of the project. ALIGN proceeds as follows:
The auto-annotation step takes a circuit netlist and identifies key
building blocks in the design to create layout hierarchies. This task
has traditionally been difficult because of the wide variety of layout
topologies for each subcircuit (e.g., there are hundreds of topolo-
gies for an operational transconductance amplifier (OTA)). ALIGN
addresses this problem through a mix of recognition methods [4–6]
using conventional graph-based algorithms and machine-learning-
based methods that can perform approximate graph isomorphism
in the same manner as the human designer recognizes “approxi-
mately similar” schematic topologies as variants of the same circuit.
Within and across these building blocks, geometric constraints, in-
cluding symmetries along multiple axes, are inferred. The designer
may augment or override the recognized constraints by specifying
constraints using a constraint language defined within ALIGN.
The design rule abstraction step codifies the design rules from
the process design kit (PDK) into a set spacing and length rules,
using layer-specific grids that capture not only width and spacing,
but also stopping points, using major grids and minor grids [2],
appended with Boolean constraints as needed. The approach is
particularly suitable capturing rules in gridded FinFET layouts with
unidirectional routes and coloring rules, but has also been used
for bulk PDKs. Translating a foundry PDK to a form that is usable
within ALIGN is a manageable task, and requires a significant, but
one-time effort that is well documented on the ALIGN repository.
Next, the primitive layout step generates parameterized layouts
for primitives in the design. For example, a differential pair could be
parameterized by the number of parallel transistors, or the number
of stacked transistors, and can be built by using unit cells with a
certain number of transistors/fins. About 20 primitive structures for
commonly-encountered subcircuits are predefined within ALIGN,
and user-defined primitives may also be inserted into the flow. For
circuits that require matching, the ALIGN project has extensively
worked on developing new algorithms for common-centroid layout
of transistor arrays [7] and capacitor arrays [8–10], including the
choice of the unit device [11]. The project has also investigated the
utility of non-common-centroid (interdigitated/clustered) layouts,
which can result in reduced parasitics [12].

https://doi.org/10.1145/3569052.3578916


The block-level assembly step follows the primitive generation
step and successively moves up the design hierarchy defined in
the annotation step (or by the designer through the constraint lan-
guage) to construct the layout – both placement and routing – at
each level of hierarchy, respecting all geometric constraints. The
layout is augmented with well taps, which can be optimally cho-
sen [13, 14]. Several placement engines are available to the user:
enumerative placement when the number of blocks is small; integer
linear programming (ILP) based placement for an intermediate num-
ber of blocks; and separate simulated annealing based and analytic
placement engines [15] for large designs. Within placement, ALIGN
has extensively investigated techniques for meeting electrical con-
straints: by using the concept of charge flow to determine current
path directions to determine net criticalities [16], and by employing
ML methods that apply wire length limit constraints [17], or that
can use an ML predictor to determine whether a layout will meet
constraints [18, 19]. Methods for smart wire sizing using ML-based
methods have also been investigated [20, 21].

To enable the application of ALIGN in practical settings, the flow
creates a separation between open-source code and proprietary data.
PDK models are translated into an abstraction that is used by the
layout generators. The user may incorporate prebuilt blocks such
as Pcells by “black-boxing” them and exposing only the terminals,
which are then aligned to the gridded paradigm used in ALIGN.

ALIGN has been used to create layouts of circuits in both bulk
and FinFET technologies. It has been used in numerous industry
and academic settings on designs reported in [22–25], including
successful tapeouts that have validated the methodology.

Several problems require further intensive effort. First, the task
of efficiently converting electrical constraints to layout constraints
is an open problem. A typical designer use case involves setting
these constraints manually in ALIGN. Second, while ALIGN has
made major strides in comprehending designer intent by automat-
ically generating hierarchies, this area merits more investigation.
Third, the ALIGN effort is possibly one of the first to systematically
explore the issue of whether common-centroid, interdigitated, or
clustered layouts are optimal within a specific context; many design-
ers blindly use common-centroid layout even when it is not needed,
paying a performance overhead [12]. Further research could lead to
systematic set of best practices and diagnoses that guide a design
towards optimal layout. Finally, increased use and development
may enable greater interoperability of ALIGN with other flows.

CCS CONCEPTS
•Hardware→Physical design (EDA); Software tools for EDA;
Analog and mixed-signal circuits; Analog and mixed-signal
circuit optimization.

KEYWORDS
Analog circuits, layout, machine learning, design automation

ACM Reference Format:
Sachin S. Sapatnekar. 2023. The ALIGN Automated Analog Layout Engine:
Progress, Learnings, and Open Issues . In Proceedings of the 2023 International
Symposium on Physical Design (ISPD ’23), March 26–29, 2023, Virtual Event,
USA. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3569052.
3578916

ACKNOWLEDGMENTS
This work is supported in part by the DARPA IDEA program under
SPAWAR Contract N660011824048, by the Semiconductor Research
Corporation (SRC), and by the National Science Foundation under
Award 2212345.

ALIGN is a joint effort between the University of Minnesota†,
Intel Labs‡, and Texas A&MUniversity§. Contributors include Steve
Burns‡, Tonmoy Dhar†, Ramesh Harjani†, Jiang Hu§, Nibedita
Karmokar†, Desmond Kirkpatrick‡, Kishor Kunal†, Yaguang Li§,
Yishuang Lin§, Meghna Madhusudan†, Parijat Mukherjee‡, Jitesh
Poojary, Arvind K. Sharma†, Ramprasath S.†, Wenbin Xu§, and
Soner Yaldiz‡.

REFERENCES
[1] K. Kunal, et al., “ALIGN: Open-source analog layout automation from the ground

up,” in Proc. DAC, pp. 77–80, 2019.
[2] T. Dhar, et al., “ALIGN: A system for automating analog layout,” IEEE Des. Test,

2020. Available at arXiv:2008.10682.
[3] “ALIGN: Analog layout, intelligently generated from netlists,” Software reposi-

tory, accessed January 29, 2023. https://github.com/ALIGN-analoglayout/ALIGN-
public.

[4] K. Kunal, et al., “GANA: Graph convolutional network based automated netlist
annotation for analog circuits,” in Proc. DATE, 2020.

[5] K. Kunal, et al., “A general approach for identifying hierarchical symmetry con-
straints for analog circuit layout,” in Proc. ICCAD, 2020.

[6] K. Kunal, et al., “GNN-based hierarchical annotation for analog circuits,” IEEE T.
Comput. Aid. D., 2023. (early access).

[7] A. K. Sharma, et al., “Performance-aware common-centroid placement and rout-
ing of transistor arrays in analog circuits,” in Proc. ICCAD, 2021.

[8] N. Karmokar, et al., “Common-centroid layout for active and passive devices: A
review and the road ahead,” in Proc. ASP-DAC, 2022.

[9] N. Karmokar, et al., “Constructive common-centroid placement and routing for
binary-weighted capacitor arrays,” in Proc. DATE, pp. 166–171, 2022.

[10] N. Karmokar, et al., “Constructive placement and routing for common-centroid
capacitor arrays in binary-weighted and split DACs,” IEEE T. Comput. Aid. D.,
2023. (early access).

[11] N. Karmokar, et al., “Minimum unit capacitance calculation for binary-weighted
capacitor arrays,” in Proc. DATE, 2023.

[12] A. K. Sharma, et al., “Common-centroid layouts for analog circuits: Advantages
and limitations,” in Proc. DATE, pp. 1224–1229, 2021.

[13] Ramprasath S., et al., “Analog/mixed-signal layout optimization using optimal
well taps,” in Proc. ISPD, pp. 159–166, 2022.

[14] Ramprasath S., et al., “A generalized methodology for well island generation
and well-tap insertion in analog/mixed-signal layouts,” ACM T. Des. Automat. El.,
2023. (in press).

[15] Y. Lin, et al., “Are analytical techniques worthwhile for analog IC placement?,” in
Proc. DATE, 2022.

[16] T. Dhar, et al., “A charge flow formulation for guiding analog/mixed-signal place-
ment,” in Proc. DATE, 2022.

[17] T. Dhar, et al., “Fast and efficient constraint evaluation of analog layout using
machine learning models,” in Proc. ASP-DAC, pp. 158–163, 2021.

[18] Y. Li, et al., “Exploring a machine learning approach to performance driven analog
IC placement,” in Proc. ISVLSI, 2020.

[19] Y. Li, et al., “A customized graph neural network model for guiding analog IC
placement,” in Proc. ICCAD, 2020.

[20] Y. Li, et al., “A circuit attention network-based actor-critic learning approach to
robust analog transistor sizing,” in Proceedings of Workshop on Machine Learning
for CAD, pp. 1–6, 2021.

[21] Y. Li, et al., “Performance-driven wire sizing for analog integrated circuits,” ACM
T. Des. Automat. El., vol. 28, Dec. 2022.

[22] J. Liu, et al., “From specification to silicon: Towards analog/mixed-signal design
automation using surrogate NN models with transfer learning,” in Proc. ICCAD,
2021.

[23] X. Liu, et al., “A digital LDO in 22nm CMOS with a 4b self-triggered binary search
windowed flash ADC featuring automatic analog layout generator framework,”
in Proc. A-SSCC, pp. 2–4, 2022.

[24] J. Poojary and R. Harjani, “A 1-to-3GHz co-channel blocker resistant, spatially and
spectrally passive MIMO receiver in 65nm CMOS with +6dBm in-band/in-notch
B1dB,” in Proceedings of the IEEE International Solid-State Circuits Conference,
vol. 64, pp. 96–98, 2021.

[25] S. Kamineni, et al., “AuxcellGen: A framework for autonomous generation of
analog and memory unit cells,” in Proc. DATE, 2023.

https://doi.org/10.1145/3569052.3578916
https://doi.org/10.1145/3569052.3578916
https://github.com/ALIGN-analoglayout/ALIGN-public
https://github.com/ALIGN-analoglayout/ALIGN-public

	Abstract
	References

