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ABSTRACT
The ALIGN (Analog Layout, Intelligently Generated from Netlists)
project [1, 2] is a joint university-industry effort to push the en-
velope of automated analog layout through a systematic new ap-
proach, novel algorithms, and open-source software [3]. Analog
automation research has been active for several decades, but has not
found widespread acceptance due to its general inability to meet
the needs of the design community. Therefore, unlike digital design,
which has a rich history of automation and extensive deployment
of design tools, analog design is largely unautomated.

ALIGN attempts to overcome several of the major issues associ-
ated with this lack of success. First, to mimic the human designer’s
ability to recognize sub-blocks and specify constraints, ALIGN has
used machine learning (ML) based methods to assist in these tasks.
Second, to overcome the limitation of past automation approaches,
which are largely specific to a class of designs, ALIGN attempts
to create a truly general layout engine by decomposing the layout
automation process into a set of steps, with specific constraints
that are specific to the family of circuits, which are divided into
four classes: low-frequency components (e.g., analog-to-digital con-
verters (ADCs), amplifiers, and filters); wireline components for
high-speed links (e.g., equalizers, clock/data recovery circuits, and
phase interpolators); RF/Wireless components (e.g., components
of RF transmitters and receivers), and power delivery components
(e.g., capacitor- and inductor-based DC–DC converters and low
dropout (LDO) regulators). For each class of circuits, different sets
of constraints are important, depending on their frequency, para-
sitic sensitivity, need for matching, etc., and ALIGN creates a unified
methodological framework that can address each class. Third, in
each step, ALIGN has generated new algorithms and approaches
to help improve the performance of analog layout. Fourth, given
that experienced analog designers desire greater visibility into the
process and input into the way that design is carried out, ALIGN is
built modularly, providing multiple entry points at which a designer
may intervene in the process.

The ALIGN technique is inherently hierarchical, and functions
in the same style as the human designer. It first identifies layout
hierarchies in the netlist, then generates correct-by-construction
layouts at the lowest level of hierarchy, and finally assembles blocks
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at each level of hierarchy during placement and routing. The hi-
erarchy goes from the lowest level of an individual transistor or
passive device, to larger structures (“primitives”) that are a collec-
tion of a regular connection of these devices (e.g., differential pairs,
current mirrors, resistor arrays, capacitor arrays), up to the level of
sub-blocks (e.g., OTAs, LNAs, VCOs), and then to higher levels that
recursively assemble groups of sub-blocks.

We overview the ALIGN flow, while highlighting novel tech-
niques developed as part of the project. ALIGN proceeds as follows:
The auto-annotation step takes a circuit netlist and identifies key
building blocks in the design to create layout hierarchies. This task
has traditionally been difficult because of the wide variety of layout
topologies for each subcircuit (e.g., there are hundreds of topolo-
gies for an operational transconductance amplifier (OTA)). ALIGN
addresses this problem through a mix of recognition methods [4–6]
using conventional graph-based algorithms and machine-learning-
based methods that can perform approximate graph isomorphism
in the same manner as the human designer recognizes “approxi-
mately similar” schematic topologies as variants of the same circuit.
Within and across these building blocks, geometric constraints, in-
cluding symmetries along multiple axes, are inferred. The designer
may augment or override the recognized constraints by specifying
constraints using a constraint language defined within ALIGN.
The design rule abstraction step codifies the design rules from
the process design kit (PDK) into a set spacing and length rules,
using layer-specific grids that capture not only width and spacing,
but also stopping points, using major grids and minor grids [2],
appended with Boolean constraints as needed. The approach is
particularly suitable capturing rules in gridded FinFET layouts with
unidirectional routes and coloring rules, but has also been used
for bulk PDKs. Translating a foundry PDK to a form that is usable
within ALIGN is a manageable task, and requires a significant, but
one-time effort that is well documented on the ALIGN repository.
Next, the primitive layout step generates parameterized layouts
for primitives in the design. For example, a differential pair could be
parameterized by the number of parallel transistors, or the number
of stacked transistors, and can be built by using unit cells with a
certain number of transistors/fins. About 20 primitive structures for
commonly-encountered subcircuits are predefined within ALIGN,
and user-defined primitives may also be inserted into the flow. For
circuits that require matching, the ALIGN project has extensively
worked on developing new algorithms for common-centroid layout
of transistor arrays [7] and capacitor arrays [8–10], including the
choice of the unit device [11]. The project has also investigated the
utility of non-common-centroid (interdigitated/clustered) layouts,
which can result in reduced parasitics [12].
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The block-level assembly step follows the primitive generation
step and successively moves up the design hierarchy defined in
the annotation step (or by the designer through the constraint lan-
guage) to construct the layout – both placement and routing – at
each level of hierarchy, respecting all geometric constraints. The
layout is augmented with well taps, which can be optimally cho-
sen [13, 14]. Several placement engines are available to the user:
enumerative placement when the number of blocks is small; integer
linear programming (ILP) based placement for an intermediate num-
ber of blocks; and separate simulated annealing based and analytic
placement engines [15] for large designs. Within placement, ALIGN
has extensively investigated techniques for meeting electrical con-
straints: by using the concept of charge flow to determine current
path directions to determine net criticalities [16], and by employing
ML methods that apply wire length limit constraints [17], or that
can use an ML predictor to determine whether a layout will meet
constraints [18, 19]. Methods for smart wire sizing using ML-based
methods have also been investigated [20, 21].

To enable the application of ALIGN in practical settings, the flow
creates a separation between open-source code and proprietary data.
PDK models are translated into an abstraction that is used by the
layout generators. The user may incorporate prebuilt blocks such
as Pcells by “black-boxing” them and exposing only the terminals,
which are then aligned to the gridded paradigm used in ALIGN.

ALIGN has been used to create layouts of circuits in both bulk
and FinFET technologies. It has been used in numerous industry
and academic settings on designs reported in [22–25], including
successful tapeouts that have validated the methodology.

Several problems require further intensive effort. First, the task
of efficiently converting electrical constraints to layout constraints
is an open problem. A typical designer use case involves setting
these constraints manually in ALIGN. Second, while ALIGN has
made major strides in comprehending designer intent by automat-
ically generating hierarchies, this area merits more investigation.
Third, the ALIGN effort is possibly one of the first to systematically
explore the issue of whether common-centroid, interdigitated, or
clustered layouts are optimal within a specific context; many design-
ers blindly use common-centroid layout even when it is not needed,
paying a performance overhead [12]. Further research could lead to
systematic set of best practices and diagnoses that guide a design
towards optimal layout. Finally, increased use and development
may enable greater interoperability of ALIGN with other flows.
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