
Dummy Fill Optimization for Enhanced Manufacturability ∗

Yaoguang Wei and Sachin S. Sapatnekar
Department of Electrical and Computer Engineering

University of Minnesota, Minneapolis, MN 55455
weiyg, sachin@umn.edu

ABSTRACT
This paper presents a router that minimizes the amount of dummy
fill necessary to satisfy the requirements for chemical-mechanical
polishing (CMP). The algorithm uses a greedy strategy and effec-
tive cost functions to control the maximal effective pattern density
during routing. On a standard set of benchmark circuits, our CMP-
aware router can reduce the required dummy fill by 22.0% on av-
erage, and up to 41.5%, as compared to the CMP-unaware case. In
comparison with another CMP-aware routing approach, our algo-
rithm is demonstrated to reduce the amount of dummy fill by 14.1%
on average, and up to 23.6%, over the benchmarks.

Categories and Subject Descriptors
B.7.2 [Hardware]: Integrated Circuit—Design Aids

General Terms
Algorithms, Design, Performance

1. INTRODUCTION
In nanometer-scale integrated circuit technologies, planarization

steps in the manufacturing process represent a significant potential
source of yield loss. An important step in planarization is chemical
mechanical polishing (CMP). For example, oxide CMP is used to
polish the interlayer dielectric layer (ILD) to ensure a near-planar
surface before depositing and patterning a metal layer. If significant
surface topography variations are seen after this process, then the
depth of focus in lithography is affected, which in turn leads to
variations in the critical dimension [10], resulting in performance
degradation and yield loss.

In order to improve the quality of CMP, in addition to the metal-
ized interconnects that serve an electrical function, dummy features
are typically added to the layout to control the variation in the post-
CMP topology [9]. Dummy feature, also referred to as dummy fill,
may either be connected to power/ground (tied fill) or left float-
ing (floating fill), and lead to increased parasitic capacitance in the
layout. Floating fill increases the coupling capacitance uncertainty
and can lead to signal-integrity issues, while tied fill reduces this
problem, but result in high routing costs, increasing the likelihood
of requiring engineering change orders [10]. For all these reasons,

∗This work was supported in part by the SRC under contract 2007-
TJ-1572.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’10, March 14–17, 2010, San Francisco, California, USA.
Copyright 2010 ACM 978-1-60558-920-6/10/03 ...$10.00.

it is desirable to reduce the volume of dummy fill inserted into a
layout.

It is known that the post-CMP ILD thickness is linearly deter-
mined by the effective pattern density (EPD) of the layout [14]. The
EPD is formally defined in Section 2, but coarsely speaking, the
EPD at a given location is a weighted average of the wire density
in its neighborhood. If the EPD can be made more even through-
out the layout, the variation of the ILD thickness after CMP can be
reduced, leading to a reduction in the amount of dummy fill. Since
routing plays a very major role in deciding the spatial distribution
of wires in the layout, a good way to achieve greater uniformity in
the EPD is to leverage the router in ensuring that the density after
routing is as uniform as possible, while meeting other traditional
routing objectives.

Recently, several routing algorithms considering wire distribu-
tion have been proposed in the literature. The algorithm in [12] is
among the first to incorporate CMP variation into a routing algo-
rithm, and it proceeds by attempting to balance the initial pattern
density (IPD) to decrease CMP variation. The IPD is formally de-
fined in Section 2, and is essentially the wire density. A global rout-
ing algorithm considering Cu CMP variation is proposed in [3], us-
ing an empirically developed predictive CMP density model from
industry. As pointed out in [2], the algorithms in [3, 12] attempt
to optimize CMP variation by only considering the IPD inside a
routing tile/grid, which is not a right metric for CMP control, since
the topographic variation is a long range effect that is affected by
the IPD in neighboring tiles. In [2] a multilevel routing algorithm
for oxide CMP variation is presented, using the IPD gradient as an
optimization objective. However, this objective also suffers from
significant limitations, as demonstrated by an example in Fig. 1,
which shows two different layouts of an illustrative circuit. Lay-
out II shows larger IPD gradients, but due to averaging effects (the
size of weighting window, defined in Section 2, is 5 tiles for each
layout), the EPD/CMP variation is smaller. This indicates that the
gradient of the IPD may not be a good metric in the optimization of
CMP variation. This claim will be demonstrated experimentally in
Section 6. In essence, the methods in [2, 3, 12] attempt to decrease
the variation of CMP only according to the IPD in a tile and its im-
mediate neighbors. However, metrics such as the IPD and the IPD
gradient are only indirect measures of the EPD, and their ability to
optimize CMP variation is likely to be inferior to an approach that
addresses the EPD variation more directly.

More recently, two routing algorithms considering EPD opti-
mization directly have been presented [8, 17]. In [8, 17], the EPD
is taken as part of the cost of a routing tile directly. While this is
better than using the IPD in the cost function, the approach only
considers the EPD inside a tile ti as a route passes through ti, but
the impact of this route on the EPD of neighboring tiles is not con-
sidered in the cost function. Moreover, the amount of dummy fill
is not directly optimized as an objective of routing. These factors
limit the effectiveness of the optimization.

This paper proposes a global routing algorithm that incorporates
the optimization of oxide CMP variation, in addition to the usual
routing objectives. Our goal is to minimize the required dummy

0 5 10 15
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

Tile index

p
at

te
rn

 d
en

si
ty

IPD
EPD

(a) Layout I: IPD gradient ≤
0.05. EPD variation = 0.209.

0 5 10 15
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

Tile index

p
at

te
rn

 d
en

si
ty

IPD
EPD

(b) Layout II: IPD gradient ≥
0.10. EPD variation = 0.089.

Figure 1: IPD and EPD topographies for Layout I and II. Lay-
out I has smaller IPD gradients, but larger EPD variation.

fill under an accurate oxide CMP model [14], and we demonstrate,
both theoretically and through experiments, that a good surrogate
for this objective is to minimize the maximum EPD during rout-
ing. We elaborate cost functions to achieve this goal, and build a
router that attempts to minimize the maximal EPD in routing. Our
router is based on NTHU-Route 2.0 [1], which will be introduced
in Section 3. Experimental results demonstrate that our algorithm
can reduce the dummy fill substantially.

2. PRELIMINARIES
The goal of our global router is to optimize the overflow, wire

length, and the amount of dummy fill, D, inserted for CMP pla-
narization. Like most global routing approaches, our approach tes-
sellates the chip into nr × nc grids, and constructs the global rout-
ing graph (GRG), G = (V, E). Each node in V represents a grid
in the layout, and an edge in E denotes the boundary between two
adjacent grids.

Figure 2: Global routing graph.
An example of the GRG is shown in Fig. 2. The capacity of

an edge e is denoted by ce, its routing demand by ue. Let oe =
max(ue − ce, 0) be the overflow of an edge e. The total overflow
of the layout is given by

∑
all e oe, and the maximal overflow given

by maxall e oe.
In relation with the dummy fill metric, D, we define the initial

pattern density (IPD) in a region as the ratio of the area of metal
in the region to its total area. In our routing model, we assume
reserved horizontal/vertical routing layers, and separately consider
routing edges in the horizontal and vertical directions. In practice,
since our algorithm will associate the increase in the EPD with
edges of the GRG, we use a shifted grid for CMP computations.
On the horizontal layer, each CMP grid/tile around an edge e has
the same size as a GRG grid, but is centered about the edge instead
of the vertex (i.e., it is offset to the right by half a grid relative to
the GRG grid centered at the left endpoint of e). A CMP tile on the
vertical layer is similarly defined.

Next, we introduce the oxide CMP model in [14]. In this model,
the ILD thickness z at location (x, y) in the layout can be calculated
using the following formula:

z =

{
z0 − [Kτ/ρ(x, y)] τ ≤ (ρz1/K)

z0 − z1 −Kτ + ρ(x, y)z1 τ ≥ (ρz1/K)
, (1)

where K is the blanket oxide polishing rate, z0 is the thickness of
oxide deposition, z1 is the initial step height, τ is the total polish
time, and ρ(x, y) is the EPD in location (x, y) before oxide CMP.
A schematic that describes the variables can be found in the Fig. 3

in [14]. The variables K, z0, z1 and τ are constants for a specific
CMP process.

Generally, the total polish time τ is larger than (ρz1/K), and
therefore, the final oxide thickness z is between 0 and (z0 − z1).
As a consequence, the final ILD thickness in different locations has
an affine relationship with the EPD in that location. The effective
pattern density (EPD) can be calculated by convolving the IPD with
the weighting function [14]:

f(x, y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
. (2)

Here, f(x, y) is a Gaussian function with standard deviation σ.
This function can be discretized to the tile grid, and truncated be-
yond a weighting window of size L × L distance units, equivalent
to (2l + 1)× (2l + 1) tiles. For this Gaussian function, σ = L/2,
equivalent to b(2l + 1)/2c tiles, and the value of f(x, y) will be
truncated to 0 beyond the weighting window. If we discretize the
value of the weight function in tile tij to f(i, j), and denote the
IPD of tij as dij , then the EPD of tij , ρij , can be calculated by a
circular convolution as [16]:

ρij =

l∑

n1=−l

l∑

n2=−l

di+n1,j+n2 × f(n1, n2). (3)

Thus, the EPD of a tile is calculated as a weighted sum of IPDs.
Dummy fill optimization inserts the minimum fill, D, to ensure

a spatially even EPD, i.e.,

ran(ρ) = ρH − ρL ≤ ε, (4)

where ε is a user-specified parameter, and ran(.) is an operator that
finds the range of a function, i.e., the difference between its max-
imum and minimum. Here, ρH (ρL) is the maximum (minimum)
value of the EPD, ρ, over the layout.

Methods for dummy fill insertion can be classified into two cat-
egories: rule-based and model-based. Rule-based methods reduce
the CMP variation by inserting dummy fill to ensure that the IPD
in each region meets a certain threshold. While these methods are
simple to execute, they are heuristic in nature and do not guarantee
optimality. Model-based methods use CMP models such as the one
introduced above, and directly optimize the variation of the EPD
globally based on the model. These methods are more computa-
tional, but can use a significantly lower amount of dummy fill [16].
The work in [16] presents a linear programming based algorithm
to optimize the total amount of dummy fill, D, with constraints
on ran(ρ). In this paper, we use D as the metric to evaluate the
different global routing solutions.

3. PREVIOUS WORK
Our routing algorithm is based on NTHU-Route 2.0 (NTHR) [1],

which is briefly reviewed in this section. There are four stages in
the NTHR algorithm: the initial stage, the main stage, the refine-
ment stage, and the layer assignment stage.

The purpose of the initial stage is to generate an initial global
routing solution. First, a multi-layer design is projected to a 2D
plane, and then FLUTE [4] is used to decompose each multi-pin
net into a set of two-pin nets. Next, NTHR sets up the probabilistic
congestion map by adding half a unit of demand to each edge on the
two probabilistic L-shape routes, or a full demand to each edge on a
straight route. Then the topology of every multi-pin net is modified
using the edge-shifting technique [15]. Finally, every two-pin net
is routed by L-shaped pattern routing. During this stage, the cost
function in [15] is used to calculate the cost of an edge:

C′e = 1 +
p3

1 + e−p4(ue−ce)
, (5)

where p3 and p4 are user-defined parameters. In NTHR, p3 = 0.8,
p4 = 2.

In the main stage, the initial solution is improved by iteratively
ripping up and rerouting (RRR) every congested two-pin net. A

two-pin net is considered to be congested if there are one or more
overflowing edges on its path. NTHR uses a technique of identify-
ing congested regions to choose the ordering for RRR. In the RRR
process, each ripped-up two-pin net is first rerouted by monotonic
routing [15], and then by the adaptive multi-source multi-sink maze
routing method, if an overflow-free path cannot be found by mono-
tonic routing. The RRR process is repeated until the total overflow
is no more than a predefined threshold or the number of iterations
reaches a predefined value. A history-based cost function is used
in this stage, and the basic form is as follows:

C′′e = Xe ×Be + He ×Ge + Ve ×Be, (6)

where C′′e is the cost of edge e; Xe is the wire length cost, which
is set to 1 since the wire length will increase by 1 when routing
through e; Ge is congestion cost, He is the cost for historic over-
flow; Ve is via cost; Be is a factor defined as follows:

Be = 1− e−αe−βi

, (7)

where α and β are user-defined parameters, and i is the current it-
eration count. In NTHR, α = 5, and β = 0.1. Thus, Be will
be bounded between 1 and 0, and will decrease as i increases. By
incorporating Be into the wire length cost and via cost, the conges-
tion cost will gradually take the dominant role in the total cost as
the iteration number increases, which is helpful for NTHR to obtain
paths without overflow.

The main purpose of the refinement stage is to search an overflow-
free path for every congested two-pin net, which is adapted from
the main stage with the following two major differences. First,
while in the main stage, the congested region identification tech-
nique is used to determine the RRR order, in the refinement stage,
NTHR rips up and reroutes every congested two-pin net in the non-
increasing order of the number of overflowed edges on its path of
the net. Second, the cost of an edge e is defined as follows:

C′′′e =

{
1 if edge e has overflow,
0 otherwise.

(8)

For multi-layer designs, the layer assignment stage is performed
to map the routing solution from the projected 2D plane to the orig-
inal multiple layers with the algorithm in [11].

4. THE FLOW OF THE NEW ROUTING AL-
GORITHM

There are two major differences between the proposed routing
algorithm and the original NTHR.

Firstly, we augment NTHR so that the router becomes CMP-
aware. We study several possible metrics related to dummy fill and
their correlations with the amount of inserted dummy fill, D, and
then elaborate effective cost functions to be integrated into NTHR
to perform dummy fill optimization. A detailed presentation of the
cost functions used to guide dummy fill optimization is provided in
Section 5.

Secondly, we add another stage after the refinement stage in or-
der to reduce D further by ripping up and rerouting the nets passing
through the tiles related to ρH

1. This stage, which we call the EPD
postprocessing stage, has the following steps. We initially identify
the tile tk that has the maximum EPD in the layout, and then find
all the 2-pin nets whose paths pass through the edges in the weight-
ing window of tk. Note that the maximal EPD is attributed not only
to wires in tk but also to wires in other tiles within the weighting
window of tk. Next, we sort all of these 2-pin nets in nonincreasing
order of the minimal distance of the two pins to tk. The motivation
is that for the 2-pin nets further from tk, and it should be easier
to find an alternative path that does not pass through the weighting
window of tk. In case of ties, we employ other sorting criteria, such
1In other stages, we do not adopt this measure to reduce ρH , but integrate the dummy
fill cost function into the router to minimize ρH , because routability has the highest
priority at those stages.

as the number of edges that are in the weighting window of tk and
also on the path of a 2-pin net, and the total overflow of the path of
a 2-pin net.

After this step, we rip up and reroute the nets one by one using
a method adapted from the refinement stage of NTHR. The goal is
to find a path to decrease ρH , and at the same time ensure that the
overflow is not increased. The cost function used here will be in-
troduced in Section 5.3. In the process of ripping-up and rerouting,
once ρH is decreased sufficiently, and the tile with new maximum
EPD is different from tk, a new iteration will start; otherwise, if
ρH can not be decreased after trying all the 2-pin nets identified in
an iteration, this stage stops. In practice, to control the runtime, we
monitor the improvement in ρH , and then if its percentage reduc-
tion over the past Nstop RRR iterations is smaller than εstop, we
stop this stage. We calibrate reasonable values of these parameters
as Nstop = 100 and εstop = 1%. In an iteration, after rerouting a
net, if the maximal EPD or total overflow is larger than that before
ripping up it, the original path is restored.

In rare instances, there may be more than one tiles with EPD
equal to ρH . In this case, we just first process the tile found first.
Then after a couple of rip-up-and-reroute operations, it is likely that
the EPD of this tile becomes smaller than ρH , and next we process
another tile with EPD equal to ρH . In other words, the tie is broken
arbitrarily, and then the other tile(s) with the same EPD will be
considered soon in a subsequent iteration.

5. COST FUNCTION
The success of the routing framework is critically dependent

on the choice of a cost function. It is vitally important for the
cost function to be computationally easy to evaluate, and yet hold
enough fidelity to capture a more complex underlying objective that
it represents. Therefore, we elaborate efficient and effective cost
functions to achieve our goal.

To address the new objective of minimizing D, we define Φe

as the dummy fill cost of edge e, which will be integrated to the
original cost function used in NTHR. The remainder of this section
will first discuss the computation of Φe, and then describe how it is
used at various stages of the routing process.

5.1 Finding a surrogate for the dummy fill cost
Our cost function requires the computation of Φe, which is re-

lated to the dummy fill metric, D. The direct calculation of D is
highly computational [16], and therefore, we have to find a met-
ric which correlates well with D and is easy to use in the routing
process.

As a first step, we present a metric Γ that is linearly related to D:

Γ =
∑

tij∈Q1

(ρU − ρij), (9)

where ρU = ρH − ε, which is the lower bound on the EPD after a
dummy fill procedure achieves the constraint described in (4), and
Q1 is the set of tiles for which ρij < ρU before inserting dummy
fill. For these tiles, ρij must be increased by inserting dummy fill.
Note that unlike ran(ρ), which merely captures the difference be-
tween the maximum and the minimum values of ρ, but is insensi-
tive to the distribution of ρ within this range, this metric captures
the distribution of ρ over all the related tiles.

We will now present results that link Γ to D.

Lemma 1 Given a weighting function f(i, j) whose value is trun-
cated to 0 outside the weighting window,

∑

all tij

ρij = b
∑

all tij

dij , where b =

l∑

i=−l

l∑

j=−l

f(i, j).

The proof of Lemma 1 is provided in the Appendix. The above
lemma may be used to show a key result that drives our approach.

Theorem 1 Let Q0 be the set of the tiles with EPD no less than
ρU before dummy filling, and Q1 be the complement of Q0. Let d′ij
(ρ′ij) be the IPD (EPD) of tij after dummy filling, and let

µ =
∑

tij∈Q0

(ρ′ij − ρij)

ν =
∑

tij∈Q1

(ρ′ij − ρU)

Then

D = c (Γ + µ + ν) , (10)

where c = 1/b > 0, and b is defined in Lemma 1.

Again, for the proof, the reader is referred to the Appendix.
Note that only the tiles in set Q1 require the insertion of dummy

fill. In practice, since the minimal amount of dummy fill is inserted,
it can be expected that after dummy fill insertion, ρ′ij of tij ∈ Q0

including the tile with ρH will remain unchanged or, at worst, in-
crease by a very small amount. Therefore, µ is a small number
compared to Γ. Moreover, ρ′ij for tij ∈ Q1 will be approximately
equal to or just a little larger than ρU , and therefore ν is also a small
number compared to Γ. In the following analysis, we will always
assume that µ and ν are negligible compared to Γ. These dummy
fill assumptions imply that

D ≈ cΓ. (11)

This relationship will be demonstrated experimentally in Section 6.
Since c = 1/b, and is a positive constant for a given weighting
function, to minimize D, we should minimize Γ.

Though Γ is much easier to compute than D, it is still too com-
plex to be used directly in routing process, since it requires an enu-
meration over all tiles in Q1; as we will see, the cardinality of this
set can be very large. In order to find another simpler metric which
can be used in routing, next we will analyze the impact of our rout-
ing procedure on Γ, and then D.

In the routing process, every two-pin net passing through over-
flowing edges or passing through the weighting windows of the
tile(s) with ρH is ripped up and then rerouted one by one in some
ordering. Next we will present two theorems to reveal the impacts
on Γ of ripping up and rerouting a single two-pin net: the first the-
orem is for rerouting a two-pin net, and the second one for ripping
up a two-pin net.

Theorem 2 Consider a partial routing solution S, and the solution
S̄ after routing one more net, and consider the contribution of each
edge e of this net. Let ∆Γ and ∆ρH be, respectively, the change in
Γ and ρH from S to S̄ due to edge e.
(a) The following inequality holds:

∆Γ ≥ |Q1| ·∆ρH − b ·∆M
d , (12)

where ∆M
d is the increase in the IPD of a tile when routing through

one edge in the tile, and is equal to the ratio of the area occupied
by a wire track to that of a tile.
(b) If ∆ρH = 0, Q̄1 = Q1 and We ⊆ Q1, then

∆Γ = −b ·∆M
d , (13)

where Q̄1 is the new Q1 after routing through e, and We is the
weighting window of the tile associated with e.

The proof is detailed in the Appendix. It is important to point out
that (12) holds regardless of whether ∆ρH > 0 or ∆ρH = 0.

Corollary 1 Consider a partial routing solution S̄, and the solu-
tion S after ripping up one more net, and consider the contribution
of each edge e of this net. Let ∆Γ and ∆ρH be, respectively, the
change in Γ and ρH from S̄ to S due to edge e. Then

∆Γ ≤ |Q1| ·∆ρH + b ·∆M
d , (14)

where ∆M
d has the same meaning as in Theorem 2.

The proof is simple. Ripping up a net N from S̄ is a symmetric
process of starting from S and routing net N with the same rout-
ing path. In this case, the change in Γ (ρH) from S to S̄ is −∆Γ
(−∆ρH), using the terminology defined in the statement of Theo-
rem 2. Therefore,−∆Γ ≥ |Q1|·(−∆ρH)−b·∆M

d . This corollary
holds when ∆ρH ≤ 0. 2

Table 1: The cardinality of set Q1 for ISPD07 circuits

Circuits Horizontal layer Vertical layer
#tiles |Q1| #tiles |Q1|

adaptec1 6561 4566 6561 4542
adaptec2 11236 10557 11236 10435
adaptec3 24180 21356 24180 20874
adaptec4 24180 22925 24180 22469
adaptec5 24180 18119 24180 19181
newblue1 6400 5531 6400 5766
newblue2 28830 24619 28830 23964
Average 1.00 0.85 1.00 0.85

In practice, |Q1|, the cardinality of set Q1, is seen to be very
large. Table 1 shows the values of |Q1| for the routing solutions
obtained by NTHR for the 2D ISPD07 benchmarks2. We can see
that on average 85% of the tiles are in Q1. The above theorems
imply that if the cardinality of set Q1 is large, then ∆Γ will be sig-
nificant even for a small change in ρH , which implies a nontrivial
change in D. In other words, D is sensitive to the change in ρH

due to the large cardinality of set Q1.
Example: For the benchmark newblue2, b = 0.532, ∆M

d = 7.41×
10−4. We use |Q1| = 23964, the value for the vertical layer. Sup-
pose routing through edge e causes a small increase3 of ρH , and
∆ρH = 2.36 × 10−6. By computing the lower bound for ∆Γ us-
ing (12), and using this to predict a lower bound on ∆D using (11),
it can be shown that the increase in D is equivalent to at least 142
tracks. By Corollary 1, if ∆ρH is reduced by the same amount in
the above example, D will reduce by at least 142 tracks. This ex-
ample shows clearly that even though ρH changes by a very small
amount, D will change greatly due to the large cardinality of Q1.
2

The analysis above shows that D is highly sensitive to the change
in ρH . In other words, minimizing ρH is a good surrogate for min-
imizing D. Therefore, our routing objective is to minimize the ρH

after routing finishes. We do this by trying to leave ρH unchanged,
or minimizing the increase in its value, when routing each net, and
by trying to reduce ρH when ripping up a net in the EPD postpro-
cessing stage. Intuitively, this objective tries to ensure that all ρ
values are low and as well-balanced as possible.

5.2 Dummy fill cost function
In NTHR, monotonic routing and maze routing are used in the

RRR process. When rerouting a net, the costs of edges in the
searching region are used to guide the router to find a new path
for the net. In order to optimize D, we compute the dummy fill
cost for every edge e, denoted as Φe, and then integrate Φe to the
router.

Based on the results in Section 5.1, we now show how we com-
pute the dummy fill cost, Φe. Our approach is based on the previous
analysis, which shows that minimizing ρH in routing process is a
good surrogate for minimizing D. To capture this objective well,
the following three aspects should be considered in the dummy fill
cost function.

One possible component of the cost function could be to deter-
mine the effect of routing through an edge e on the increase in ρH .
In this case, a large cost should be assigned to e as a penalty. To

2The characteristics of benchmarks used are listed in Table 2.
3As a reference, the values of ρH for the circuits in our benchmarks are between 0.10
and 0.20 for both the horizontal and the vertical layers.

achieve this, the following term could be used:

Ωe =

{
exp

(
∆ρH

∆M
ρ

)
if ∆ρH > 0,

0 otherwise,
(15)

where ∆ρH is the change in ρH after routing through edge e, and
∆M

ρ is the possible maximal increase in the EPD of any tile and
equal to the increase in the EPD of the tile associated with edge
e, when a wire is routed through edge e. Here the role of ∆M

ρ is
to normalize the numerator to a value between 0 and 1. Since Ωe

captures the direct increase of ρH , the exponential function is used
to magnify the penalty.

However, as we will soon see, such a function is not general
enough since it only considers the contribution of a single edge,
rather than that of a path. In particular, it is possible that the cost
of each single edge ei on path P is 0 by (15), since no single edge
increases the value of ρH ; however, routing through path P may
still increase ρH due to the cumulative effects of all edges on the
path, due to which the dummy fill cost of path P should not be 0.

For example, consider a tile tk with large EPD which is near a
path P , and let Wk be the weighting window of tile tk, as shown
in Fig. 3. In this example, due to congestion, the net S → T
is detoured and path P shown in the figure is chosen as a candi-
date. The edges of P that lie along wire segments AB and CD
are within Wk, and together, these may increase ρk by a significant
amount. Before routing this net, if ρk was smaller than ρH −∆M

ρ

but still close to ρH , then after routing through P , it is likely that
ρk may exceed ρH . However, Eq. (15) may not capture this effect,
since each edge individually may have zero cost according to this
function, and therefore we have to build a new cost component to
address this problem.

S

T

tk
Wk

P

A B

CD

Figure 3: Routing through path P may increase the EPD of tile
tk significantly.

Let SP denote the set of all paths that may be used to route the
net that is currently under consideration. Let JP be the increase in
the EPD of a tile tk, if route P is chosen, and JM = maxSP JP .
Then for tile tk, if ρk < ρH − JM , then ρk cannot exceed ρH

after routing through any path; otherwise, ρk may become larger
than ρH , depending on which path P is chosen. To deter the router
from choosing a path that creates this violation, we assign a large
penalty to the edges within Wk to deter the router from choosing
a path that contains edges in Wk. From the point of view of the
cost associated with an edge e, if there is a tile tk within We with
ρk ≥ ρH − JM , a large penalty should be assigned to e and the
penalty should increase for higher ρk, where We is the weighting
window of the tile associated with e. We define

∆ρ′H = max
tk∈We

(ρk + JM − ρH) , (16)

where the role of the max function is to determine the largest pos-
sible increase in ρH . Then we use the following as the first compo-
nent of the cost function for e:

Θe =

{
exp

(
∆ρk

∆M
ρ

)
· exp

(
p0 · ∆ρ′H

∆M
ρ

)
if ∆ρ′H > 0,

0 otherwise,
(17)

where ∆ρk is the increase of ρk after routing through edge e, and
∆ρ′H is the adapted version of ∆ρH , and p0 is a user-defined pa-
rameter to control Θe in a proper range. In our experiments, p0 is
tuned on circuit newblue2 to make max(Θe) = 16.3. Here, the

first exponential term is used to capture the fact that the larger ∆ρk

is, the larger is the possibility that ρk will exceed ρH . The term
∆M

ρ is used to normalize the numerators.
The computation of JM above requires the determination of a

realistic upper bound of the increase in the EPD of tile tk over all
routes for the net being considered. The most pessimistic estimate
assumes that when path P passes through all the edges in Wk, JP

reaches its maximum. However, this case is excessively pessimistic
and extremely rare even in a very congested design, since practical
routes do not go through so many bends and detours within a small
region. A reasonable practical upper bound for JM corresponds to
the case shown in Fig. 3, where a “U”-shaped path is used to detour
and passes through the weighting window of tk twice. In this case,
JM can be calculated as:

JM = ∆M
d

l∑

i=−l

1∑
j=0

f(i, j), (18)

where ∆M
d is the same as in Theorem 2, l the same as in (3), and

f(i, j) is the weighting function. To be safer still, our implementa-
tion uses twice the calculated value of JM in (18) as the guardband.

A second component of the cost function can be determined as
follows. For the tiles whose EPDs are close to ρH , routing through
the edges in these tiles will increase their EPDs further and it is
likely that their EPDs will exceed the current ρH soon in the routing
process. To control this trend, we assign large cost penalties to the
edges associated with such tiles. On the other hand, we do not want
the CMP optimization to affect the routing with normal objectives
such as wire length and overflow too much, and therefore, for the
tiles with EPD values not large enough to cause the increase of ρH ,
their costs should be small. To achieve this goal, we adapt the cost
function (5) in [15] to use in our work, since it increases very slow
when the variable is not close to a limit. We remove the constant
factor 1 in the cost function to make its low bound to be 0, and
normalize the EPD value of a tile by the current ρH . Then the cost
of an edge e is:

Ψe =
p1

1 + ep2(1−ρe/ρH)
, (19)

where ρe is the EPD of the tile associated with edge e, p1 and p2

are user-defined parameters. In this work, we choose p1 = 4 and
p2 = 10.99, which makes Ψe = 1 when ρe = 0.9 × ρH , the cost
equal to that of wire length, and makes Ψe = 2 when ρe = ρH .
Here, Ψe = 2 is the maximum of Ψe, which is double of the cost of
wire length. On the other hand, when ρe = 0.7× ρH , Ψe = 0.14,
which is rather small and will not affect the routing too much.

The total dummy fill cost of edge e is defined as follows:

Φe = Ψe + Θe (20)

Here, Ωe is not used since it is covered by Θe. Also note that the
parameter p0 in (17) will modulate Θe to adjust the ratio of Θe to
Ψe and to determine the maximal value of Φe. Though our cost
function is essentially heuristic, we expect it to work well due to
the following two factors. First, it considers not only the impact of
routing through one tile/edge on its own EPD, but also the impact
on the neighboring tiles, which captures the long range effect of
CMP variation. Second, our cost function is consistent with the
previous theoretical judgment: it always tries to control and avoid
the increase of ρH , which is desirable for the minimization of D.

5.3 Cost function in different stages
In this section, we will introduce how the proposed cost func-

tions are integrated into the routing framework.
First, we point out that we do not integrate the dummy fill cost

functions to every stage of NTHR. In NTHR, the main purpose of
the initial stage is to obtain the initial congestion map and the initial
routing solution for later use, and the space for optimizing all the
objectives together is limited since L-pattern routing is used. Fur-
thermore, from our empirical observation, the addition of dummy

fill optimization in the initial stage does not improve the final solu-
tion but increases the runtime of later stages. The principle here is
that the initial stage is very useful in controlling conventional rout-
ing metrics, and dummy fill can be effectively optimized in the later
stages of NTHR. Therefore, we do not add a dummy fill optimiza-
tion objective in the initial stage. We also do not perform dummy
fill optimization in the layer assignment stage in our current work,
since we use the single-layer CMP model in this work as a first
step to dummy fill optimization, and leave multi-layer dummy fill
optimization as future works.

In the main stage, we consider the dummy fill optimization by
integrating the proposed cost function with traditional cost function
of NTHR. In the main stage, the cost of edge e becomes as follows:

Ce = C′′e + γ1 × Φe ×max(Be, 0.1), (21)

where C′′e is the original cost function (6) in NTHR, Φe is the
dummy fill cost function (20), Be is a scaling factor defined in
(7) and γ1 is the user-defined weight for Φe. In our implementa-
tion, γ1 is tuned on circuit newblue2 to be 2.5. The mechanism
of using term max(Be, 0.1) is similar to that of using Be in the
original cost function (6) in NTHR: when the number of RRR iter-
ations increases, which means it is more and more difficult to route
the current net, Be will decrease from 1 gradually towards 0, and
then dwarf all the cost function components but the congestion cost,
which helps the router to obtain a path without overflow. However,
to prevent ρH from increasing by a large amount when Be becomes
too small, we use 0.1 as the lower bound of dwarfing dummy fill
cost. From our empirical observation, the value of 0.1 achieves a
good balance between routability and dummy fill optimization.

In the refinement stage, most nets have been routed in the previ-
ous stages, and only a few nets must be ripped up and rerouted due
to overflow. Since the primary goal is to reduce the overflow with
limited routing resources, high priority should be given to reduction
of overflow, and thus the following cost function is used:

Ce = γ2 × C
′′′
e + Φe, (22)

where C′′′e is the original cost (8) used in NTHR, Φe is the dummy
fill cost, and γ2 is an empirically chosen weight whose value should
be large enough to make C′′′e dominant to give a high priority to the
reduction of overflow. We choose γ2 = MP ·max(Φe), where MP

is an upper bound on the length of the longest possible path for a
2-pin net in the layout. In this way, a path with smallest overflow
will always be chosen by the router. When there are several can-
didate paths with zero overflow, the dummy fill cost will guide the
router to choose the best one out of them. In our implementation,
we choose MP = Ng in choosing γ2, where Ng is the total number
of grids in the layout: this is a realistic estimate of the upper bound.
In estimating max(Φe), we note that max(Ψe) = 2 (from (19)),
and that the value of max(Θe) = 16.3; this is based on empiri-
cal tuning on circuit newblue2, as will be explained in Section 6.
Therefore, we set max(Φe) = 18.3.

In the EPD postprocessing stage that we introduce, our goal is to
reduce the maximal EPD further but not to increase overflow, and
therefore the cost function used is the same as (22).

5.4 Why not care about ρL

As seen in (4), the range of the EPD (and hence the range of CMP
variation) can be reduced by either reducing ρH or by increasing
ρL. However, our arguments above primarily focus on reducing
ρH in order to reduce D. A natural question to ask is whether it
would also be useful to make efforts to increase the value of ρL in
order to reduce D. Here, “make efforts” means taking measures
similar to what we have done for minimizing ρH , e.g., a bonus is
given to an edge or a path when routing through it will increase ρL.

Given a layout, let us consider the change of D after routing
through an edge e. We consider two cases for routing e:

• If ∆ρH > 0, then as shown by the argument and example
after Theorem 2, D could increase by a large amount due to

the large cardinality of set Q1, so we elaborate cost functions
to avoid using edge e on the routing path.

• In contrast, if ∆ρH = 0, then as revealed by Theorem 2,
∆Γ ≥ −b∆M

d , i.e., the largest possible reduction in Γ is
b∆M

d . Furthermore, by Theorem 2, if the three conditions
∆ρH = 0, Q̄1 = Q1 and We ⊆ Q1 are satisfied, then
∆Γ = −b∆M

d . In other words, routing through any edge
which satisfies these three conditions will achieve the same
maximum reduction b∆M

d on Γ, no matter how ρL changes.
Therefore, there is no reason we should make extra efforts to
route through a few special edges, that are in the weighting
window of the tile(s) with EPD equal to ρL, to increase ρL.
By (11), the above analysis also holds for D, and we do not
need to care about how ρL changes in terms of minimization
of D.

The argument for routing through a path is similar to the analysis
above: in order to obtain the same change in D, we do not need to
make extra efforts to let the path pass through a few special edges to
increase ρL, because there are many other choices of edges to pass
through, which have the same effect on D. Based on the analysis
above, in our algorithm, we focus our efforts to minimize ρH but
do not make efforts to increase ρL.

6. EXPERIMENTAL RESULTS
We have implemented the algorithm in C++, and have tested it on

a 64-bit Linux machine with an Intelr Core(TM)2 Duo 3.00GHz
CPU and 8GB memory. The routing algorithm is implemented as
a program with two options: MaxEPD optimizes the dummy fill
based on minimizing the maximum EPD, and NoCMP does not
consider dummy fill.

We have tested our routing scheme on the 2D ISPD07 bench-
marks [6, 13], whose characteristics are listed in Table 2. In the
table, the column “guardband” lists the percentage of the given ca-
pacity to the actual capacity after the guardband adjustment. The
unit for grid size is the number of wire tracks. Since newblue3
is unroutable using current routers [7], it is not considered in our
experiments. We assume 0.13um technology is used for the cir-
cuits, and the wire width equal to 5 times of the minimal value,
0.65um. We use a typical planarization length, L = 1mm. The
size of a CMP tile (which is used to evaluate IPD and EPD) is set
to about 100um to obtain a good balance between accuracy and
performance4. As a result, there will be about 121 CMP tiles in the
weighting window of a CMP tile.

Table 2: Benchmark information
Circuits Grid

dimension
Grid
size

Guard-
band #Nets Grid HPWL

(×1.e5)
adaptec1 324 x 324 35 90 176k 30.00
adaptec2 424 x 424 35 100 208k 28.82
adaptec3 774 x 779 30 90 368k 86.20
adaptec4 774 x 779 30 90 401k 81.75
adaptec5 465 x 468 50 100 548k 88.97
newblue1 399 x 399 30 90 271k 20.80
newblue2 557 x 463 50 100 374k 41.91

To demonstrate the effectiveness of our cost functions, we com-
pare MaxEPD with the method proposed in [17], which attempts
to minimize the CMP variation using maze routing under a CMP-
aware cost function, in which the cost of an edge is the EPD of the
associated CMP tile. Since the codes in [17] are not available for
public access, in order to compare with this method, we developed
another router by replacing the cost function we propose in Max-
EPD by the cost function in [17]5. We denote this router as “Yet
4In this case, a CMP tile used to compute IPD and EPD may contain more than one
routing grids. This explains why the number of tiles shown in Table 1 is much smaller
than that of grids shown in Table 2.
5The cost function used in the global routing stage in [8] is in fact the same as that
used in [17].

Table 3: Comparison of routing results among NoCMP, YaCMP and MaxEPD

Circuits Total overflow Wire length (×1.e5) ran(z) (Å) Runtime (s)
NoCMP YaCMP MaxEPD NoCMP YaCMP MaxEPD NoCMP YaCMP MaxEPD NoCMP YaCMP MaxEPD

adaptec1 0 0 0 42.51 44.33 45.41 2145 2038 1817 285 998 2784
adaptec2 0 0 0 40.01 40.48 41.19 2622 2557 2390 61 113 265
adaptec3 0 0 0 108.95 112.97 114.08 2251 2169 1875 305 1080 1229
adaptec4 0 0 0 102.34 102.76 103.13 2138 1950 1806 71 132 195
adaptec5 0 0 0 121.13 122.25 127.15 2628 2582 2522 668 1215 3371

newblue1 3 16 6 32.42 32.65 32.87 2337 2262 2230 227 683 652
newblue2 0 0 0 57.13 57.59 57.89 1839 1717 1603 35 89 132
Summary 3 16 6 1.000 1.017 1.033 1.000 0.955 0.889 1.000 2.592 4.658

another CMP-aware router” (YaCMP).
For MaxEPD, we tune the weights p0 in (17) and γ1 in (21) with

circuit newblue26, and then use these weights for all the circuits.
Specifically, we use γ1 = 2.5, and p0 is tuned so that max(Θe) =
16.3. These weights determine the tradeoff between traditional
routing and dummy fill minimization, and therefore, they should be
in an appropriate range. For completeness, we will list newblue2 in
our tables of results, but the gains on this circuit can be appropri-
ately discounted since the parameters were tuned on it. For YaCMP,
we also tune the weights γ1 in (21) for the circuit newblue2 in the
similar way. Specifically, we use γ1 = 5.5.

Table 3 compares the routing results from NoCMP, YaCMP and
MaxEPD. The last line, labeled “Summary,” presents a synopsis
of the comparison between the three methods. For each circuit,
we show the total overflow, wire length, as well as the uneven-
ness in the topography after CMP. In the table, “ran(z)” stands for
the range/variation of the ILD thickness. The value of ran(z) =

z1 ·ran(ρ) is calculated according to (1), suppose z1 = 7000 Å [16].
Note that each via is counted as 1 unit of wire length in the calcu-
lation of the total wire length, according to the rule in ISPD 2008
global routing contest [7]. For all the circuits except newblue1, the
maximal overflow is 0. For newblue1, the maximal overflows for
the routing solutions obtained by NoCMP, YaCMP and MaxEPD
are all equal to 1. Since the guardband factor for newblue1 is 90%,
the one or two overflows on an edge can be eliminated in later stage
with the reserved capacity, and then these overflows will not cause
any problems to the EPD computation and dummy filling.

It can be seen that MaxEPD consistently provides significant im-
provements in the ILD variations, at the cost of a small increase
in the wire length and overflow (only for the circuit newblue1).
Compared with NoCMP, MaxEPD improves the post-CMP ILD
variations by 11.1% on average and up to 16.7%; compared with
YaCMP, the improvement is 7.0% on average and up to 13.5%.

The runtime of MaxEPD is acceptable, even for the large circuit
adaptec5. The runtime for circuit adaptec1 is much longer than
NoCMP, compared with the increase in runtime for other circuits.
This is likely because the weights which are tuned for circuit new-
blue2 are not appropriate for circuit adaptec1. Note that it is diffi-
cult to route circuit newblue1 without overflow [7], and therefore
there is small space to optimize CMP variation. As a result, the
improvement in the CMP variation, for both MaxEPD and YaCMP,
is small.

As a verification step, Table 4 shows an evaluation of the quality
of our results, using the ranged-variation linear programming (LP)
formulation of the dummy fill algorithm in [16]. We set ε = 0.02
in (4). A commercial LP solver, ILOG CPLEXr [5], is used to
solve the dummy filling problem on a 64-bit Linux machine with
a 2.6 GHz AMDr Opteronr 2218 processor and 2GB memory.
In the table, “fillWL/minWL” presents the ratio of the equivalent
wire length of total dummy fill to the minimal total wire length
(minWL). The value of minWL is the sum of the minimal wire
length without detours, ignoring congestion constraints. Compared

6Circuit newblue2 is chosen to tune the weights due to its medium size and least run-
time among all the circuits. Generally, tuning weights costs tens of times the runtime
of a single run. Also note that p1, p2 and γ2 take the pre-defined values and are not
required to be tuned.

Table 4: Comparison of dummy fill results among NoCMP,
YaCMP and MaxEPD. The data in column 2 and 3 are nor-
malized with the basis case (1.0) corresponding to NoCMP.

Circuits fillWL/minWL Fill time (s)
YaCMP MaxEPD MaxEPD

adaptec1 0.831 0.585 224
adaptec2 0.956 0.852 495
adaptec3 0.917 0.700 1849
adaptec4 0.849 0.736 2083
adaptec5 0.950 0.873 1848
newblue1 0.944 0.920 206
newblue2 0.890 0.794 2775
Summary 0.905 0.780

with NoCMP, the MaxEPD approach significantly reduces the total
fill by 22.0% on average and up to 41.5%; compared with YaCMP,
MaxEPD reduces the fill amount by 14.1% on average and up to
23.6%. The data show the effectiveness of our routing algorithm,
especially the proposed cost functions and the strategy of minimiz-
ing the maximal EPD. The last column of the table shows the run-
time of the dummy fill algorithm of [16] for MaxEPD. The CPU
time required by the dummy filling step, applied to the results of
NoCMP and YaCMP, is similar and on average within 2% of that
of MaxEPD.

Table 5: Comparison of IPD gradient G among NoCMP,
YaCMP and MaxEPD

Circuits G for horizontal layer G for vertical layer
NoCMP YaCMP MaxEPD NoCMP YaCMP MaxEPD

adaptec1 0.0216 0.0228 0.0236 0.0290 0.0281 0.0281
adaptec2 0.0218 0.0221 0.0215 0.0258 0.0264 0.0267
adaptec3 0.0182 0.0184 0.0184 0.0173 0.0179 0.0179
adaptec4 0.0201 0.0201 0.0202 0.0218 0.0219 0.0219
adaptec5 0.0239 0.0241 0.0234 0.0251 0.0251 0.0243
newblue1 0.0176 0.0183 0.0185 0.0199 0.0205 0.0205
newblue2 0.0147 0.0147 0.0147 0.0217 0.0223 0.0221
Summary 1.000 1.018 1.019 1.000 1.013 1.007

Next we experimentally support the claim in Section 1 that IPD
gradient is not a good metric for CMP variations. As suggested
in [2], IPD gradient of a tile tij is defined as dij − d̄ij , where d̄ij

is the average IPD of tiles adjacent to tij (including tij). Then we
compute the quadratic mean of IPD gradients of all tiles as the IPD
gradient of a layout:

G =

√√√√ 1

|Q|
∑

tij∈Q

(dij − d̄ij)2, (23)

where Q is the set of all the tiles in the layout. Table 5 shows
the comparison of IPD gradient, G, among NoCMP, YaCMP and
MaxEPD. From the table, we can see that for most circuits, the
layouts with the smallest IPD gradients do not have the smallest
ran(z) and D. On average, the layouts obtained by NoCMP have
the smallest IPD gradients but the largest ran(z) and D. In sum, it

is clear that the IPD gradient is not a good indicator for ran(z) and
D.

0 2000 4000 6000
0

1000

2000

3000

4000

5000

 cΓ for horizontal layer

D
 f

o
r

h
o

ri
zo

n
ta

l l
ay

er

 y=1.0017x

R2=1

0 2000 4000 6000
0

1000

2000

3000

4000

5000

 cΓ for vertical layer

D
 f

o
r

ve
rt

ic
al

 la
ye

r

 y=1.0023x

R2=1

Figure 4: Linear fitting results for cΓ vs. D.
Finally, we experimentally support the claim from Section 5.1

that (11) holds under the dummy fill assumptions. For all the dummy
filling experiments we perform, we find that µ and ν are negligi-
ble compared to Γ. For example, for the dummy filling solution
for the horizontal layer for circuit newblue2 with MaxEPD algo-
rithm, (µ + ν) : Γ = 1 : 483. Fig. 4 shows the fitting results
for dataset (cΓ, D) obtained in all the dummy filling experiments,
using a linear regression model, “y = ax”, showing that D ≈ cΓ
with R2 = 1.

7. REFERENCES
[1] Y.-J. Chang et al. NTHU-Route 2.0: a fast and stable global router. In

Proc. ICCAD, pages 338–343, 2008.
[2] H.-Y. Chen et al. A novel wire-density-driven full-chip routing

system for CMP variation control. IEEE TCAD, 28(2):193–206,
2009.

[3] M. Cho et al. Wire density driven global routing for CMP variation
and timing. In Proc. ICCAD, pages 487–492, 2006.

[4] C. Chu and Y. C. Wong. Fast and accurate rectilinear steiner minimal
tree algorithm for VLSI design. In Proc. ISPD, pages 28–35, 2005.

[5] ILOG CPLEX 11.210.
http://www.ilog.com/products/cplex/.

[6] ISPD 2007 Global Routing Contest.
http://www.sigda.org/ispd2007/rcontest/.

[7] ISPD 2008 Global Routing Contest. http:
//www.ispd.cc/slides/ispd2008-files/S7-3.pdf.

[8] Y. Jia et al. Full-chip routing system for reducing Cu CMP & ECP
variation. In Proc. SBCCI, pages 10–15, 2008.

[9] A. B. Kahng et al. Filling and slotting: analysis and algorithms. In
Proc. ISPD, pages 95–102, 1998.

[10] A. B. Kahng and K. Samadi. CMP fill synthesis: A survey of recent
studies. IEEE TCAD, 27(1):3–19, 2008.

[11] T. H. Lee and T. C. Wang. Congestion-constrained layer assignment
for via minimization in global routing. IEEE TCAD,
27(9):1643–1656, 2008.

[12] K. S. Li et al. Multilevel full-chip routing with testability and yield
enhancement. In Proc. SLIP, pages 29–36, 2005.

[13] G. Nam et al. The ISPD global routing benchmark suite. In Proc.
ISPD, pages 156–159, 2008.

[14] D. O. Ouma et al. Characterization and modeling of oxide
chemical-mechanical polishing using planarization length and pattern
density concepts. IEEE TSM, 15(2):232–244, 2002.

[15] M. Pan and C. Chu. FastRoute: a step to integrate global routing into
placement. In Proc. ICCAD, pages 464–471, 2006.

[16] R. Tian et al. Model-based dummy feature placement for oxide
chemical-mechanical polishing manufacturability. IEEE TCAD,
20(7):902–910, 2001.

[17] H. Yao et al. CMP-aware maze routing algorithm for yield
enhancement. In Proc. ISVLSI, pages 239–244, 2007.

APPENDIX
PROOF OF LEMMA 1: From (3), we have

∑

all tij

ρij =
∑

all tij

l∑

n1=−l

l∑

n2=−l

(
di+n1,j+n2f(n1, n2)

)

= f(−l,−l)
∑

all tij

di−l,j−l + · · ·+ f(l, l)
∑

all tij

di+l,j+l.

For circular convolution,
∑

all tij

di+p,j+q =
∑

all tij

dij , ∀p, q ∈ Z. There-

fore,
∑

all tij

ρij = f(−l,−l)
∑

all tij

dij + f(−l,−l + 1)
∑

all tij

dij +

· · ·+ f(l, l)
∑

all tij

dij = b
∑

all tij

dij . 2

PROOF OF THEOREM 1: By definition, D =
∑

tij∈Q
(d′ij − dij), where

Q = Q0 ∪Q1. By Lemma 1 and considering Q0 ∩Q1 = φ,

D =
1

b

∑

tij∈Q

(ρ′ij − ρij)

=
1

b

 ∑

tij∈Q1

(ρ′ij − ρij) +
∑

tij∈Q0

(ρ′ij − ρij)

=
1

b

 ∑

tij∈Q1

(ρU − ρij) +
∑

tij∈Q1

(ρ′ij − ρU) + µ

= c (Γ + µ + ν) . 2

PROOF OF THEOREM 2: We first prove part (a). Suppose that the changes
from S to S̄ due to routing through e are: ρij changes to ρ̄ij , ρH changes to
ρ̄H , ρU changes to ρ̄U , Q1 changes to Q̄1, Q0 changes to Q̄0, Γ changes
to Γ̄. Then ∆ρH = ρ̄H − ρH . Assume ε for the two routing solutions
is the same. Then ρ̄U = ρU + ∆ρH , Γ̄ =

∑
tij∈Q̄1

(ρ̄U − ρ̄ij). Then

∆Γ = Γ̄− Γ.
Let Q+

1 = {tij |tij /∈ Q1 and tij ∈ Q̄1}, Q−1 = {tij |tij ∈ Q1 and tij /∈
Q̄1}. Then Q̄1 = Q1 + Q+

1 −Q−1 . Then

Γ̄ =
∑

tij∈Q̄1

(ρ̄U − ρ̄ij)

=
∑

tij∈Q1

(ρ̄U − ρ̄ij) +
∑

tij∈Q+
1

(ρ̄U − ρ̄ij)−
∑

tij∈Q−1

(ρ̄U − ρ̄ij).

By the definition of Q−1 , we can know that ρ̄ij ≥ ρ̄U , ∀ tij ∈ Q−1 ,
and then

∑
tij∈Q−1

(ρ̄U − ρ̄ij) ≤ 0. Similarly, by the definition of Q+
1 ,

∑
tij∈Q+

1
(ρ̄U − ρ̄ij) ≥ 0. Note that Q+

1 can be empty if ρij of tile tij ,

∀ tij ∈ Q0, is no less than ρ̄U . Then

Γ̄ ≥
∑

tij∈Q1

(ρ̄U − ρ̄ij),

∆Γ = Γ̄− Γ ≥
∑

tij∈Q1

(ρ̄U − ρ̄ij)−
∑

tij∈Q1

(ρU − ρij)

=
∑

tij∈Q1

∆ρH −
∑

tij∈Q1

(ρ̄ij − ρij).

Let te be the tile associated with edge e and We be the weighting window
of te. Note that only ρij of tile tij ∈ We can increase after routing through
edge e. Let W1 = Q1 ∩We. Since W1 ⊆ We and ρ̄ij ≥ ρij , we have

∆Γ ≥
∑

tij∈Q1

∆ρH −
∑

tij∈W1

(ρ̄ij − ρij)

≥
∑

tij∈Q1

∆ρH −
∑

tij∈We

(ρ̄ij − ρij). (24)

Since the increase of ρij of tij ∈ We is due to the increase in the IPD of
te by ∆M

d , we have

∑

tij∈We

(ρ̄ij − ρij) = ∆M
d

l∑

i=−l

l∑

j=−l

f(i, j) = b∆M
d . (25)

By (24) and (25), we have ∆Γ ≥ |Q1|∆ρH − b∆M
d .

Note that the conclusion holds when ∆ρH ≥ 0, which is easy to see
from the proof itself.

For part (b), we use the same symbols defined above. Using the condi-
tions ∆ρH = 0, Q̄1 = Q1 and We ⊆ Q1, similar to the proof above, we
have:

∆Γ = −
∑

tij∈Q1

(ρ̄ij − ρij) = −
∑

tij∈We

(ρ̄ij − ρij) = −b∆M
d .

2

