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ABSTRACT
Several approaches to post-silicon adaptation require feedback from
a replica of the nominal critical path, whose variations areintended
to reflect those of the entire circuit after manufacturing. For real-
istic circuits, where the number of critical paths can be large, the
notion of using a single critical path is too simplistic. This paper
overcomes this problem by introducing the idea of synthesizing a
representative critical path (RCP), which captures these complex-
ities of the variations. We first prove that the requirement on the
RCP is that it should be highly correlated with the circuit delay.
Next, we present two novel algorithms to automatically build the
RCP. Our experimental results demonstrate that over a number of
samples of manufactured circuits, the delay of the RCP captures
the worst case delay of the manufactured circuit. The average pre-
diction error of all circuits is shown to be below 2.8% for both
approaches. For both our approach and the critical path replica
method, it is essential to guard-band the prediction to ensure pes-
simism: our approach requires a guard band 30% smaller than for
the critical path replica method.

Categories and Subject Descriptors
B.7.2 [Hardware]: INTEGRATED CIRCUITS-Design Aids

General Terms
Algorithms, Design

Keywords
Representative Critical Path, Post-Silicon Optimization

1. INTRODUCTION
For feature sizes in the tens of nanometers, it is widely accepted

that design tools must take into account parameter variations dur-
ing manufacturing. These considerations are important during both
circuit analysis and optimization, and are essential to ensure ade-
quate manufacturing yield. Parameter variations can be classified
into two categories: across-die variations and within-dievariations.
Across-die variations correspond to parameter fluctuations from
one chip to another, while within-die variations are definedas the
variations among different locations within a single die. Within-die
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variations of some parameters have been observed to be spatially
correlated, i.e., the parameters of transistors or wires that are placed
close to each other on a die are more likely to vary in a similarway
than those of transistors or wires that are far away from eachother.
For example, among the process parameters for a transistor,the
variations of channel lengthL and transistor widthW are seen to
have such spatial correlation structure, while parameter variations
such as the dopant concentrationNA and the oxide thicknessTox

are generally considered not to be spatially correlated.
Process parameter variations have resulted in significant chal-

lenges to the conventional corner-based timing analysis paradigm,
and statistical static timing analysis (SSTA) has been proposed as
an alternative [1–6]. The idea of SSTA is that instead of com-
puting the delay of the circuit as a specific number, a probability
density function (PDF) of the circuit delay is determined. Design-
ers may use the full distribution, or the3σ point of the PDF, to
estimate and optimize timing. Efficient statistical timinganaly-
sis tools have been developed based on parameterized block-based
statistical timing analysis [1, 2], taking into consideration spatial
and structural correlations of the parameter variations inthe circuit
to be analyzed. The computational efficiency of these methods is
made practical through a preprocessing step, proposed in [1], which
has shown that Gaussian-distributed correlated variations can be or-
thogonalized using principal component analysis (PCA).

The above-mentioned statistical timing analysis tools areuseful
for presilicon analysis over an entire population of die, and are in-
tended to maximize the yield over the population. The post-silicon
analysis and optimization problem is complementary to any such
presilicon analysis. The diagnosis problem addresses the issue of
estimating the performance of a manufactured die, or determin-
ing the critical path (or paths) on the manufactured die. While
this information may be gathered using time-intensive delay test-
ing schemes, there are many instances where a faster diagnosis is
necessary, e.g., in post-silicon tuning methods.

In previous literature, the interaction between presilicon analysis
and post-silicon measurements has been addressed in several ways.
In [7], post-silicon measurements are used to learn a more accurate
spatial correlation model to refine the SSTA framework. A path-
based methodology is proposed in [8] to correlate post-silicon test
data to presilicon timing analysis. In [9], a statistical gate sizing
approach is presented to optimize the binning yield. The work is
extended to simultaneously consider the presence of post-silicon-
tunable clock tree and statistical gate sizing in [10]. Post-silicon de-
bug methods and their interaction with circuit design are discussed
in [11]. A joint design-time and post-silicon tuning procedure is
described in [12].

In this paper, we focus on post-silicon tuning methods that re-
quire replicating the critical path of a circuit. Such techniques in-
clude adaptive body bias (ABB) or adaptive supply voltage (ASV)
[13–15]. The approach that is used in [13–15] employs a replica of



the critical path at nominal parameter values (we call this the nom-
inal critical path), whose delay is rapidly measured and used to
determine the optimal adaptation. However, this has obvious prob-
lems: first, it is likely that a large circuit will have more than a sin-
gle critical path, and second, a nominal critical path may have dif-
ferent sensitivities to the parameters than other near-critical paths,
and thus may not be representative. We quantitatively illustrate
this problem in our experimental results. An alternative approach
in [16] uses a number of on-chip ring oscillators to capture the pa-
rameter variations of the original circuit. However, this approach
requires measurements for hundreds of ring oscillators fora circuit
with reasonable size and does not provide an explicit critical path.

Another post-silicon optimization technique uses dynamicvolt-
age scaling [17,18]. In [17], a delay synthesizer, composedof three
delay elements, is used to synthesize a critical path as partof a dy-
namic voltage and frequency management system. However, the
control signals of the synthesizer is chosen arbitrarily and therefore
it is not able to adapt to a changing critical path as a result of pro-
cess variations. In [18], the authors compensate this problem using
a pre-characterized look up table (LUT) to store logic speedand
interconnect speed inside different process bins. A logic and in-
terconnect speed monitor is then used as an input to select through
the LUT control signals to program a critical path. However,the
authors use simplified circuitry for the speed monitor, consisting of
only one logic dominated element and one interconnect dominated
element, and assume that the results are generally applicable to all
parts of the circuit. In the presence of significant within-die vari-
ations, this assumption becomes invalid. Moreover, the approach
requires substantial memory components even for process bins of a
very coarse resolution, and is not scalable to fine grids.

In this paper, we propose a new way of thinking about the prob-
lem. We automatically build an on-chip test structure that captures
the effects of parameter variations on all critical paths, so that a
measurement on this test structure provides us a reliable prediction
of the actual delay of the circuit, with minimal error, for all man-
ufactured die. The key idea is to synthesize a test structurewhose
delay can reliably predict the maximum delay of the circuit,under
across-die as well as within-die variations. In doing so, wetake
advantage of the property of spatial correlation between parameter
variations to build this structure and determine the physical loca-
tions of its elements.

The test structure that we create, which we refer to as therepre-
sentative critical path(RCP), is typically different from the critical
path at nominal values of the process parameters. In particular,
a measurement on the RCP provides the worst-case delay of the
whole circuit, while the nominal critical path is only validunder
no parameter variations, or very small variations. Since the RCP is
an on-chip test structure, it can easily be used within existing post-
silicon tuning schemes, e.g., by replacing the nominal critical path
in the schemes in [13–15]. While our method accurately captures
any correlated variations, it suffers from one limitation that is com-
mon to any on-chip test structure: it cannot capture the effects of
spatially uncorrelated variations, because by definition,there is no
relationship between those parameter variations of a test structure
and those in the rest of the circuit. To the best of our knowledge,
this work is the first effort that synthesizes a critical pathin the sta-
tistical sense. The physical size of the RCP is small enough that it
is safe to assume that it can be incorporated into the circuit(using
reserved space that may be left for buffer insertion, decap insertion,
etc.) without significantly perturbing the layout.

The remainder of the paper is organized as follows. Section 2
introduces the background of the problem and formulates theprob-
lem mathematically. Next, Section 3 illustrates the detailed algo-
rithms of our approach. Experimental results are provided in Sec-
tion 4, and Section 5 concludes the paper.

2. PROBLEM FORMULATION
In this paper, we use the grid-based model from [1] to capture

spatially correlated parameter variations. The chip is divided into
a number of grids tailored for the size of the circuit. Variations of
the same process parameter inside each grid are taken to be fully
correlated, and the correlation is a decreasing function ofdistance:
specifically, variations inside nearby grids show higher correlation
than variations within grids that are far away. For different process
parameters, it is assumed that there are no correlations.

Our overall approach can be summarized as follows. We have
a circuit whose delay can be represented as a random variable, dc.
Using the method presented in this paper, we build the RCP whose
delay can be represented by another random variable,dp. After the
circuit is manufactured, we measure the delay of the RCP, andfind
that it equalsdpr. In other words,dpr corresponds to one sample
of dp for a particular set of parameter values. From this measured
value ofdpr, we will infer the value,dcr, of dc for this sample, i.e.,
corresponding to this particular set of parameter values.

We assume that all parameter variations are Gaussian-distributed,
and the delay of both the circuit and the critical path can be approx-
imated by an affine function of those parameter variations. From
previous work, e.g., [1], we know that we can get these functions by
performing SSTA, and we can obtain bothdc anddp as Gaussian-
distributed PDFs.

Let dc ∼ N (µc, σc), dp ∼ N (µp, σp), and let the correlation
coefficient ofdc anddp beρ. Then, from the basic theory of statis-
tics, we know that the joint PDF ofdc anddp is
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The mean can be interpreted as the predicted value of the delay

of the circuit, then the variance is the mean square error of infinite
samples. From a least squares perspective, it is desirable to mini-
mize the variance, so that the mean is an estimate of the circuit de-
lay with the smallest mean square error. For the term representing
the variance of the conditional distribution,σc is fixed because we
have no control over the original circuit, and therefore, the variance
of the conditional distribution is dependent only onρ. Minimizing
the variance is thus equivalent to maximizingρ. In other words,
this is a formal statement of the intuitive observation thatour prob-
lem is to build a RCP whose delay has the maximum correlation
coefficient with the delay of the whole circuit.

3. GENERATION OF THE CRITICAL PATH

3.1 Overview of the SSTA Framework
Block-based parameterized statistical timing analysis procedures

propagate the PDF of the arrival time at the output of each gate
during a topological traversal of the circuit, using a canonical form.
This canonical form typically consists of a mean (i.e., the nomi-
nal value) and a set of normalized independent sources of varia-
tion (equivalent to Principal Components (PCs), which can be ob-



tained by applying PCA to the covariance matrix of the spatially
correlated process parameters), and a term for spatially uncorre-
lated sources of variation.

We use parameterized SSTA to obtaindc as an affine function
in the canonical form. We will show that this canonical form,in
which the variables in the affine function consist of them PCs and
the independent parameter, makes the calculation of the correlation
coefficientρ defined in Section 2 much easier.

The canonical expression fordc is shown below:

dc = µc +
m

X

i=1

aipi = µc + a
T
p + Rc, (1)

wheredc, µc are defined in Section 2, andµc is the mean ofdc

obtained from SSTA, and represents the nominal value ofdc. The
random variableRc is the independent term defined in [19] whose
variance is recorded as SSTA is performed. The random variable pi

corresponds to theith PC, and is Gaussian distributed asN(0, 1);
note thatpi andpj for i 6= j are uncorrelated by definition, due to
the property of PCA. The parameterai is the first order coefficient
of dc with respect topi. We have stacked allai variables together
to form the vectora, andp is the vector that contains allpi.

The values of these principal components for a given manufac-
tured part are identical for the circuit and the RCP since they both
lie on the same chip. A statistical timing analysis of this path yields
another delay expression in canonical form:

dp = µp +
m

X

i=1

bipi = µp + b
T
p + Rp (2)

wheredp, µp are defined in Section 2, andpi, bi,b,p, Rp are all
inherited from Equation (1). The correlation coefficient ofdc and
dp is easily computed as

ρ =
aT b

σcσp

(3)

whereσc =
q

aT a + σ2
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andσp =
q

bT b + σ2
Rp

. An impor-

tant point to note is thatρ only depends on the coefficients of the
PCs for both the circuit and the critical path and their independent
terms.

As discussed in Section 2, the mean of the conditional distribu-
tion f (dc = dcr|dp = dpr), which is used to estimate of the circuit
delay, is:

µ̄ = µc +
ρσc

σp

(dpr − µp) = µc +
aT b
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The variance which is also the mean square error of the circuit
delay estimated using the above expression, isσ2
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goal is to build a critical path with the largest possibleρ.

Our theory assumes that the effects of systematic variations can
be ignored, and we will show, at the end of Section 4, that thisis
a reasonable assumption. However, it is also possible to extend
the theory to handle systematic variations in parameters that can
be controlled through design: for a fully characterized type of sys-
tematic variation, we can compensate for it by choosing a shifted
nominal value for the parameter.

3.2 Two Approaches for Generating the
Critical Path

In this work, we propose two methods for generating the RCP.
The first is based on sizing gates on an arbitrarily chosen nominal
critical path, while the second synthesizes the RCP from scratch
using cells from the standard cell library.

3.2.1 Method I: Critical Path Generation Based on
Nominal Critical Path Sizing

As described in Section 1, the nominal critical path falls short
of our need to capture the worst case delay of the circuit overall
reasonable parameter variations. However, it is intuitively true that
variations along a critical path have some relationship to the varia-
tions in the circuit. Our first approach proceeds along this intuitive
direction: it begins with a critical path of the circuit, andmodifies
it to meet the criteria described in Section 2, in order to ensure that
it closely tracks the delay of the critical path in the manufactured
circuit.

For an optimized circuit, it is very likely that there are multiple
nominal critical paths with similar worst case delays at nominal
parameter values. To make our approach as general as possible, we
pick the one nominal critical path that has the largest worstcase
delay at nominal values, even if its delay is only larger thana few
other paths by a small margin. If there are multiple such paths, we
arbitrarily pick one of them. We show in Section 4 that even with
this relaxed choice, after the optimizations presented in this section,
our method can produce very good results.

Algorithm 1 Variation-aware critical path generation based on siz-
ing.
1: Perform deterministic STA on the original circuit and findthe

maximum delay path as the initial RCP. If there is more than
one such path, arbitrarily pick any one.

2: Perform SSTA on the original circuit to find the PC coefficients
corresponding to the vectora and the variance of the indepen-
dent term.

3: Perform SSTA on the initial RCP to find its PC coefficients and
the variance of its independent term. Calculate the correlation
coefficientρ0 between the delay variables of the original circuit
and the initial RCP.

4: k = 1
5: while (1) do
6: for each gatei on the critical pathdo
7: Bump up its size by multiplying it by a factorF , keeping

all other gate sizes unchanged from iterationk − 1
8: Computeρk

i as the correlation coefficient for this modi-
fied RCP with the original circuit

9: end for
10: Choosei such thatρk

i is the largest, and setρk = ρk
i

11: if ρk > 0 then
12: Set the RCP to be the RCP from iterationk − 1, except

that the size of gatei is bumped up by factorF .
13: else
14: break
15: end if
16: end while

An outline of the procedure is illustrated in Algorithm 1. We
begin with a nominal critical path of the circuit, chosen as described
above, and replicate it to achieve an initial version of the RCP. This
is refined by iteratively sizing the gates on the path, using agreedy
algorithm, in such a way that its correlation with the circuit delay
is maximized.

The first step of the approach involves performing STA on the
circuit to identify a nominal critical path, which is pickedas the
initial version of the RCP. Next, we perform SSTA on the circuit
to obtain the PDF of the circuit delay,dc, in canonical form. In
other words, this analysis provides us with the coefficientsof the
PCs in the circuit delay expression. We repeat this procedure for
the RCP, to obtain the coefficients of the PCs in the expression for
the delay,dp, of the RCP. Based on these two canonical forms, we



can compute the correlation coefficient,ρ0, between the two delay
expressions.

The iterative procedure changes the size of gates on the current
RCP, using a TILOS-like criterion. In thekth iteration, we process
each gatei on the RCP, and alter its size by multiplying its current
size by a constant factor, while leaving all other gate sizesidentical
to iterationk − 1. We perform SSTA on this modified RCP to
obtain the new PCs corresponding to this change, and calculate the
new correlation coefficient,ρk

i . Over all gates on the current RCP,
we greedily choose to up-size the gatej whose perturbation that
provides the maximum improvement in the correlation coefficient.
We then update the RCP by perturbing the size of thej, and set the
value ofρk to ρk

j . We repeat until there is no improvement in the
correlation coefficient is possible, or if the sizes of gatesin the RCP
become too large.

We can save on the computation time by exploiting the fact that
the RCP is a single path, and that SSTA on this path only involves
sum operations and no max operations. When the size of a gate
is changed, the delays of most gates on the critical path are left
unchanged. We only perform SSTA on the few gates and wires
that are directly affected by the perturbation, instead of performing
SSTA on the entire path. However, we still have to walk through
the whole path to find the gate with the maximum improvement.
If the number of stages of a nominal critical path is bounded by s,
and the sizing procedure takesK iterations, then the run time of
Algorithm 1 isO (Ks).

The final RCP is built on the chip, and after manufacturing, its
delay is measured. Using Equation (4) in Section 3.1, we may then
predict the delay of the circuit.

A significant advantage of this approach is that by choosing a
nominal critical path as the starting point for the RCP, and refining
the RCP iteratively to improve its correlation with the circuit delay,
this approach is guaranteed to do no worse than one that uses the
unmodified nominal critical path, e.g., in [13–15]. For a circuit that
is dominated by a single critical path, this method is guaranteed to
find that dominating path.

The primary drawback of this method is also related to the fact
that the starting point for the RCP is a nominal critical path. This
fixes the structure of the path and the types of gates that are located
on it, and this limits the flexibility of the solution. Our current so-
lution inherits its transformations in each iteration fromthe TILOS
algorithm, and changes the size of the circuit. However, in principle
the idea could also be used to consider changes, in each iteration,
not only to the sizes but also to the functionality of the gates on the
RCP by choosing elements from a standard cell library, so that the
delay of the modified RCP (with appropriately excited side-inputs)
shows improved correlations with the circuit delay. Another possi-
ble enhancement could be to select the nominal critical pathwith
the highest initial correlation coefficient with the circuit delay, in-
stead of choosing this path arbitrarily. These extensions may be
considered in future work, but Section 4 shows that even without
them, our approach still produces good results.

3.2.2 Method II: Critical Path Generation Using
Standard Cells

The second approach that we explore in this work builds the RCP
from scratch, using cells from the standard cell library that is used
to build the circuit. The problem of forming a path that optimally
connects these cells together to ensure high correlation with dc can
be formulated as an integer nonlinear programming problem,where
the number of variables corresponds to the number of librarycells,
and the objective function is the correlation between the statistical
delay distribution,dp, of an RCP consisting of a set of these cells,
anddc.

The integer nonlinear programming formulation is listed below:

maximize ρ = a
T
b(Ns)

q

aT a+σ2

Rc

q

b(Ns)T b(Ns)+σ2

Rp
(Ns)

(5)

s.t. Ns ∈ Zn

eT Ns ≤ s

b = Σn
i=1Nsibi

σ2
Rp

= Σn
i=1Nsiσ

2
Rpi

The objective function above is the correlation coefficient, ρ, be-
tweendp anddc, as defined by Equation (3). The variablen repre-
sents the number of possibilities for each stage of the RCP, and the
vectorNs = [Ns1, Ns2, · · · , Nsn]T , whereNsi is the number of
occurrences ofi in the RCP.

The first constraint states the obvious fact that each element of
Ns must be one of the allowable possibilities. In the second con-
straint,e = [1, 1, · · · , 1]T , so that the constraint performs the func-
tion of placing an upper bound on the total number of stages inthe
RCP. For the purposes of this computation,a andσ2

Rc
come from

the canonical form of the circuit delay,dc, and are constant. The
values ofb andσ2

Rp
are functions ofNs, where the mapping cor-

responds to performing SSTA on the RCP to find the vector of PC
coefficientsb and the variance of the independent termRp in the
canonical form. The termsbi, 1 ≤ i ≤ n are the PC coefficients
corresponding to each stage of the RCP, andRpi correspond to their
independent terms, so thatb andσ2

Rp
are related toNs through the

last two constraints.
Since (6) does not easily map on to any tractable problem that

we are aware of, we propose an incremental greedy algorithm,de-
scribed in Algorithm 2, which is simpler. While this algorithm is
not provably optimal, it is practical in terms of its computational
cost. We begin by recalling that our problem is to make the cor-
relation coefficient betweendc anddp as large as possible. The
algorithm begins by performing SSTA on the original circuitto de-
terminedc.

Algorithm 2 Critical path generation using standard cells.
1: Initialize the RCPP to be the initial loadINV .
2: Perform SSTA on the original circuit to finddc in canonical

form, and also compute the canonical form for the delay of
each of thep × q choices for the current stage.

3: Calculate the loadLk−1 presented by the(k − 1)-stage RCP
computed so far.

4: With Lk−1 as the load, perform SSTA on thep× q choices for
stagek.

5: Statistically add the canonical expressions for the delays of
each of thep× q choices with the canonical form for the delay
of the partial RCP computed so far,P . Calculate the correla-
tion coefficient between the summed delays and the delay of
the original circuit for each case.

6: Select the choice that produces the largest correlation coeffi-
cient as stagek in pathP .

7: Go to Step 3.

During each iteration, the RCP is constructed stage by stage,
where astageis defined as a gate, together with the interconnects
that it drives. If we havep types of standard gates, andq types of
metal wires, then in each iteration we havep × q choices for the
stage to be added. For an RCP withm stages, this corresponds to
a search space of(p × q)m. Instead, our method greedily chooses
one of thep×q choices at each stage that maximizes the correlation
of the partial RCP constructed so far withdc, thereby substantially
reducing the computation involved.

The approach begins at the end of the critical path. We assume



that it drives a measurement device such as a flip-flop, and thepart
of the device that the critical path drives is an inverterINV . There-
fore, for the first iteration, this inverter is taken as the load, and it
corresponds to a known load for the previous stage, which will be
added in the next iteration.

In iterationk, we append each of thep× q choices to the partial
RCP from iterationk−1, and perform SSTA for all of these choices
to obtain the coefficients for the PCs, and the correlation with dc,
using Equation (3). The choice that produces the largest correlation
coefficient is chosen to be added to the critical path. The load pre-
sented by this choice to the previous stage is then calculated, and
the process is repeated. During the process of building the RCP,
there may be cases where a wire on the RCP crosses the boundary
between two correlation grids: if so, the current gate and the one it
drives belong to two different grids, and the wire connecting them
must be split into two parts to perform the SSTA.

A complimentary issue for this algorithm is related to determin-
ing the physical layout of each stage. We assume that the RCP
moves monotonically: for example, the signal direction on all hori-
zontal wires between stages must be the same, and the same is true
of signal directions on all vertical wires. Because of symmetry of
the PCA results, we only choose the starting points to be fromthe
bottom grids of the die. For a given starting point, the routing would
span to the right and upper part of the circuit. It should be noted that
systematic variations would affect the sensitivities of the parameter
values, causing PC coefficients of cells at symmetric locations not
exactly symmetric. However, because systematic variations can be
pre-characterized before statistical analysis by a changeof nominal
values at different locations, we show in Section 4 that a reasonable
disturbance of the nominal values would not significantly affect the
final results. The procedure continues until the number of stages in
the RCP reaches a prespecified maximum, or when the monotonic
path reaches the end of the layout.

If the number of stages of the RCP is bounded bys and the
number of starting points we try isω, the runtime of method II
is O(ωpqs), because at each stage we havep × q choices. In com-
parison to Method I, if the bound of maximum number of stages for
each method is comparable, then the comparison betweenK and
ω × p× q determines which method has the longer asymptotic run
time.

This approach has the advantage of not being tied to a specific
critical path, and is likely to be particularly useful when the num-
ber of critical paths is large. However, for a circuit with one domi-
nant critical path, this method may not be as successful as the first
method, since it is not guided by that path.

4. EXPERIMENTAL RESULTS
We demonstrate the effectiveness of the approaches presented

in this paper on the ISCAS89 benchmark suite. The netlists are
first sized using our implementation of TILOS: this ensures that the
circuits are realistic and are a reasonable number of critical paths.
The circuits are placed using Capo [20] and global routing isthen
performed to route all of the nets in the circuits.

The variational model uses the hierarchical grid model in [21] to
compute the covariance matrix for each spatially correlated param-
eter. Under this model, if the number of grids isG, and the number
of spatially correlated parameters being considered isP , then the
total number of PCs is no more than (P ×G). The parameters that
are considered as sources of variations include the effective chan-
nel lengthL, the transistor widthW , the interconnect widthWint,
the interconnect thicknessTint and the inter-layer dielectricHILD .
The widthW is the minimum width of every gate before the TI-
LOS sizing. We use two layers of metal. Parameters on different
layers of metal are considered to be independent. The parameters
are Gaussian-distributed, and their mean and3σ values are shown

in Table 1. As in many previous works on variational analysis, we
assume that for each parameter, half of the variational contribution
is assumed to be from across-die variations and half from within-
die variations. We useMinnSSTA[1] to perform SSTA, in order to
obtain the PC coefficients fordc. All programs are run on a Linux
PC with a 2.0GHz CPU and 256MB memory.

Table 1: Parameters used in the experiments.
L W Wint Tint HILD

(nm) (nm) (nm) (nm) (nm)
µ 60.0 150.0 150.0 500.0 300.0
3σ 12.0 22.5 30.0 75.0 45.0

We first show the results of the algorithm that corresponds to
Method I, described in Section 3.2.1, synthesizing the RCP by
modifying a nominal critical path of the original circuit. The initial
sizes of the gates are their sizes after timing optimization. We only
show the results of the larger circuits, since these are morerealis-
tic, less likely to be dominated by a small number of criticalpaths,
and are large enough to allow significant within-die variations. Of
these, circuit s9234 is smaller than the others, and is divided into
16 spatial correlation grids, while all other circuits are divided into
256 grids.

In our implementation of Method I, we do not consider conges-
tion issues. We assume both the critical path replica methodand
Method I can perfectly replicate the nominal critical path,includ-
ing the interconnects, to give them a fair comparison. In practice,
Method I can route the replicated nominal critical path in the same
way as any of the prior critical path replica methods reported in
previous literature.

We use a set of Monte Carlo simulations to evaluate the RCP.
For each circuit being considered, we perform 10,000 Monte-Carlo
simulations, where each sample corresponds to a manufactured die.
For each sample, we compute the delay of the RCP, the delay of the
original circuit, and the delay of the nominal critical paththat may
be used in a Critical Path Replica method, as in [13–15].

The delay of the RCP is then used to compute the circuit delay
using Equation (4) in Section 3.1. This computed circuit delay,
called the predicted delay,dpredic, is compared with the delay of
the circuit, referred to as the true delay,dtrue. The prediction error
is defined as

|dtrue − dpredic|

dtrue

× 100%. (6)

For purposes of comparison, we also calculate the accordingpre-
diction error for the Critical Path Replica method.

In order to maximize yield, we must add aguard bandfor the
predicted delay values to ensure that the predictions are pessimistic.
Therefore in this set results we also compare the guard band needed
to make 99% of the delay predictions pessimistic for both Method
I and the Critical Path Replica method, respectively.

Table 2: A comparison between Method I and the Critical Path
Replica (CPR) Method.

Circuit Average error Maximum error Guard band (ps)
Method I CPR Method I CPR Method I CPR

s9234 1.59% 2.84% 10.51% 15.20% 28.5 44.1
s13207 0.59% 1.07% 6.30% 7.33% 20.3 28.6
s15850 1.16% 2.13% 8.99% 11.52% 39.0 56.9
s35932 2.35% 5.77% 13.72% 20.83% 33.7 59.1
s38584 1.98% 3.26% 14.70% 17.66% 48.9 74.2
s38417 2.80% 5.24% 15.80% 21.32% 53.2 84.1



Table 3: Conditional standard deviation, number of stages for
RCP, and CPU time of Method I.

Circuit Avg σcond

µcond
Max σcond

µcond
No. stages CPU time

s9234 2.35% 2.94% 67 24.17s
s13207 1.10% 1.47% 71 208.77s
s15850 1.43% 1.86% 96 554.33s
s35932 2.51% 3.14% 36 415.28s
s38584 2.35% 2.94% 66 158.16s
s38417 3.13% 3.90% 41 113.53s

The results of the comparisons are presented in Table 2, where
the rows are listed in increasing order of the size of the benchmark
circuit. For Method I as well as the Critical Path Replica (CPR)
Method, we show the average error and maximum error over all
samples of the Monte-Carlo simulation. All of the average errors
of our approach are below3% and both the average errors and max-
imum errors are significant improvements compared to the Critical
Path Replica method. The guard bands needed by the two methods
are listed in the last two columns. The guard band for Method Ifor
each circuit is observed to be much smaller than the CriticalPath
Replica method. The advantage of Method I becomes particularly
noticeable for the larger circuits.

The conditional variance derived in Section 2 defines the confi-
dence of our estimate. Therefore we show the conditional standard
deviationσcond as a percentage of the conditional meanµcond in
Table 3. Becauseµcond is different for each sample, we list the
averageσcond

µcond
and the maximumσcond

µcond
over all samples for each

circuit. In order to provide more information about the RCP we
generate, we also show the number of stages for each RCP in the
table. In this case, the number of stages for each RCP is the same
as the nominal critical path for that circuit. The last column of the
table shows the CPU time required by Method I for these bench-
marks.

The run time of Method I ranges from a few seconds to around 9
minutes. The conditional standard deviation is typically below 3%
of the conditional mean on average.
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Figure 1: The scatter plot: (a) real circuit delay vs. predicted
circuit delay by Method I and (b) real circuit delay vs. pre-
dicted circuit delay using the Critical Path Replica method.

To visually indicate the performance of Method I, we draw scat-
ter plots of the results for circuit s35932 in Figure 1(a) forMethod
I, and in Figure 1(b) for the Critical Path Replica. The horizontal
axis of both figures is the delay of the original circuit for a sample
of the Monte-Carlo simulation. The vertical axis of Figure 1(a) is
the delay predicted by our method, while the vertical axis ofFigure
1(b) is the delay of the nominal critical path, used by the Critical
Path Replica method. The ideal result is represented by thex = y

axis, shown using a solid line. It is easily seen that for the criti-
cal path replica method, the delay of the Critical Path Replica is
either equal to the true delay (when it is indeed the criticalpath of
the manufactured circuit) or smaller (when another path becomes
more critical, under manufacturing variations). On the other hand,
for Method I, all points cluster very close to thex = y line, an
indicator that the method produces accurate results. The delay pre-
dicted by our approach can be larger or smaller than the circuit
delay, but the errors are small. Note that neither Method I nor the
Critical Path Replica Method is guaranteed to be pessimistic, but
such a consideration can be enforced by the addition of a guard
band that corresponds to the largest error. Clearly, MethodI can
be seen to have the advantage of the smaller guard band in these
experiments.

Our second set of experiments implement the algorithm corre-
sponding to Method II, presented in Section 3.2.2. The maximum
number of stages we allow for the critical path we create for each
circuit is 50, comparable to most nominal critical paths forthe cir-
cuits in our benchmark suite. We use 7 standard cells at each stage,
and 2 metal layers. Therefore we have 14 choices for each stage.
As in Method I, we did not consider congestion issues here and
assume that the critical path replica method can perfectly replicate
the nominal critical path. In practice, Method II can easilyhandle
congestion issues by assigning a penalty to congested areaswhen
selecting wire directions. The setup of the Monte-Carlo simulations
are similar to the first set of experiments. The corresponding errors
and guard bands are shown in Table 4. Since this Monte Carlo sim-
ulation is conducted separately from that in Table 2, there are minor
differences in the error for the Critical Path Replica, eventhough
both tables use the same Critical Path Replica as a basis for com-
parison. The average and maximumσcond

µcond
, the number of stages

for each RCP, as well as the run times are shown in Table 5. The
advantage of Method II, again, increases with the size of thecircuit.

Table 4: A comparison between Method II and the Critical
Path Replica (CPR) Method.

Circuit Average error Maximum error Guard band (ps)
Method II CPR Method II CPR Method II CPR

s9234 1.98% 2.84% 10.57% 15.15% 31.4 44.0
s13207 1.51% 1.06% 8.51% 7.22% 35.3 26.5
s15850 1.73% 2.14% 9.22% 10.97% 45.4 56.9
s35932 2.27% 5.80% 13.91% 21.34% 32.3 59.9
s38584 2.11% 3.29% 10.89% 17.12% 43.0 72.1
s38417 2.28% 5.27% 12.01% 22.88% 42.4 84.2

Table 5: Conditional standard deviation, number of stages for
RCP, and CPU time of Method II.

Circuit Avg σcond

µcond
Max σcond

µcond
No. stages CPU time

s9234 2.18% 2.79% 49 0.1s
s13207 1.75% 2.31% 30 15.7s
s15850 1.88% 2.45% 50 15.1s
s35932 2.19% 2.81% 50 16.7s
s38584 2.14% 2.73% 50 18.6s
s38417 2.13% 2.77% 50 15.5s

It is observed that for almost all cases, the average and maxi-
mum errors for Method II are better than those for the Critical Path
Replica method. The exception to this is circuit s13207, which is
dominated by a small number of critical paths, even after sizing
using TILOS. We illustrate this using the path delay histogram in
Figure 2(a), which aggregates the delays of paths in the sized cir-
cuit into bins, and shows the number of paths that fall into each bin.



In this case, it is easily seen that the number of near-critical paths
is small. In contrast, Figure 2(b) shows the same kind of histogram
for circuit s9234, which is more typical over the other benchmarks:
in this case it is seen that a much larger number of paths is near-
critical, and likely to become critical in the manufacturedcircuit,
due to the presence of variations.
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Figure 2: Histograms of path delays of (a) s13207 and (b) s9234
after TILOS optimization.

Under the scenario where the number of near-critical paths is
small, it is not surprising that Method II does not perform aswell
as a critical path replica. First, as pointed out in Section 3.2.2,
Method II does not take advantage of any information about the
structure of the original circuit, and is handicapped in such a case.
Moreover, the unsized circuit s13207 was strongly dominated by a
single critical path before TILOS sizing; after sizing, theoptimized
near-critical paths are relatively insensitive to parameter variations,
meaning even if one of these becomes more critical than the nomi-
nal critical path on a manufactured die, it is likely to have more or
less the same delay.
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Figure 3: The scatter plot: (a) real circuit delay vs. predicted
delay by Method II and (b) real circuit delay vs. predicted delay
using the Critical Path Replica method.

We also show scatter plots for both our approach and criticalpath
replica in this case, in Figure 3(a) and Figure 3(b), respectively. The
figures are very similar in nature to those for the first approach, and
similar conclusions can be drawn. In comparing Methods I andII
by examining the numbers in Tables 2 and 4, it appears that there is
no clear winner, though Method II seems to show an advantage for
the largest circuits, s35932 and s38417. With our limited number of
choices for each stage of the RCP, referring to discussions about run
time in Section 3.2.2, it is not surprising that Method II is faster in
terms of CPU time, as is shown in Table 5. The algorithm finishes
within a few seconds for all of the benchmark circuits.
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Figure 4: The RCP created by Method II for circuit s13207.

Next we show the location of the critical path we build for circuit
s38417 using Method II on the chip in Figure 4. The figure shows
the die for the circuit. The size of the die is determined by our
placement and routing procedure, and the dashed lines indicate the
spatial correlation grids. The solid bold lines are the wires of the
critical path. The figure shows that the critical path grows in a
monotonic direction and it starts from one of the grids at thebottom
of the chip, both due to the layout heuristics discussed in Section
3.2.2.

In order to gain more insight into the trend of improvement ofthe
correlation coefficients, Figure 5 shows the correlation coefficient
of Method II after each stage is added for one starting point.The
result for Method I is similar.
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Finally, we experimentally demonstrate that our assumption of
neglecting systematic variations is reasonable. We demonstrate this
on Method II, and show that a reasonable change in the nominalpa-
rameter values of the RCP cells due to systematic variationswould
not affect the final results by much. This justifies our heuristic to
only choose the starting point of the RCP at the bottom of the die.

The experiment proceeds as follows: after the RCP is built, we
disturb the nominal values of all parameters associated with the
RCP by 20%, while leaving those of the original circuit unper-
turbed. This models the effect of systematic variations, where the
RCP parameters differ from those of the original circuit. Weshow
the final results of the scatter plots for circuit s38417, with and
without disturbance, in Figures 6(a) and 6(b), respectively. It is
shown that the plots are almost identical, and the average error is
2.26% with disturbance as compared to 2.28% for the normal case.

The intuition for this can be understood as follows. The corre-
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Figure 6: Scatter plots of s38417 with and without nominal
value disturbance for the RCP, to model systematic variations.

lation between the original circuit and the RCP depends on the co-
efficients of the PCs in the canonical expression. The coefficients
depend on the sensitivities of the delay to variations, and not on
their nominal values. Although the delay is perturbed by 20%, the
corresponding change in the delay sensitivity is much lower, and
this leads to the small change in the accuracy of the results.

5. CONCLUSION
In this paper, we have presented two novel techniques to auto-

matically generate a critical path for the circuit to capture all of
the parameter variations. Experimental results have shownthat our
methods produce good results.
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