
Datapath Routing Based on a Decongestion Metric
Suresh Raman

University of Minnesota
Minneapolis, MN 55455 USA
suresh@mail.ece.umn.edu

Sachin S. Sapatnekar
University of Minnesota

 Minneapolis, MN 55455 USA
sachin@mail.ece.umn.edu

Charles J. Alpert
IBM Austin Research Laboratory

Austin, TX 78660 USA
calpert@us.ibm.com

Abstract
For a four-layer datapath routing environment, we present an
algorithm that considers all the nets simultaneously. Routing
probabilities are calculated for potential routing regions and
consolidated into a congestion metric. This is followed by an
iterative diversion technique where the region with the maximum
congestion metric is repetitively relaxed until the track
probabilities crystallize into integer values of 1 and 0. We have
run the algorithm on large test cases and achieved significant
routability within a small number of available tracks.

1. Introduction
A typical datapath circuit consists of a set of bit-slices that are
replicated several times. The regularity of datapath circuits is
frequently exploited in their design, and the problem of datapath
layout is often solved simply by performing physical design on a
single bit slice and then replicating this bit slice as many times
as necessary. Apart from the ease of design effort provided by
this approach, such a procedure also ensures that the regularity of
the structure can be exploited to obtain accurate estimates of the
layout area and parasitics for further analysis.

In this work, we consider an environment used to design
datapaths and address the problem of routing the interconnect
nets within a single bit slice. The routing paradigm can be
considered to be over-the-cell routing with each cell interfacing
with the rest of the chip by means of a structure, known as a
pinrail. We present an algorithm for simultaneously routing
wires in a datapath environment using a probabilistic technique.

The datapath environment under consideration permits wires to
be routed in four layers along a given set of tracks. All
connections in the direction orthogonal to these tracks are made
by a set of prefabricated metal bands referred to as pinrails.
Pinrails can traverse a set of adjacent tracks, and all points on a
pinrail are electrically equivalent. An example of such a routing
scheme for two layers is illustrated in Figure 1, where the tracks
run along the vertical direction in a reserved vertical layer and
the pinrails are placed horizontally in a reserved horizontal layer.

A few properties and definitions related to the routing
environment are listed below:

Figure 1: A routing environment showing tracks and pinrails

• The pinrails divide each track into several track segments as
illustrated in Figure 1 using bold lines.

• Wires may run along the direction of a track, and can
change tracks only by connecting to a pinrail using vias.
Such pinrails facilitate routing and improve routability.

• A pinrail may be used by at most one net.
• The vertical span of a wire may pass over a pinrail without

utilizing it since a via must be made to use the pinrail.
• The nets to be routed are specified in terms of their pins,

that would typically consist of a source and multiple sinks,
each of which is a pinrail.

As in other routing paradigms, our router must resolve the
issue of contention between multiple nets for a limited set of
routing resources. Previous approaches to solving the problem of
simultaneously routing multiple nets have applied techniques
that either sequentially route the nets in some predetermined
order [1-6], or attempt to tackle the routing problem
simultaneously, often using flow-based formulations [7-11]. For
the problem here, the use of a sequential approach is impractical
since the use of a pinrail by one net disallows its use by another.
Therefore, we are forced to adopt a simultaneous routing
approach to solve this problem.

 Our approach addresses the net ordering problem by adopting
a probability-based model that considers all the nets
concurrently, thus monitoring routing congestion from a global
perspective. Our routing process is divided into two phases:
♦ Phase 1: We compute the probability of each track segment

being utilized by a given net. These probability values are
aggregated over all nets to compute a total congestion metric
for each track segment, so that track segments that are
candidates for use by a large number of nets are assigned
larger congestion values.

♦ Phase 2: An iterative improvement approach is adopted, in
which congestion is diverted to areas with a lower routing
resource contention. The above process is repeated and at
every step, the “amorphous” data is increasingly
“crystallized” until, for every net, every track has a
probability of either 1 or 0.

This research was supported in part by the Semiconductor Research
Corporation under contract 98-DJ-609 and by the National Science
Foundation under award CCR-9800992.

tracks

pinrai ls

track segments
p1

p3

S1

p2

D1

2. Phase I: Congestion Estimation
The input to the problem is a set of nets N with the source and
sink pinrails located in the lowest layer, i.e., layer 1, and the
exact locations of a set of free pinrails P in layers 1 and 3. Our
objective is to route the nets along tracks in layers 2 and 4, using
the fewest pinrails, and maximizing the number of routable nets.

Our initial description will focus on pin-to-pin connections,
and this will later be generalized for multi-pin nets. The
computation involved in this process can be significantly
reduced, at the cost of some loss of optimality, by assigning
directions to each track for a given pin-to-pin connection. This
procedure is described in the following subsection. For ease of
explanation, we will initially assume that we are operating in a
two-layer environment. The extension to four layers is described
in Section 2.3.

2.1 Direction Assignment
We can observe that for a given source-sink pair, there are
instances where a track can be assigned a specific direction. For
example, in Figure 1, since D1 is in a higher row than S1, we can
assign a direction from pinrail p1 to p3 for each track between
them. It is certainly possible to envisage situations where a
source-sink pair may use a track in either direction as the case
when the route D1→p3→p1→S1 is used. However, connections
using the “wrong” direction along a wire segment would result in
a significantly larger wire length and larger utilization of
pinrails, both of which are undesirable. An algorithm that
considers all of these indirect connections is likely to have a
large computational complexity. Therefore, we heuristically
assign a direction to each track for a given source-sink pair.

We introduce another heuristic to control the computational
complexity, by restricting the routing region for a net to a
specified bounding rectangle, so that the algorithm needs to
assign directions and compute probabilities only for those tracks
that lie within this rectangle. Additionally, we ascribe the same
direction to each track that lies between a given pair of pinrails
to reduce the amount of data to be stored.

2.1.1 Choosing the Bounding Rectangle

We define a pinrail set of a net as the set of pinrails that fall
within its bounding rectangle. We select this bounding rectangle
by relaxing the bounding box of the net by a user-defined factor,
δ. We observe that it is not necessary to assign directions to all
tracks within the bounding rectangle, for two reasons: (1) some
tracks may never lead to a valid route, and (2) the use of some
pinrails is provably suboptimal. To illustrate these ideas, we
consider the configuration in Figure 2.

S

D

p1

p2 p3

p4
Expanded
rectangle

Figure 2: An example that shows redundant directions

The bounding box for the net in Figure 2 includes pinrails p1
through p4. The source D may connect to pinrails p1 or p3 and
sink S may connect to p4. It can be observed that a wire from D
using pinrail p3 can never reach S. Hence, directions need not be
assigned to track segments connected to p3. An example of a
provably suboptimal choice corresponds to pinrail p2 since any
route using p2 must utilize both p1 and p4 to connect to D and S,
and could be improved upon by directly connecting p1 to p4.

2.1.2 Identifying Suboptimal Connections

We will now describe an algorithm for identifying suboptimal
connections for two-pin nets. We handle multi-pin nets in a very
similar way in that we decompose them into several two-pin nets.
However, since these pairs belong to the same net, they cannot
be considered to be mutually independent, and this is handled in
the phase where track probabilities are computed. For any multi-
pin net, we arbitrarily choose the highest source/sink pinrail of
the net on its bounding box as the source.

Having decided to treat multi-pin nets as an aggregate of two-
pin nets, the basic problem remains that of solving the problem
for a two-pin net. Initially, all tracks within the bounding
rectangle of net n are assigned directions that lead from the
source to the sink. Following this, a directed pinrail graph Gjn =
(V, E) is built, where the vertex set, V, comprises the pinrails in
the pinrail set for the net. The existence of an edge e ∈ E
between vertices va and vb implies that there is a horizontal
overlap between the spans of the pinrails corresponding to va and
vb. All vertices that can never lead to a valid route are identified
using a traversal on Gjn, and subsequently pruned so that each of
the remaining vertices are on some path from D to S.

A group of pinrails, p(i), 1 ≤ i ≤ n-1, p(i)∈V(Gjn) are identified
as provably suboptimal if they lie on a path in a subgraph of Gjn

that is isomorphic to the graph G’(u,w) that is as defined in
Figure 3. The indegree of each of the vertices p(1) … p(n-1) in
Gjn (hence, also in G’(u,w)) must be exactly 1 for them to be
identified as suboptimal. It is easily verified that pinrail p2 in
Figure 2 satisfies this property.

Figure 3: Graph G’(u,w) for identifying suboptimal connections

The requirement of an indegree of 1 for p(1)…p(n-1) is essential
and if this is not satisfied, it is easy to build counterexamples to
show that not all pinrails are redundant. We now motivate the
precise algorithm for identifying provably suboptimal pinrails for
a given two-pin net through the example in Figure 4.

Figure 4: A pinrail graph, Gjn

u p(1) p(2) p(3) p(n-1) w

S

D

p0
p1

p2p3
flag=2

flag=1

flag=1

p9
p4p5

p7
p6

p8
flag=1

The algorithm begins by performing a reverse BFS on the
pinrail graph Gjn, originating at the sink S. Pinrails such as p6
and p9 are pruned in the above step since they cannot be reached
from S. In order to identify subgraphs isomorphic to G’(u,w)
within Gjn, we tag each vertex with a parent field that indicates
its predecessor and a distance field that corresponds to its
shortest distance from S, following which we identify forward
edges (u,v) such that distance(u) ≥ distance(v). In Figure 4,
edges (p2,p1); (D,p7); (p3,p2) and (p4,p2) are identified as
forward edges. We associate each of these forward edges with an
attribute, flag, equal to one plus the difference in distances of its
head and tail vertex. These values for the forward edges are
shown in dotted lines in Figure 4.

For each forward edge (u,v), we traverse in the BFS tree,
starting from the vertex v in a direction from D to S, through a
number of edges equal to flag(u,v) using the parent information
stored at each of the intermediate vertices to reach a vertex that
we denote as w. Simultaneously, we store the intermediate
vertices (including v) until we reach a vertex with indegree not
equal to 1; all of these vertices will be removed from the graph if
the edges are found to be redundant. Next, we check for presence
of an edge (u,w); if it exists, then the edge (u,v) and the stored
vertices are identified as suboptimal and pruned from Gjn.

As an example, consider the forward edge (p2,p1) with flag=1.
We move one edge unit to the parent of p1 to reach vertex p0,
simultaneously storing p1 since its indegree is equal to 1. Since
(p2,p0)∈E(Gjn), we identify the pinrail p1 as suboptimal, and its
vertex is removed from the graph. For the forward edge (p3,p2)
with flag=2, p2 does not have an indegree of 1, and hence, we do
not need to store any more pinrails. However, moving forward
two edge units from p2, we reach the vertex S and since
(p3,S)∈E(Gjn), we have a subgraph G’(p3,S) within Gjn rendering
the edge (p3,p2) as redundant. Note, however, that no vertices
are removed from the graph in this case. It can also be verified
that forward edges such as (D,p7) and (p4,p2) do not yield any
suboptimal subgraphs of our interest.

The above process is repeated until all subgraphs in Gjn,
isomorphic to G’(u,w) are removed. This repetition is needed
only in cases where there exists a subgraph of interest embedded
within another subgraph of interest. In our experiments, we have
noticed that the number of such iterations is small in practice.
The pseudocode for the algorithm is shown in Figure 5.

Algorithm Identify_Suboptimal_Connections
Input : Net n ; Sink j
Output : Graph Gjn

1. Build graph Gjn=(V,E).
2. do
3. Perform a reverse BFS on Gjn.

 Let R ← predecessor vertex set
 F ← set of forward edges

4. Gjn ← Gjn\{v} where v∈Gjn and v∉R
5. for each edge (u,v)∈F do
6. Initialize count←0; T←φ; add_Element←true
7. while (count < flag(u,v))
8. w←parent(v)
9. if (indegree(w) = 1) and add_Element)
10. T ← T ∪ {w}
11. else add_Element ← false

12. count ← count + 1
13. if (u,w)∈E(Gjn)
15. Remove (u,v) from Gjn

16. Gjn ← Gjn\{v} where v∈T
17. while subgraphs of Gjn isomorphic to G’(u,w) exist
end

Figure 5: Pseudocode for identifying suboptimal connections

2.2 Probability Computation
For a given two-pin net (or for any pair of pins for a
multiterminal net), the procedure described so far assigns
directions to each track within the bounding rectangle. In the
next step, the algorithm computes the probability of using each
possible candidate route that lies within the search region. This
probability-based approach is used to develop a congestion
metric for each track segment, so that the final route is not
greedily chosen, but is constructed using this congestion
information. This global use of the probability information makes
it possible that a source-to-sink route may not ultimately choose
tracks with the highest probabilities, as a greedy approach might.

We illustrate the process of assigning probabilities through an
example pinrail configuration shown in Figure 6. Let Tuv denote a
set of edges in Gjn between the vertices corresponding to pinrails
pu and pv where j and n indicate the sink and net numbers
respectively. As mentioned earlier, all elements of Tuv are
assigned the same direction; we will refer to pu as the parent
pinrail of this set if Tuv is assigned a direction from pu to pv.

p1

p2

p3

p4

S

D

0.5

 0.25 for
T12, T13

0.167 for T24

0.125 for T34

1

0.5

Figure 6: An example for probability computation

The process of computing probabilities begins by assigning a
probability of 0.5 to each of the two tracks in TDp1. At p1, there
are two sets of edges to choose from, namely, T12 and T13. Hence,
a probability of 0.25 is assigned to each of the four connections
(two each in T12 and in T13); thus the total probability of leaving
p1 is 1. The total probability of tracks incident on p2 is then
calculated to be 0.5, and this is further distributed over T24,
assigning each of the three connections in T24 a probability of
0.167. Similarly, an input probability of 0.5 for p3 is propagated
to T34 giving the four tracks in T34 a probability of 0.125. Note
that a connection to p3 from p2 can be detected as being provably
suboptimal from Algorithm Identify_Suboptimal_Connections,
and therefore not considered.

From the above example, two observations can be made. First,
the input probability of a pinrail is propagated to all pinrails in
its downstream path. Second, the probability of a track can be
computed only when the input probability of its parent pinrail is
known. This entails processing the pinrails using a PERT-
traversal method. We formulate the above observations
mathematically as follows:

Σ prob((D,v) | (D,v)∈E(Gjn)) = 1. (1)

and for every vertex v∈V(Gjn),
Σ prob((u,v)|(u,v)∈E(Gjn))=Σ prob((v,w)|(v,w)∈E(Gjn)) (2)

Supplementing the above procedure, we use two heuristics
while computing track probabilities. We associate a higher cost
function with a path that uses a larger number of pinrails in order
to discourage excessive pinrail utilization. We make an estimate
of the relative number of pinrails used in one path over the other
using the flag values of the forward edges computed during the
direction assignment stage. Since these values were computed
using a reverse BFS traversal on the pinrail graph, it provides a
reasonable estimate to the number of pinrails that the path will
use, while being computationally inexpensive. As an example, in
Figure 4, a path from D to S using p7 may be expected to use
more pinrails owing to a higher flag attribute of 2 on (D,p7) than
the one using p8 that has a flag value of 0. Second, since sinks of
the same net may share a set of pinrails, we attempt to maximize
the vertex intersection of the pinrail graphs by associating a
pinrail with a slightly larger weight if it is utilized for a
previously processed sink of that net.

We incorporate both of the above factors for an edge (u,v)
using a function parameter weight as follows:

weight(u,v) = λ-[flag(u,v)* (1-uti l(v))]

where util(v) is empirically chosen as 0.1 if v is utilized for a
previous sink of the same net and chosen as 0 otherwise. λ is
empirically chosen to be a value slightly greater than 1, and is set
to 1.1 in our experiments.

2.3 Layer Issues
Our discussion until now, has been restricted to a two-layer
environment. The use of four layers introduces an additional
degree of complexity in that it does not permit a certain set of
routing configurations to coexist.

The extension to four layers from a two-layer environment does
not affect the process of assigning directions to tracks. While
computing track probabilities, we initially distribute the
probabilities equally to both the layers. As a next step, we handle
certain conflicting configurations occurring in a four-layer
situation, as follows. Consider one such conflicting configuration
shown in Figure 7. Figure 7(a) shows the three-dimensional view
of a pinrail configuration across four layers and Figure 7(b)
shows its corresponding two-dimensional view in the y-z plane
where the x, y and z-axes are as indicated.

layer 4

layer 3

layer 2

layer 1

p4

p3p1

p2x

y
z

p4

p2

p3

p1

y

x

Figure 7(a): 3D view of Figure 7(b): Corresponding
 the 4-layer configuration 2D view

Under the following set of conditions for the pinrail structure as
laid out in Figure 7(a), a violation occurs and has to be taken into
account as a special case.

a) Pinrail p4 used by net n1 connects to p2 with a layer 2 track.

b) Pinrail p3 used by net n2≠n1 connects to p1 using a track in
layer 4.

c) The tracks ultimately chosen to connect p2 to p4 and p1 to
p3 have the same y-coordinates.

This violation occurs because in such a situation, nets n1 and n2
will be shorted. There are three other similar configurations that
differ with the case above only in the pinrail layers. If we
represent the layers of the pinrails in the order p1, p2, p3, p4 as a
four-integer vector, Figure 7(a) represents (1, 3, 1, 3). The other
three cases then, correspond to (3, 3, 1, 3); (1, 1, 1, 1) and (3, 1,
1, 1) respectively.

It can be observed that each of the four conflicting pinrail
structures has a layer 1 to layer 4 interconnection. Hence, we
handle such layer conflicts by decreasing the probability of a
layer 1 to 4 connection and redistributing the remaining
probability to the other layer. Such a redistribution discourages
conflicting connections while enhancing the possibility of finding
valid routes.

2.4 Congestion Computation
In the last stage of Phase I of our algorithm, the utilization
probabilities for each source-sink pair are used to estimate a
metric that measures the congestion in each track segment. The
demand on track segment set TS due to sink j of net n is

Dm(TS, j, n) = Σ∀(u,v)∈Y prob(u,v)
where Y is a set of all tracks, i.e., edges (u,v)∈ E(Gjn) that span
the track segment TS. This metric encapsulates the information
about all possible routes utilizing a particular track segment and
hence provides a good estimation of the demand.

For multi-pin nets, this information is generated for each
connection from the source to a pin of the net. We consolidate
these demand values due to the various sinks of a net to generate
a demand metric for the entire net. We compute demand on a
track segment due to the entire net n as the maximum of the
demand values on the segment due to all the sinks of the net as :

Dm(TS, n) = max∀j∈sink(n) (Dm(TS, j, n))
To understand the rationale behind the “max” operator,

consider Case A where a track segment has demand metrics of
0.9 and 0.1 due to two different sinks, and Case B where the
corresponding values are 0.5 and 0.5. An averaging operator
would give each the same demand metric, but the value for Case
A should be higher since one of the two connections with a
probability of 0.9 has few other alternative routes.

The final step is to compute the total congestion on a track
segment set using the computed demand values for each net. Two
factors must influence this computation. Firstly, congestion is
higher if a larger number of nets access a given track segment.
Secondly, if the demand values of different nets for a given track
segment has a wider variance in its range of values, it must be
given a lower priority than another track segment that has a
comparable net utilization but with a lower variance. Both of
these factors, in decreasing order of importance, can be captured
using the metric as shown:

C(TS) = (Σ∀n∈M Dm(TS, n)).{1+α.(|M|-1)} - β.var(Dm(TS, n))

where |M| is the number of nets accessing segment set TS; var
indicates the variance; β and α are positive user defined
parameters less than 1, chosen empirically as 0.25 and 0.5

respectively in our experiments. The pseudocode for the
congestion computation stage is shown in Figure 8.

Algorithm Congestion_Compute
Input: Set of pinrails, P ; Set of nets, N
Output: Congestion metrics on the track segments.
1. for each net n∈N do
2. Choose source for net n as highest pinrail on bounding box.
3. for each sink j of n do
4. Gjn = Identify_Suboptimal_Connections()/*Sec 2.1.2* /
5. Probability_Compute(Gjn) /*Sec 2.2 * /
6. Resolve Layer Conflicts /*Sec 2.3 * /
7. for each set of track segments TS do
8. Dm(TS,n) = Σ∀(u,v)∈Y max{prob(u,v)}

where Y: set of (u,v)∈E(Gjn) that spans TS
9. for each set of track segments TS do
8. C(TS) = (Σ∀n∈M Dm(TS,n))* {1+(α* (|M|-1))} –
 (β*variance(Dm(TS,n))) where M: set of nets accessing TS
end

Figure 8: Pseudocode for congestion computation

3. Phase II: Diverting Congestion
Phase II of the algorithm is an iterative step whereby areas with
maximum congestion are iteratively decongested. The step
begins by identifying the most congested set of track segments
and the number of nets accessing that set of segments. If more
than one net has a non-zero probability of using the track
segment, then there is a contention for the resource.

We apply a heuristic that is based on the observation that a net
with a smaller probability of using a track segment has a larger
number of alternative routes available to it than one with a larger
probability. We proceed by identifying the net that has the
smallest probability of utilizing the segment set H under
consideration and forbid it from using these track segments.
Practically, this is accomplished by forcing the probability that
the net uses H to zero; to maintain the correctness of the other
probabilities, we then redistribute this probability among the
other alternative routes for that net and update the congestion
metrics. If the set of track segments having the maximum
congestion metric happens to be accessed by only one net, then
we assign a track spanning the segment set to that net.

Thus, the procedure of diverting congestion entails a
modification of the input probabilities to some of the pinrails.
Since equation (2) must be satisfied at any stage of the
algorithm, we must propagate the altered probabilities
recursively to other pinrails in the downstream path. If at any
stage of the algorithm, a pinrail is reserved for a net, i.e., a track
connecting to the pinrail achieves a probability of 1, then this
pinrail must be removed from all possible candidate routes of the
other nets. These updates may require the propagation of the
changed probabilities both upstream and downstream of the
pinrail under consideration. We present the pseudocode for
integerizing probabilities in Figure 9 and for propagation of
probabilities in Figure 10.

Algorithm Integerize_Prob
Input: Congestion metrics in different track segments.
Output: Tracks used in routing of nets.
1. iteration ← 0

2. while (all probabilities ≠ 1 or 0)
3. Identify TSc such that C(TSc) ≥ C(TS) ∀TS
4. Let Sn ← set of nets accessing TSc.
5. If (|Sn| = 1)
6. Assign net in Sn to track spanning TSc

7. else
8. Identify sink k and net m where
 probTSc[k,m] ≤probTS[j,n] ∀ n∈Sn; j∈sink(n)
9. Find edge e∈E(Gkm) where e spans TSc

10. Remove e from Gkm

11. Propagate_Prob(k,m,iteration) /* Sec 3 * /
12. If pinrail p reserved for net m
13. If p∈V(Gki), i≠m ∀i∈N, ∀t∈sink(i)
14. Remove p from Gti

15. Propagate_Prob(t,i,iteration) /* Sec 3 * /
16. iteration ← iteration + 1
end

Figure 9: Pseudocode for integerizing probabilities

Algorithm Propagate_Prob
Input: iteration count i ; sink j ; net n;

inputProb(p,0) = probabilities as obtained in Sec 2.2
Output: modified track probabilities
1. Identify Q ← {p | inputProb(p,i) ≠ inputProb(p,i-1);

p∈pinrail set of net n}
2. Initialize processed(p)←false ∀p∈pinrail set of net n
3. while (Q ≠ φ) do
4. p ← Head(Q)
5. processed(p) ← true
6. change_ratio ← inputProb(p,i)/inputProb(p,i-1)
7. for all pinrails r such that (p,r)∈E(Gjn) {
9. if (processed(r) = false)
10. add_to_tail(Q,r)
10. prob[(p,r)] ← prob[(p,r)] * change_ratio
11. inputProb(r,i) ← inputProb(r,i-1) + prob(p,r)*

(1-(1/change_ratio))
12. Q ← Q\{p}
end

Figure 10: Pseudocode for propagation of probabilities

4. Convergence and Computation Complexity
We state the following result on the convergence of the
procedure. The proof is omitted due to space limitations.

Lemma: At the end of the algorithm, all of the probabilities
converge to integer values of 0 or 1.

Since we always work on a source-sink pair basis, we only
process pinrails within the pinrail set of a net n that we denote as
ps(n). The run time of Phase I is governed mainly by three
procedures, namely, those for direction assignment, track
probability computation and congestion metric computation.
Direction assignment for sink j of net n takes O(ps(n).d(n)) time,
where d(n) is the average outdegree of a pinrail in Gjn. The
probability computation step takes a time proportional to the
number of edges in Gjn, i.e., O(ps(n).d(n)). Lastly, the congestion
metric computation step takes an O(ps(n)2) time. Hence, the total
run time for Phase I becomes O(Σi=1..N Σj=1..sink(i) [ps(i)2]).

The complexity of Phase II is governed by the product of the
number of iterations and the time for a single iteration. The
number of iterations is proportional to the number of tracks and
hence, is O(P). Identifying the most congested track segment
takes a time proportional to the number of such segments that is
O(P). Propagating modified probabilities for pinrails within the
pinrail set of the net gives a O(ps(n)2) worst case time. Lastly,
removing a utilized pinrail from all other nets can be executed at
most O(P) times and a single run of such a removal step takes
O(Σi=1..N Σj=1..sink(i) ε.ps(i)) time. A factor of ε has been added
since in practice, the utilized pinrail lies within the pinrail set of
only a small number of nets, making ε much less than 1. Hence,
Phase II of the algorithm takes an O((P.Σi=1..N Σj=1..sink(i) ε.ps(i)) +
P.Σi=1..N Σj=1..sink(i) ps(i)2). Therefore, the total worst case running
time of the algorithm is governed by Phase II and is O(P.Σi=1..N

Σj=1..sink(i) ps(i)2).

5. Results
We have implemented this algorithm in C++ and conducted our
experiments on a SUN Ultra-1 workstation. Due to unavailability
of benchmark circuits, we have generated test cases with random
locations of pinrails and nets. The nets taken into consideration
are restricted to 5-pin nets with 2-pin nets forming the majority
number; the pinrail locations are generated in a manner that
closely simulate a bit slice of a datapath. One example test case
with 40 nets and 50 available pinrails is shown in Figure 11(a);
the bounding box expansion factor, δ, is taken as 0.3. Another
example test case with 60 nets and 60 pinrails is shown in Figure
11(b); the bounding box expansion factor, δ, here too is 0.3. The
number of available tracks for routing in the bit slice is taken as
20 for both the test cases, which reflects the typical number of
tracks that are available in a realistic problem instance.

Fig 11(a): Test case comprising of 40 nets and 50 pinrails

Fig 11(b): Test case comprising of 60 nets and 60 pinrails

Unlike in the preceding discussion, the vertical segments in the
figures correspond to pinrails, while the horizontal segments are
tracks. In the examples of Figures 11(a),(b), it was observed that
some of the free pinrails, which serve to facilitate routing
completion, are left unused. The CPU times for the test cases in
Figures 11(a),(b) were observed to be 70s and 89s, respectively.

We ran the test case with 60 nets and 60 pinrails for various
values of the bounding box expansion factor. We observed, as
expected, that a lower value of δ yields lower CPU times since a
smaller bounding box leads to a smaller number of routing
choices and hence, a lower computational complexity. Therefore,
there is an implicit trade-off between the chosen value of δ, the
quality of the routing solution, and the CPU run times. This can
be noted from Table 1 where we list the number of routable pins

along with the respective CPU times for different values of δ; the
total number of pins to be routed for this test case is 110. The
number of utilized pinrails is listed in the third column and is
equal to the number of indirect connections made during the
routing; this is an indicator of the ability of the algorithm to
explore additional routing choices. The number of pins using
connections that use pinrails outside the bounding box of the net
is reported in the last column. As mentioned earlier, the total
number of available tracks in this example is 20.

Table 1: Experimental results for different values of δ

δ # routable
pins

used
pinrails

CPU time
(s)

pins using
detours

0.0 73 36 1.51 0
0.1 88 56 8.38 15
0.2 93 65 42.65 20
0.3 97 65 88.91 24
0.4 93 60 298.24 20

It can be noted that the CPU times show a great amount of
variation with the value of δ chosen for the pinrail configuration
due to the larger number of routing choices that get included as a
result of a larger bounding box. A large value of δ may also
result in extensively large detours and the utilization of a large
number of vias, which is undesirable. In such a case, it may be
desirable to modify the design manually by inserting more free
pinrails.

6. References

[1] B. S. Ting and B. N. Tien, “Routing techniques for gate array,” IEEE
Trans. on CAD, vol. CAD-2, pp. 301-312, Oct. 1983.

[2] T. C. Hu and M. T. Shing, “A decomposition algorithm for circuit
routing,” in VLSI Circuit Layout: Theory and Design, T. C. Hu and E.
S. Kuh, eds. New York: IEEE, 1985, pp. 144-152.

[3] J. Cong and B. Preas, “A new algorithm for standard cell global
routing,” Proc. ICCAD, pp. 176-179, 1988.

[4] P. Raghavan and C. D. Thompson, “Multiterminal global routing: A
deterministic approximation scheme,” Algorithmica, vol. 6, pp. 73-82,
1991.

[5] C. Chiang, M. Sarrafzadeh and C. K. Wong, “Global routing based on
Steiner min-max trees,” IEEE Trans. on CAD, vol. 9, pp. 1318-1325,
Dec. 1990.

[6] J. Heisterman and T. Lengauer, “The effective solution of integer
programs for hierarchical global routing,” IEEE Trans. on CAD, vol.
10, pp. 748-753, June 1991.

[7] F. Shahrokhi and D. W. Matula, “The maximum concurrent flow
problem,” in Journal of the ACM,, vol. 37, pp. 318-334, Apr. 1990.

[8] G. Meixner and U. Lauther, “A new global router based on a flow
model and linear assignment,” Proc. ICCAD, pp. 44-47, 1990.

[9] E. Shragowitz and S. Keel, “A global router based on a
multicommodity flow model,” Integration, the VLSI Journal, vol. 5,
pp. 3-16, 1987.

[10] R. C. Carden IV, J. Li and C. K. Cheng, “A global router with a
theoretical bound on the optimal solution,” IEEE Trans. on CAD, vol.
15, pp. 208-216, Feb. 1996.

[11] S. S. Yoichi, F. K. Junya, “Global routing based on the multi-
commodity network flow method,” IEICE Trans. on Fundamentals of
Electronics Communications and Computer Sciences,, pp. 1746-
1754, Oct. 1993.

