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Abstract

A new technique for polytope approximation of the

feasible region for a design is presented. This method

is computationally less expensive than the simplicial

approximation method [1]. Results on several circuits

are presented, and it is shown that the quality of the

polytope approximation is substantially better than

an ellipsoidal approximation.

I. Introduction

While designing a circuit according to certain speci�-
cations, it is useful to de�ne a feasible region as the set of
parameter values for which the design speci�cations are
satis�ed. It is a commonly-made assumption [1, 2] that
the feasible region is a convex body; while in general, this
is not true, it is usually true that the feasible region is
\nearly convex."
An example of a situation in which the concept of the

feasible region is useful is the problem of design center-
ing. Realising that process variations may cause param-
eter values to drift from their nominal values, this prob-
lem seeks to select the nominal values of design param-
eters in such a way that the behavior of the circuit re-
mains within speci�cations with the greatest probability.
In other words, the aim of design centering is to ensure
that the manufacturing yield is maximized. An approach
that is commonly used to solve this problem [1, 2] approx-
imates the feasible region by a convex body, and takes the
design center to be its exact or estimated center.
The procedure in this paper can be used for the approx-

imation of any convex (or \nearly convex") body.
Two types of convex bodies have been used most com-

monly for feasible region approximation:
(i) An ellipsoid, which is a body de�ned by

fy j (y�yc)
TB(y�yc) � r2g;B 2 Rn�n;y;yc 2 R

n: (1)

Ellipsoids are inherently limited in approximating asym-
metric regions, and regions with linear edges.
(ii) A polytope, which is de�ned as an intersection of half-
spaces, is given by

P = fx j Ax � bg; A 2 Rm�n;b 2 Rm: (2)

A polytope can be thought of as the convex hull of its
vertices. Hence, it is capable of representing any convex
body in the limiting case where the number of vertices
(and hence, hyperplanes) is in�nite. A satisfactory ap-
proximation to the convex body can be obtained using a
�nite number of hyperplanes.
In this work, we address the problem of feasible region

approximation by convex polytopes. We present a new
approach that is computationally cheaper than the exist-
ing approach in [1], and illustrate how polytope approxi-
mation is superior to ellipsoidal approximation.

II. Approximation of the Feasible Region

A. Introduction

The feasible region F � Rn, where n is the number of
design parameters, is formally de�ned as the set of points
in the design parameter space for which the circuit satis-
�es all speci�cations on its behavior. It is often assumed
that F is a convex body. In this work, we preserve that
assumption in de�ning the approach to be taken, and use
properties of convex sets to create an approximation to
F . In our implementation though, we show how we may
make allowances for the incorrectness of this assumption.
The simplicial approximation method [1] provides a

method for approximating a feasible region by a poly-
tope. Each iteration of this method involves the solution
of f+1 linear programs (where f is the number of faces of
the polytope), a line search, and updating a convex hull.
Apart from the fact that each linear program solution is
expensive, the number of linear programs to be solved in
the entire procedure is large (speci�cally, k(f + 1), where
k is the number of iterations). Moreover, the procedure
of updating the convex hull is also computationally ex-
pensive. This is because updating a convex hull consists
of identifying hyperplanes to be removed and �nding the
equations of the new hyperplanes. Obtaining the equation
of a hyperplane, given the vertices, is an O(n3) operation;
this needs to be carried out for each new hyperplane of the
polytope while updating the convex hull in an iteration.
In the algorithm presented here, an initial polytope is

updated by performing a set of line searches. After up
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to 2n line searches, a new polytope center has to be com-
puted, which is an O(n2:5) operation. Thus, the algorithm
that we present is computationally less complex than sim-
plicial approximation.
B. Construction of the Approximating Polytope

Our algorithm is based on the following well-known the-
orem on convex sets [3] that is stated below.
Supporting Hyperplane Theorem : Let C be a con-
vex set and let y be a boundary point of C. Then there
exists a hyperplane containing y and containing C in one
of its closed half-spaces.
De�nition : A tangent plane at a point z0 on the bound-
ary of a region is given by

[rg(z0)]
T
z = [rg(z0)]

T
z0 (3)

where g(z) � 0 is an active constraint at point z0, and
rg(.) is the gradient of the function g(.).
For a point z0 on the boundary of a convex set, C, a

tangent plane at z0 satis�es the supporting hyperplane
property. In particular, for the constraint g(z) � 0, C is
contained in the half-space

[rg(z0)]
T
z � [rg(z0)]

T
z0: (4)

The aim of the algorithm is to approximate the feasible
region, F � Rn by a polytope

P = fz j Az � bg; A 2 Rm�n;b 2 Rm; (5)

formed by the intersection of m half-spaces in Rn.
The algorithm begins with an initial feasible point,

z0 2 F � Rn. An n-dimensional box, fz 2 Rn j zmin �
zi � zmaxg, containing F is chosen as the initial poly-
tope P0. In each iteration, n orthogonal search directions,
d1;d2 � � �dn are chosen. A binary search is conducted
from z0 to identify a boundary point zb;i of F , for each
direction di. If zb;i is relatively deep in the interior of P,
then the tangent plane to F at zb;i is added to the set
of constraining hyperplanes in Equation (5). In practice,
since the feasible region is not strictly convex, it is useful
to shift the tangent plane away by a distance factor �. In
other words, if c is the gradient of the active constraint
at the boundary point, the hyperplane added is

cT z � cT zb;i(1� �) (6)

where � is typically of the order of 0.01.
A similar procedure is carried out along the direction

�di. Once all of the hyperplanes have been generated, the
center of the new polytope is calculated, using a method
described in [4]. Then z0 is reset to be this center, and
the above process is repeated.
The pseudo-code describing the algorithm is as follows:

k = 0
Initialize P0 and z0
While (# planes added in the last iteration 6= 0) {

Pk+1 = Pk

Choose orthogonal directions d1;d2 � � �dn

For i = 1 to n {

Perform a binary search along direction di

from z0 to �nd a boundary point zb;i of F
If zb;i exists, and zb;i 2 Pk+1, and

distance(zb;i,boundary of Pk+1) > � {

Add a hyperplane to the polytope
Pk+1 = Pk+1[ new hyperplane

}

Perform a binary search along direction �di

from z0 to �nd a boundary point zb;i of F
If zb;i exists, and zb;i 2 Pk+1, and

distance(zb;i,boundary of Pk+1) > � {

Add a hyperplane to the polytope
Pk+1 = Pk+1[ new hyperplane

}

}

Set z0 = center of the updated polytope, Pk+1

k = k + 1;
}

The procedure requires a technique for calculating the
gradient of an active constraint at a boundary point. As
in [2], one of several methods may be employed for this
purpose. If the exact functional form of the constraint is
known, an expression for the gradient may be derived. If
not, methods such as the adjoint network technique [5] or
�nite di�erences may be used to calculate the gradient.

III. Experimental Results

A. A Numerical Example

A numerical example in two dimensions is presented
here to illustrate our technique. The feasible region is
represented by the ellipse

F =

�
z j (z � t)T

�
2 1
1 2

�
(z � t) � 1

�
(7)

with the ellipse center, t, at [4; 4]T . The approximating
polytope, P, shown in Fig. 1, can be seen to be a good
approximation of the ellipse.
B. A Tunable Active Filter

The techniques described in Section II were used to ap-
proximate the feasible region for a tunable active �lter
shown in Fig. 2. The one pole role-o� model used for the
operational ampli�er presumes a dc gain of 2 � 105, and
a 3-dB bandwidth of 12� rad. The designable parame-
ters are considered to be [G1; G4; C1; C2]. The transfer
function for this �lter is given by

F =

���� v2vg
���� : (8)



An initial feasible point [80.2 �0, 5.42 m0, 0.72856 �F,
0.72856 �F] is provided, as in [2].

Fig. 1 : Approximation of an ellipsoid by a polytope.

Fig. 2 : A tunable active �lter.

The speci�cations for the �lter are as follows:

F � 0:5 at 90 Hz
F � 0:5 at 92 Hz

1:0 � F � 1:21 at 100 Hz
F � 0:5 at 108 Hz
F � 0:5 at 110 Hz

(9)

Yield estimation for various values of parameter vari-
ances about the point [83.13 �0, 5.423 m0, 0.716047 �F,
0.769181 �F] was carried out. The results in [2] for the
same circuit, for yield estimation about the same point,
show that the percentage yield using the approximating
ellipsoid as the feasible region is as much as 12 points
away from the actual yield.
For various sets of parameter variances (expressed as a

percentage of the nominal values above), Table 1 shows
the yield using the approximating polytope as the feasible
region in comparison with the actual circuit yield. The
yield is calculated on the basis on a Monte Carlo simu-
lation of 500 points. It can be seen that the results of
our technique are within about 3 percentage points of the
actual yield, which is a marked improvement over [2].

Table 1 : Yield for a Tunable Active Filter

Parameter Variances Actual Yield Polytope Yield

[1:5;1:5; 1:5; 1:5] 46.6 % 43.4 %
[1:5;1:5; 2:0; 0:5] 47.2 % 45.2 %
[1:5;1:8; 1:2; 0:6] 52.8 % 51.2 %
[1:5;1:5; 1:5; 0:5] 53.6 % 53.4 %
[1:0;1:2; 1:0; 0:6] 69.2 % 68.2 %
[0:5;0:8; 1:0; 0:8] 75.0 % 74.0 %
[1:0;0:4; 1:0; 0:6] 84.2 % 84.4 %
[0:5;0:8; 0:7; 0:6] 86.4 % 86.0 %

Fig. 3 (a) : A high-pass �lter.
Fig. 3 (b) : Band diagram for the high pass �lter.

C. A High Pass Filter

This is an example of a high-pass �lter [2], whose circuit
diagram and speci�cations are shown in Fig. 3. The fre-
quencies of interest are f170; 350; 440;630; 680; 990;1800g
Hz, which correspond to seven constraints. For this ex-
ample, the reference frequency, !0, is 990 Hz.
The parameter �Iloss is de�ned as follows:

Iloss(j!)
�
= 20 log10

����V1V2 (j!)
���� dB (10)

�Iloss(j!)
�
= Iloss(j!) � Iloss(j!0) dB: (11)



The �rst experiment took the design parameters as
[C1; C3; C4; C5]. The initial feasible point was taken to
be [11:1nF; 12:9nF; 34:3nF; 97:3nF], as in [2]. Table 2
shows the results of yield estimation about the point
[10:37nF; 13:28nF; 34:63nF; 87:84nF]. The yield �gures
for the approximating polytope are seen to be close to
the actual yield, in contrast with [2], where they are o�
by as many as 26 percentage points.
[C1; C2; C3; C4; C5; L1; L2] were used as design parame-

ters for the second experiment. The initial feasible point
was taken, as in [2], as [11.65 nF,10.47 nF,13.99 nF,39.93
nF,99.4 nF,3.988 H,2.685 H]. The yield �gures for this
more complex circuit are also almost always within a few
percentage points of the actual yield, as against [2], where
the discrepancy is as much as 34 percentage points.
The interpretations of the columns of Tables 2 and 3

are the same as those in Table 1.

IV. Conclusion

In this paper, a new approach to feasible region ap-
proximation has been presented, using a procedure that is
computationally less expensive than the existing method.
Experimental results show that in contrast to the re-

sults of ellipsoidal approximation in [2], this technique
provides a good approximation to the feasible region for
the same example circuits, with yield estimates taken
about the same points.
The three examples in [2] are all simulated here, with

the following results :

a. For the tunable active �lter, our results were within
about 3 percentage points of the actual yield, as
against a discrepancy of upto 12 percentage points
in [2].

b. For the high pass �lter, with four parameters, our
technique calculates the yield within an accuracy of
5 percentage points, whereas [2] shows errors of up
to 26 percentage points.

c. For the high pass �lter, with seven design parameters,
the yield estimates are accurate to within 4 percent-
age points, as against 34 points in [2].

Thus, we have illustrated that polytope approximation
is better than ellipsoidal approximation since the highly
symmetric ellipsoidal shape is inherently incapable of ap-
proximating less symmetric bodies. Also, as shown in
Section II, our method is computationally less expensive
than existing approaches.

Table 2 : Yield for a High Pass Filter
(4 Parameters)

Parameter Variances Actual Yield Polytope Yield

[15; 15; 15; 15] 55.4 % 54.8 %
[15; 18; 18; 12] 57.6 % 54.4 %
[15; 10; 15; 10] 65.0 % 64.8 %
[10; 15; 10; 15] 71.8 % 66.4 %
[8; 12; 10; 10] 79.8 % 79.0 %
[5; 15; 10; 5] 80.2 % 78.8 %
[10; 10; 10; 10] 81.4 % 81.6 %
[9; 9; 9; 9] 86.4 % 88.4 %
[10; 5; 5; 15] 92.6 % 89.8 %

Table 3 : Yield for a High Pass Filter
(7 Parameters)

Parameter Variances Actual Yield Polytope Yield

[10; 10; 10; 10; 10; 10; 10] 29.8 % 32.4 %
[5; 10; 5; 10; 5; 10; 5] 41.0 % 44.2 %
[8; 8; 8; 8; 8; 8; 8] 44.0 % 48.2 %

[5; 5; 5; 5; 10; 10; 10] 45.2 % 47.8 %
[10; 10; 10; 10; 5; 5; 5] 48.8 % 50.0 %
[9; 10; 8; 10; 5; 4; 6] 50.6 % 52.6 %
[8; 8; 8; 8; 5; 5; 5] 60.6 % 62.4 %
[4; 4; 8; 8; 8; 4; 4] 71.8 % 74.2 %
[5; 5; 5; 5; 5; 5; 5] 72.6 % 76.6 %
[4; 4; 4; 5; 3; 4; 4] 83.2 % 84.4 %
[2; 2; 2; 5; 2; 4; 4] 86.4 % 86.6 %
[4; 2; 4; 5; 3; 2; 4] 94.1 % 92.8 %
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