
Fast Estimation of Area-Delay Trade-offs in Circuit Sizing

Abstract
Sizing a circuit can improve performance drastically. However, this
is a time consuming transform, and it is therefore difficult to com-
pare different implementations of a circuit in terms of the cost over-
head required for a particular delay target. This paper presents a
fast estimator of the complete area-delay trade-off curve of a given
circuit, allowing a designer to choose the most appropriate imple-
mentation for a given delay. We observe excellent fidelity with the
actual area-delay curves (98.94% correct comparisons), with an
average error of 5.76% in the area differences predicted.

1 Introduction
After a circuit has been placed and routed, it can be sized in or-
der to improve performance, incurring cost overheads, which could
be area or power. A number of approaches have been developed
for transistor sizing, both in academia [1, 2, 3, 4] and in industry
[5, 6]. However, a common drawback of these algorithms is their
running time – sizing a reasonably large circuit can take up to a
few hours. If a designer is presented with a number of implementa-
tions of the same functionality, he would therefore prefer selecting
only the best for further sizing. This leads to the question of which
is the best implementation, i.e., which implementation will incur
the lowest cost, when sized to meet a particular delay. For con-
venience, we use the area of the implementation as a measure of
the cost. There is a direct correlation of area with other measures
of cost, such as power dissipation, sub-threshold leakage and gate
leakage, and a similar approach can be used when the cost function
is power, or a weighted combination of area and power. Answering
the question of determining the lowest cost (area) implementation
requires knowledge of the area-delay curve of each implementa-
tion, but these are determined only after sizing has been carried out.
In this paper, we present an approach that estimates the area-delay
curve of a given implementation. We do not use a sizing tool, and
therefore, our approach is fast, and as we will show, the estimated
curve has high fidelity with the actual area-delay curve.

In [7], the authors presented an approach based on the method
of logical effort [8, 9], for determining the minimum achievable
delay of an implementation, if transistor sizing were to be applied
to it. While this is a useful metric to have, it is not sufficient for
comparing circuits that will be sized to arbitrary (non-minimum)
delay points. This drawback is illustrated in the following sec-
tion, where we present the importance of determining the entire
area-delay curve of an implementation. We then show how the
area-delay curve can be estimated by using the information stored
in the minimum achievable delay calculation. Finally, we apply
the approach presented in this paper to comparing different imple-
mentations of the same benchmark circuits, and show how accurate
comparisons can be made quickly.

2 Problem Formulation
Figure 1(a) shows the area-delay curves of multiple implementa-
tions of benchmark circuit C7552. Each implementation was ob-
tained by varying parameters given to the optimization and synthe-
sis tool. The area-delay curves were obtained using our implemen-
tation of TILOS [1]. In these plots, the area of an implementation
is shown on the � -axis, and delay on the � -axis. The extreme right
point of each curve corresponds to the unsized circuit; this has max-
imum delay and the smallest area, and successively smaller delay
values require larger areas. Note that the curves have a character-
istic point (called the ‘knee’), at which the rate of change of area
with respect to delay changes drastically.

Each curve is bounded by the maximum delay (i.e., the unsized
circuit delay) and the minimum achievable delay. However, as can
be seen, the shape of each curve can vary significantly. For exam-
ple, in the curves shown in Figure 1(a), the knee of each curve can
either be closer to one of the end points or in the center. This prop-
erty varies between different circuits, as can be expected, but it also
varies between implementations of the same circuit. For implemen-
tations ��� and ��� of C7552, the knee is closer to the minimum delay
point. Hence, we initially observe large improvements in delay for
relatively small area cost, for these implementations, but further
delay improvement comes at the cost of large increases in area.
The situation is reversed for implementations ��� and ��� , where the
knee is closer to the maximum delay point. In this scenario, trying
to determine which implementation is the best at some intermedi-
ate delay point without having knowledge of the entire area-delay
curve is difficult.

Suppose a designer wants to determine the best implementation
among those available for some target delay of 	
� . Calculating
the minimum achievable delay and the unsized circuit delay of all
implementations, the designer can determine that implementations��� , ��� , ��� and �� meet this target delay. At a different target delay
of 	�� , the implementations that have to be considered are ��� , �� , ���
and � � . Implementations � � and � � need not be considered, since
their minimum achievable delay is larger than this value. How-
ever, this information is not sufficient, since which of these cir-
cuits should be selected is still not known. Ideally, he would like
an ordering of these implementations based on the cost, which in
this case, is the area. The required ordering for a delay of 	 � is� � ��� � �� � ��� � ��� , and for 	 � it is

� � �� � ��� � ��� � ��� . Simply rank-
ing implementations based on the unsized delays and areas is not
enough, e.g., at one delay point, �� has lower area, and at the other��� is better. This situation, of different implementations being the
best at different delay points, is also seen in implementations of
other benchmark circuits.

Recall that using a sizing tool to obtain the area-delay curves
of one implementation of a circuit is time-consuming. Obtaining
the area-delay curves of multiple implementations is prohibitively

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 50 100 150 200 250 300

A
re

a

Delay (���)
	 �	 �

�������� �"!��#��$

(a)

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300

A
re

a

Delay (���)
	 �	 �

�������� �"!��#��$

(b)

Figure 1: Area-Delay Curves of 6 Implementations of Benchmark Circuit C7552 (a) Generated using TILOS and (b) Estimated

expensive. Our heuristic, presented in the following section, ad-
dresses this issue by estimating the area-delay curve of a given
implementation. These curves can be used to compare different
implementations in two ways. First, given a target delay, we can
generate a cost-based ordering based on the estimated area-delay
curve of each implementation. Second, instead of calculating the
actual areas at the delay value of interest, we measure the relative
area difference between the implementations. The relative area dif-
ference has a good correlation with the actual area difference, and
can be estimated quickly.

The area-delay curves obtained using our approach are as shown
in Figure 1(b). A rough comparison with the plots of Figure 1(a)
shows that this heuristic captures the behavior of the area-delay
curves well. In particular, the shape of the estimated curve, with
respect to the position of the knee matches that seen in the actual
area-delay curves. A complete comparison is made in section 4.

3 Area-Delay Curve Estimation
Algorithm 1 is a listing of Algorithm MDE, presented in [7]. It esti-
mates the minimum achievable delay of a circuit, by calculating the
Delay- %'&)(curve for each gate of the circuit. This curve stores the
best possible delay from the input of a gate to any primary output,
for each input capacitance value, corresponding to the gate size. It
also implicitly stores the sizes of gates on the path to the primary
output, which achieve this delay. Determining the Delay- %*&+(curve
of a gate that has a single fanout is relatively straightforward, since
using dynamic programming, the Delay- %,&+(curve of the immedi-
ate output is the only one that has to be considered. For gates with
multiple fanouts, all points on the Delay- % &+(curves of each fanout
have to be considered, and the the number of possible combina-
tions of these points can be extremely large. However, Delay- % &)(
curves of multiple fanouts can be combined in a manner that leads
to tractable runtimes without any loss of information. The Delay-%'&+(curve of a gate thus captures the delay characteristics of the
entire transitive fanout cone of the gate in a compact and elegant
formulation. Once the Delay- %,&+(curves at the primary inputs have
been calculated, the minimum achievable delay of the circuit can
be determined by selecting the minimum delay point from these
curves. The gate sizes associated with the selected point can be

propagated to the primary outputs, and adding these sizes gives us
an estimate of the area required to meet the selected (minimum)
delay.

Algorithm 1 MDE: Minimum Delay Estimation
for each gate - whose outputs have been processed do

// calculate the delay- %.&)(curves for -
for all /�&10324&)(�5 do	�687:98;=< /�&">@?BA

for every /DCE0
24FG5 that is not redundant do
// - has H fanouts I ��� I ����J�J�J IK(/�LM?ON (CQP � / C'R /�S
// determine the delay of gate -	 6 < / & >T< /�L">U?V< W3XZY\[YT] R parasitic delay > 6
// determine maximum delay from any fanout I
// to any ^`_ , using the delay- % &+(curves of Iacb�d �3?e	f6,< /�&�>T< / L > Rhgjilk CQP ��mnmnm (Uop	fqsrQ7:9M;t< /uC�>�v	�687:9M;t< /�&�>@? gfw)x o acb�d � � 	�687:9M;t< /�&�>"v

end for
end for

end for
Minimum Delay ? g�i�k � g�w+x all PI’s

�
delay to PO ���

Since we are interested in determining the area-delay curve of the
implementation, the obvious approach is to calculate the area with
the delays during the Delay- % &)(calculation. However, there are
a few problems with this approach. There are multiple configura-
tions of gate sizes that can achieve the same delay value, and hence
multiple solutions for each delay value have to be stored. These
enhanced Delay- %.&+(curves do not have the optimal substructure
property, and hence we can no longer use dynamic programming.
Finally, every combination of points in the enhanced Delay- %,&)(
curves of multiple fanouts has to be considered, which further in-
creases the complexity.

We therefore need another approach to estimating the area-
delay curve. Recall that the Delay- %,&+(curves calculated in Al-
gorithm MDE implicitly store sizes of gates in the transitive fanout
cone required for for achieving the minimum delay for each value
of %'&)(. Hence, we can size the circuit using points on the Delay-

% &+(curves of the primary inputs, and calculate the corresponding
area. However, these points may not be optimal i.e., the area cal-
culated using the above approach may not be the smallest area for
a particular delay. For example, say we have a minimum delay ofy � for %'&)(� and

y � for %'&)(� , with corresponding circuit areas of z �
and z � , and

y �|{ y � . It is possible that there was a non-minimum
delay

ys}� ? y � for an input capacitance of %.&)(� that had a corre-
sponding circuit area z }� , that is less than z � . The solution o�z }� � y }� v
is clearly better than the o�z �l� y � v solution, but since only minimum
delay points are considered, the superior solution is hidden.

PSfrag replacements

/�&)(
%'F �

%'F

~ �

~ �

~ �

Figure 2: Example Circuit

Consider the circuit shown in Figure 2, with two branches of
the circuit driving different loads 1. For some input capacitance of/�&)(, we obtain a number of delay values, the minimum of which
is stored in the Delay- %.&)(curve, and the other delay values are
discarded. However, we can size the circuit using the minimum
as well as the discarded delay values (this is for the same input
capacitance of /�&+(), and calculate the corresponding areas. These
points are shown in Figure 3, and the best points for an area-delay
curve perspective are the ones marked by a line. This procedure can
be repeated for other values of %,&+(, and the union of the solutions
obtained gives us the area-delay curve desired. This is shown in
Figure 4 for three values of % &+(. Note the intersection in the curves
corresponding to / &)(?�� and / &+(?�� , this is an example of sub-
optimality if only the minimum delay points were to be considered.

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8

A
re

a

Delay

�E��t������� �
����

Figure 3: Calculating the Area-Delay Curve for one value of /�&)(
Thus, we estimate the area-delay curve of a circuit by sizing it for

different values of delay, for every value of %,&+(and measuring the

1We use inverters for simplicity of presentation; this discussion extends to other
gates as well.

0

2

4

6

8

10

12

0 2 4 6 8 10

A
re

a

Delay

�]��.�
���

� �

��]��.� !���
� �

��]��.� #� � ¡ ¢

Figure 4: Area-Delay Curve of the Circuit in Figure 2

area. In order to keep the run time low, rather than sizing for all de-
lay values, we size the circuit for a limited number of values (in our
experiments, we found that selecting 10 sub-optimal delay points
was sufficient). This has an impact on the accuracy of our results,
but the effect is limited, especially since our focus is on comparing
implementations, rather than on determining actual areas.

Our heuristic, called Algorithm ADC (shown in Algorithm 2) is
obtained by modifying Algorithm MDE as follows. At the primary
inputs, we store sets of Delay- %.&)(curves. Each time 	j687:98;=< /�&�>
is updated to a new value, we store the replaced value as an entry in
secondary curves. The minimum delay value from these secondary
curves are then used to size the circuit, and obtain other points on
the delay-area curve. Circuits sized in this manner have greater
delay than the minimum achievable delay, and after area recovery,
they have smaller area as well.

The solution obtained using this approach is naturally not exact.
However, as discussed above, since the auxiliary data of points on
the secondary curve encode sizes of the outputs (and particularly,
of sizes of multiple fanouts), these solutions still provide a good
representation of the area behavior of the circuit at different delay
points. i.e., though we cannot use the area-delay curves to make
absolute judgments, we can still make comparative judgments be-
tween different circuits.

Once the circuit has been sized, we determine the arrival and
required times at each gate, and use the slack to reduce the sizes
of the gates. This step can drastically reduce the area of a circuit,
since the non-critical parts of the circuit are usually sized to be
unnecessarily fast.

Algorithm 2 is almost as fast as Algorithm 1. Once the Delay-%'&)(curves have been calculated, the actual calculation of arrival
and required times only needs two traversals of the circuit, and siz-
ing each gate requires a maximum of _�o d v operations, if there ared

gate sizes available. This is done a fixed number of times, for
each set of Delay- % &)(curves that have been calculated. Thus, the
running time is dominated by that of running Algorithm 1.

4 Results
In order to validate our algorithm, we generated multiple imple-
mentations of the ISCAS combinational benchmark circuits using
SIS [10], and a technology library consisting of minimum sized in-
verter and two-input NAND, NOR and XOR gates. These gates are
calibrated to obtain accurate values of logical effort and parasitic

Algorithm 2 ADC: Area-Delay Curve Calculation
for each gate - whose outputs have been processed do

if - is not a PI then
Calculate Delay- %.&)(curve of - as in Algorithm 1

else
Calculate Delay- %.&)(curve as before, but for each /�& store
all solutions

end if
end for

for each set of Delay- % &)(curves of the PIs do
Minimum Delay ? gjilk � g�w)x all PI’s

�
delay to PO ���

// forward traversal
Size the circuit based on the selected point. Also determine
the arrival time at each gate
// reverse traversal
Determine the required time at each gate
// area recovery
for each gate - in reverse topological order do��£pz¤/�¥�? arrival time ¦ required time

while ��£�z¤/�¥ {¨§ do
reduce the size of -
update the arrival and required times of - and its inputs

end while
end for
Determine area and delay of the sized circuit

end for

delay with respect to the models used in our implementation of TI-
LOS2. Each benchmark circuit was mapped using different scripts
and options, and randomly generated wire parasitics were added to
each mapped circuit, in order to simulate the effect of placement
and routing considerations. Finally, our implementation of TILOS
was used to determine the actual area-delay curves, against which
the estimated curves obtained by Algorithm ADC can be bench-
marked.

The first goal of our approach is to correctly predict which imple-
mentation is the best for different delay points. Our methodology
for measuring the effectiveness of Algorithm ADC is as follows.
For the entire range of possible delay values, we select ten equally
spaced delay points. Note that the number of implementations that
can be sized to meet a particular delay value varies by circuit. We
make pairwise comparisons between all implementations available
at the selected delay point, and determine which implementation is
better. In Table 1, for each benchmark circuit, the number of com-
parisons made are shown in the second column. Next, we make the
same comparison using the delay curves obtained from our imple-
mentation of TILOS. An incorrect comparison is when the ranking
according to Algorithm ADC is different from that obtained from
TILOS. As shown in the next column, incorrect comparisons occur
only 1.86% of the time.

Next, we measure the error in the predicted area difference. Let
implementations � � and � � have estimated areas of ©tª � est and© ª � est, and assume © ª � est « © ª � est, so that � � is the better im-
plementation. The difference between the estimated areas of � � and

2[9] describes how these values can be obtained from the reference model.

Table 1: Full ADC comparison
Comparisons ¬ Total ¬ FalseCircuit

Total False max.(%) avg.(%) max.(%) avg.(%)

C432 102 3 21.85 6.42 11.33 9.51

C499 158 1 21.52 6.38 16.08 7.83

C880 41 3 13.95 4.11 9.89 6.93

C1355 136 1 28.61 8.17 18.11 8.02

C1908 113 4 25.72 5.62 5.22 4.00

C2670 121 1 18.87 3.49 3.28 3.28

C3540 101 5 18.24 4.49 14.51 8.12

C5315 163 8 27.51 7.24 5.09 2.34

C6288 57 1 22.50 4.65 11.62 4.85

C7552 30 2 25.08 7.02 4.70 2.68

Total 1022 29(1.86%)

Max. 28.61 18.11

Avg. 5.76 5.75

��� , is calculated as f© est ?¯® §�§ o°®@¦ ± �²� est± �p� est
v . Similarly, the differ-

ence between the areas from the actual area-delay curves, ©Eª � act
and ©=ª � act is calculated as f© act ?³® §�§ oc®E¦ ± ��� act± ��� act

v . The ab-

solute error of our approach is ´µ?·¶ f© est ¦Zf© act ¶ , and the
maximum average value of this error over all comparisons are pre-
sented in columns 4 and 5 of Table 1. The maximum error is high,
but it does not happen often, and over all circuits, the average error
is 5.76%. The last two columns present the maximum and average
errors in area estimation for comparisons that were mis-predicted.
Once again, while the maximum is large, it is rare, and the average
error in this case is 5.75%.

References
[1] J. P. Fishburn and A. E. Dunlop. TILOS: A Posynomial Programming Ap-

proach to Transistor Sizing. In Proc. ICCAD, pages 326–328, 1985.

[2] S. S. Sapatnekar et al. An Exact Solution to the Transistor Sizing Prob-
lem for CMOS Circuits Using Convex Optimization. IEEE Trans. on CAD,
12(11):1621–1634, Nov 1993.

[3] C.-P. Chen et al. Fast and Exact Simultaneous Gate and Wire Sizing by La-
gragian Relaxation. In Proc. ICCAD, pages 617–624, 1998.

[4] V. Sundararajan et al. Fast and Exact Transistor Sizing Based on Iterative
Relaxation. IEEE Trans. on CAD, 21(5):568–581, May 2002.

[5] A. R. Conn et al. JiffyTune: Circuit Optimization Using Time-Domain Sensi-
tivities. IEEE Trans. on CAD, 17(12):1292–1309, Dec 1998.

[6] X. Bai et al. Uncertainty-aware circuit optimization. In Proc. DAC, pages
58–63, 2002.

[7] S. K. Karandikar and S. S. Sapatnekar. Fast Comparisons of Circuit Imple-
mentations. In Proc. DATE, pages 910–915, 2004.

[8] R. F. Sproull and I. E. Sutherland. Theory of Logical Effort: Designing for
Speed on the Back of an Envelope. In IEEE Advanced Research in VLSI, 1991.

[9] I. Sutherland et al. Logical Effort: Designing Fast CMOS Circuits. Morgan
Kaufmann, San Fransisco, CA, 1999.

[10] E. M. Sentovich et al. SIS: A System for Sequential Circuit Synthesis. Techni-
cal Report UCB/ERL M92/41, Electronics Research Laboratory, Department
of EECS, University of California, Berkeley, May 1992.

