
Using DCT-based Approximate Communication to
Improve MPI Performance in Parallel Clusters

Qianqian Fan, David J. Lilja, and Sachin S. Sapatnekar
Department of Electrical and Computer Engineering
University of Minnesota, Minneapolis, MN 55455

e-mail: {fanxx297, lilja, sachin}@umn.edu

Abstract—Communication overheads in distributed systems
constitute a large fraction of the total execution time, and limit
the scalability of applications running on these systems. We
propose a DCT-based approximate communication scheme that
takes advantage of the error resiliency of several widely-used
applications, and improves communication efficiency by substan-
tially reducing message lengths. Our scheme is implemented into
the Message Passing Interface (MPI) library. When evaluated on
several representative MPI applications on a real cluster system,
it is seen that the fraction of total execution time devoted to
communication reduces from 59% to 23%, even accounting for
the computational overhead required for DCT encoding. For
many communication-intensive applications, it is shown that our
approximate communication scheme effectively speeds up the
total execution time without much loss in quality of the result.

I. INTRODUCTION

Nowadays, a growing number of applications are imple-
mented by using parallel computation on a computer cluster
to achieve better performance. These applications of high-
performance computing (HPC) can distribute computation
across many nodes, and each node processes only a part
of the total workload. During the operation, the work done
by each node is not independent, and some data may have
to be transferred among nodes for additional processing and
analysis. The message passing interface (MPI) is a widely used
communication protocol for cluster computation that provides
a standard interface for communication [1].

In large-scale parallel systems, efficient communication is a
major challenge for scalability [2]. Communication-intensive
parallel applications transfer a large amount of data among
nodes of a cluster via an interconnection network. In [3],
the fraction of time spent on communication increased signif-
icantly with the number of processors for representative appli-
cations of HPC, as shown in Fig. 1. This large communication
overhead limits the scalability of parallel applications.

With the growing popularity of error-resilient applications,
a new trade-off between the quality and speed has been
introduced. These error-resilient applications can improve the
efficiency of the system while retaining an acceptable level
of accuracy. Therefore, approximate communication [2] has
arisen as a new opportunity for improving the efficiency of
communication in parallel systems, which can significantly

This work was supported in part by U.S. National Science Foundation grant
no. CCF-1438286. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the authors and do not necessarily
reflect the views of the NSF.

Fig. 1: Fraction of time spent on communication as the number
of processors increase for representative high-performance
computing applications [3].

reduce the time needed for communication by transmitting
partial or imprecise messages.

This paper proposes a DCT-based new approximate com-
munication scheme based on discrete cosine transform (DCT)
that allows some errors during communication to substantially
reduce overhead. In the proposed scheme, the subband de-
composition [4] of the message is first used, and the original
DCT with length N can be approximately computed by a half-
length DCT. We then propose a fast and recursive DCT with
a piecewise-constant approximation to speed-up processing
while maintaining a small space overhead, especially for long
DCT transformations. Moreover, the zero run-length coding
scheme is used to improve the efficiency of compression.
Specifically, some applications have similarities among mes-
sages at the same node. Two compression strategies are used
here by making use of this characteristic: compressing the
entire message, or compressing the difference between the
given message and a reference message.

We implemented the DCT-based approximate communi-
cation scheme in the OpenMPI library, compiled the appli-
cations using this modified library, and executed them on
a real distributed cluster system. Eight representative error-
resilient MPI applications were used to explore the benefits
of approximate communication. Several parameters can be
tuned for each application to achieve its best performance. The
performance of the MPI applications was evaluated on a real
cluster system. Compared with schemes that apply other lossy
compression schemes used in HPC applications, the results
show that the DCT-based approximate communication scheme
obtained a significant reduction in the cost of communication
time with a smaller overhead in terms of the time needed for
compression. The percentage of total execution time devoted to

communication decreased from 59% to 23%, even accounting
for the computational overhead required for DCT encoding.
For the communication-intensive applications, it is shown that
our approximate communication scheme effectively speeds up
the total execution time without much loss in quality of results.

II. RELATED WORK

To improve the efficiency of communication in parallel
applications, several works have proposed some techniques [2]
to reduce the total number of messages and the size of each
message.

A. Reducing total number of messages

Relaxing the data dependency (e.g., read-after-write data
dependency) in parallel applications can help reduce the time
needed for communication among the threads [12]. Thread
fusion was used in [13]. It assumes that the outputs of
adjacent threads are similar to one another, and uses the
output of one thread to represent others. To reduce the cost
of communication based on more communication patterns,
Paraprox [14] used a subset of values in the input array
to construct an approximate version of the input to reduce
communication among nodes. These strategies apply approx-
imate communication, where the accuracy of the result is
traded for higher speed in parallel applications. However, a
non-negligible error is introduced by directly discarding some
communication.

B. Reducing the size of each message

Compression has been commonly used for reducing the cost
of communication by reducing the length of messages. The
transmission time of MPI message increases with message
size [15] [16].

1) Lossless compression in parallel applications: By taking
advantage of the similarities between spatial and temporal
neighbors, Ref. [17] evaluated a method of lossless com-
pression on a large-scale climate simulation dataset. Because
different compression algorithms deliver varying performance,
the adaptive compression system [18] [19] can adaptively se-
lect the compression algorithm to compress the given message.
The selection is based on internal models developed by the
authors or previous experimental results to estimate the com-
pression performance of different algorithms. However, these
dynamic strategies require the collection of a large volume
of performance data for different compression algorithms to

build the selection criteria. Moreover, once the pattern of
a message changes, the effectiveness of estimation of these
compression algorithms significantly decreases. The lossless
compression algorithm can preserve all information but perfect
communication is not necessary for error-tolerant applications.
Lossy compression on messages can perform better in terms
of efficiency of compression to further reduce the cost of
communication.

2) Lossy compression algorithm in parallel applications:
Instead of using replicates to represent messages transmitted
by nodes, lossy compression provides an option using the
notion of approximate communication. Lossy compression
algorithms can be divided into prediction-based compression
and transform-based compression. For prediction-based lossy
compression algorithms, ISABELA [20] applies B-splines
curve fitting to predict the sorted input data but its efficiency
of compression is limited because each data item has an index
to record its position in the original unsorted input, and this
spatial index map occupies a large part of the final compressed
output. SZ [21] uses a multidimensional model to predict
the next data point and designs adaptive error-controlled
quantization for each point value. For transform-based algo-
rithms, ZFP [22] develops an orthogonal block transform-
based compression algorithm to compress 3D floating-point
data. Wavelet transformation has also been applied to HPC
applications [23] [24]. SSEM [24] first applies 2D wavelet
transformation and compresses only the high-frequency band
by quantization to maintain the quality of the results. These
lossy compression algorithms have been evaluated on scientific
data with an emphasis on pointwise compression error between
the original and the reconstructed datasets. Instead of consider-
ing point-to-point errors in each message transmitted through
intermediates in MPI applications, we focus on obtaining a
final output of quality comparable to that of the original by
using a lossy runtime compression algorithm.

III. MPI-BASED ERROR-RESILIENT APPLICATIONS

Approximate communication can be applied to error-
resilient applications for speedup while maintaining the ac-
curacy of the output at an acceptable level. In our study, eight
representative MPI-based error-resilient applications were used
for the evaluation of the proposed method. These applica-
tions spanned different domains: physical simulation, machine
learning, and image processing. Their computing tasks either
did not aim at an exact numerical answer or they had inherent

TABLE I: Summary of applications.

Application Description Input Evaluation Metric
FE [5] Finite element method 3003 for length of 3D Relative residual norm

LULESH [6] Unstructured Lagrange explicit shock hydrodynamics 303 for length of mesh Mean relative difference
KNN [7] K-nearest neighbors classification Skin segmentation dataset Similarity of the predicted labels

BP [8] Backpropagation neural network learning CMU face image dataset Accuracy of test cases
Sweep3D [9] Models a wavefront propagating communication pattern 1003 for length of mesh Mean value range-based relative difference
Halo3D [9] Models nearest neighbor communication pattern 1003 for length of mesh Mean value range based relative difference
Edge [10] Edge detection in image 1200× 800 images Structural similarity index (SSIM)
Blur [11] Image blur filter 11500× 11500 images Structural similarity index (SSIM)

Fig. 2: Representative messages extracted from various applications (upper one in each subfigure) and energy compaction for
various transform-based compression methods with different applications (lower one in each subfigure).

resilience to output error. Table I summarizes these applica-
tions. The definitions of the evaluation metrics in Table I are
shown below:

For FE, an iterative method is used for solving the linear
equation Ax = b. The error tolerance of the results is defined
by the user as a stopping criterion for the iterative process. In
this study, the error tolerance was based on the relative residual
norm and defined as ‖rj‖2 / ‖r0‖2, where rj = b − Axj of
the jth iteration.

For LULESH, the final origin energy and the three measures
of symmetry were calculated after the simulation [6]. The
mean relative difference was compared with these variables
using the non-compression scheme.

For KNN, similarity can be defined as nsame/ntotal, where
nsame is the number of the test cases with the same predicted
labels generated by the approximate communication scheme
and the non-compression scheme, and ntotal is the total
number of test cases.

For BP, the accuracy is defined as ncorrect/ntotal, where
ncorrect is the number of the test cases with correct recogni-
tion, and ntotal is the total number of test cases.

For Sweep3D and Halo3D, the value-range-based relative
difference can be defined as ei = (xi − x̃i)/(xmax − xmin),
where xi is the original value and x̃i are the reconstructed
data. xmax and xmin are the maximum and minimum values
in the original data. In our evaluation, the average value E of
ei was used as error metric for these two applications.

For Edge and Blur, the SSIM [25] was used to measure the
quality of the results. It is an index that measures the structural

similarity between images, and a well-known objective image
quality metric defined as

SSIM (x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(1)

where µx is the average of x, µy is the average of y, σxy
is the covariance of x and y, σ2

x is the variance of x, σ2
y is

the variance of y, and c1 and c2 are variables to stabilize the
division with a weak denominator. SSIM is valued between -1
and 1. When two images are nearly identical, their SSIM is
close to 1.

When using MPI, the messages are passed between comput-
ing nodes as arrays of data. The type of data can be double,
int, char and so on. The patterns of the messages in these
applications were impacted by their own algorithms or the
input data, which showed different levels of randomness. The
first row of each subfigure in Fig. 2 shows a representative
part of the message extracted from the different applications.
In these subfigures, the x-axis represents the index of this data
array and the y-axis represents the corresponding value of
the data. For example, the pattern of FE application has a
non-random characteristic and is visibly periodic, as shown in
Fig. 2 (a). This characteristic of the message pattern allows
the transform-based compression algorithm to compress the
message efficiently. For BP application, its pattern exhibits a
more random characteristic, as shown in Fig. 2 (d). The non-
random characteristic of the message pattern can be exploited,
and more details are discussed in the next section.

IV. MESSAGE ENERGY COMPACTION OF DCT

In signal processing, the energy of a message is measured
by the sums of squares of the coefficients in the frequency
domain, defined as

E =

N∑
n=0

|X (n)|2 (2)

where X(n) is the frequency domain transform of message
x(k) with length N . When the messages of an application have
a non-random pattern as shown in Section III, transform-based
compression algorithms can maintain as much message energy
as possible with few coefficients. Only a part of coefficients
in the frequency domain is used to represent a message
to implement compression. Using coefficients with higher
message energy can yield more accurate results compared with
the original message.

The DCT compression algorithm delivers higher energy
compaction than other compression algorithms. Our target in
applying transform-based compression is to use few coeffi-
cients to represent as much information regarding a message
as possible. In other words, most of the energy in a message
is concentrated in a few coefficients. DCT is the best choice
of transformation algorithm for this among such competitors
as discrete wavelet transform (e.g., Haar wavelet), discrete
Hartley transform (DHT), fast Fourier transform (FFT), and
the Walsh–Hadamard transform (WHT).

In the second row of Fig. 2, we apply the above compression
algorithms to representative messages extracted from the MPI-
based applications listed in Table I. The x-axis represents
the number of coefficients expressed as a percentage. These
coefficients are sorted in descending order based on their
absolute values. A larger absolute value of a coefficient in
the frequency domain represent higher energy of a message,
as shown in Equation (2). Therefore, using the first n of
the largest coefficients to represent a message can effectively
capture a large fraction of the message energy. The y-axis
represents the energy of the message. Compared to energy
compaction using the same number of coefficients, the results
show that the DCT can pack the energy of the spatial sequence
into as fewer frequency coefficients than other compression al-
gorithms. For instance, in Fig. 2(a), only 1% of the coefficients
can represent 95% of the energy of a message using the DCT.

Some applications have highly random message patterns
that cannot be effectively compressed by using a transform-
based compression algorithm. For example, 45% of the co-
efficients were required to represent 95% of the message
energy in the BP application as shown in Fig. 2 (d). Our
approximate communication scheme is not a good choice for
this type of message pattern. The number of coefficients used
to represent high-level message energy can thus be used as a
criterion to decide whether to use our scheme. As illustrated in
Algorithm 1, a message is extracted from the application and,
if it can represent sufficiently large energy (Ei ≥ θe) using a
small number of DCT coefficients (i/n ≤ θn), our proposed
scheme is a good candidate for approximate communication,
where θn and θe are empirically determined threshold values.

Algorithm 1: Selection Algorithm for Proposed Scheme
Input: M and n: message and message length;
θn: number of coefficient thresholds; θe:energy threshold;
Output: flags: Decision on selection of our scheme;
compute DCT coefficients CM of M ;
initial CL = Φ; flags = 0; i = 1;
while i/n ≤ θn do

push the ith largest coefficient of CM to CL;
compute the message energy Ei using CL;
if (Ei ≥ θe) then

flags = 1; break;
end
i = i+ 1;

end
return flags;

V. DCT-BASED APPROXIMATE COMMUNICATION SCHEME

For the conventional DCT algorithm, the nth DCT coeffi-
cient of a sequence x(k) with length N is defined as

X (n) =

N−1∑
k=0

x (k) cos
(
π (2k + 1)

n

2N

)
(3)

where n ranges from 0 to N−1. To develop the runtime com-
pression of MPI messages among nodes, low time overheads
for compression and decompression are necessary. We propose
the DCT-based approximate communication scheme in three
steps: a subband decomposition of the message (Section V-A),
fast recursive DCT with piecewise-constant approximation
(Section V-B), and zero run-length coding (Section V-C). The
proposed approximate communication scheme can pack the
energy of the message into a few coefficients while substan-
tially reducing the time needed for compression compared with
the conventional DCT for large messages.

A. Subband decomposition

The subband decomposition of a message [4] can be applied
to the message compression to reduce the time overhead in the
first step. Fig. 3 shows the absolute value of coefficients of the
DCT in a representative message of a FE application generated
by the conventional DCT. As shown in Fig. 3, the lower-
frequency band concentrates coefficients with larger absolute
values. Based on the definition in Equation (2), it is reasonable
to assume that most energy of the message is located in the
first half of the coefficients belonging to the lower frequency.
Once a message satisfies the above assumptions, subband
decomposition can be used on it while slightly sacrificing the
quality of the result. In Section V-B, Fig. 6 further shows
that our DCT-based approximate communication scheme with
subband decomposition has a limited impact on the energy of
the message for most applications that we evaluated.

To implement subband decomposition, sequence x(k) with
length N can be decomposed into a low-frequency band xL(k)
and a high-frequency band xH(k), given by

xL(k) =
1

2
(x (2k) + x (2k + 1))

xH(k) =
1

2
(x (2k)− x (2k + 1))

Fig. 3: The absolute value of DCT coefficients generated by
the conventional DCT scheme.

where k ranges from 0 to N/2−1 . Based on the derivation in
[4], when n varies from N/2 to N , X(n) = 0; when n varies
from 0 to N/2−1, the DCT coefficients can be approximately
defined by

X(n) ≈ 2cos
(πn
2N

) N
2 −1∑
k=0

xL(k)cos
(
π(2n+ 1)

n

N

)
= 2cos

(πn
2N

)
XL(n)

(4)

The original DCT algorithm with length N (X(n)) can be
approximately computed by using DCT (XL(n)) of length
only N/2, which reduces the complexity of the algorithm
by half. Moreover, this approximation based on subband de-
composition can be used repeatedly to achieve N/4 subband-
approximate DCT and narrower subband DCTs. To maintain
an acceptable quality of results, N/2 subband-approximate
DCT was applied here.

In the proposed DCT-based approximate communication
scheme, xL(k) is first computed based on the original se-
quence x(k). The fast recursive DCT with piecewise-constant
approximation described in Section V-B is then used to com-
pute XL(n). Finally, X(n) can be obtained based on Equa-
tion (4). Moreover, to reduce the computational complexity of
this process, the piecewise-constant approximation is applied
to item 2cos(πn/2N), as described in Section V-B.

B. Fast recursive DCT with piecewise-constant approximation

To compute XL(n) efficiently as described in Section V-A,
a fast recursive DCT with piecewise-constant approximation
scheme is proposed here.

While not computing the DCT exactly, approximations
of it can provide meaningful estimations at low complexity
to reduce the time overhead. Different techniques of DCT
approximations have been considered, such as the integer
DCT [26] [27], signed DCT [28], and rounded DCT [29] [30].
The approximate DCT transform matrix needs to be computed
and stored in advance for them. When they are applied to
a small length of the DCT, e.g., eight-point DCT, the size
of the matrix occupies a negligibly small amount of space.
However, the fast approximate DCT for the long message is
required because nearly no time can be saved by compressing a
small message for MPI communication. Thus, the threshold to
apply compression here was set to 4 KB, as was used in [19].
Moreover, the lengths of the messages are likely not the same,
so that it is hard to prepare the DCT transform matrix for these
various lengths in advance. A fast recursive DCT compression

algorithm combined with piecewise-constant approximation is
proposed to speed-up the DCT process with a small space
overhead, especially for long DCT transformations.

The recursive DCT algorithm [31] is used as basis for our
proposed scheme. It is a fast 1D exact DCT algorithm that
uses fewer arithmetic operations than the conventional DCT.
The recursive DCT provides stable generalization for longer
DCTs and a simple format of the transformation compared
with other fast DCT algorithms [32] [33]. In the recursive
DCT algorithm [31], the DCT coefficients can be divided into
even and odd parts, for n from 0 to N/2− 1,

X(2n) = G(n) (5)
X(2n+ 1) = H(n)−X(2n− 1), (X(1) = H(0)/2) (6)

where G(n) and H(n) are the DCT coefficients of g(k) and
h(k), respectively. For k from 0 to N/2 − 1, g(k) and h(k)
are defined as

g(k) = x(k) + x(N − 1− k) (7)
h(k) = q(k)× (x(k)− x(N − 1− k)) (8)

where q(k) is defined as

q(k) = 2cos

(
(2k + 1)π

2N

)
(9)

The computation of the DCT coefficients is now decomposed
into two half-length DCT computations.

Fig. 4 shows the process of the recursive DCT algorithm.
The left part of the figure represents the sequence in a different
recursive call and the right part represents the DCT coefficients
of the sequence on the same line. The input to the algorithm
is x(k) and the output is X(n). As shown in Fig. 4, the
half-length sequences g(k) and h(k) are first computed based
on the original sequence x(k). This process can be further
divided until the length of the sequence reaches one, shown
as the last line in the left part of Fig. 4. Based on the
definition of the DCT in Equation (3), the DCT coefficient
is equal to the original value of the sequence if the sequence
contains only one point. Therefore, the DCT coefficients of
all one-point sequences in the last line are available. Based
on Equations (5) (6), the DCT coefficients can be computed
recursively from bottom to top until the target X(n) with
length N is reached. In this process, we assume that the
length of the input sequence is always a power of two number.
Otherwise, zero padding is applied at the end of the message.

Fig. 4: Process of the recursive DCT algorithm.

In the recursive DCT algorithm, the calculation of h(k)
(including q(k)) requires multiplication, which takes the most

time in the algorithm [31]. The target of our scheme is to
replace the multiplication operations by bit operations and
additions/subtractions to reduce the compression overhead.

Piecewise-constant approximation can be applied to q(k)
defined in Equations (9) to achieve null multiplicative com-
plexity in the computation of q(k). We first analyze a simple
format of q(k) as cos(απ) with range of α from 0 to 0.5, as
shown by the blue line in Fig. 5. In this example, the outputs
of the function can be only 1, 1/2, and 0 after piecewise-
constant approximation, as shown by the red line in Fig. 5.
The boundaries of the interval are th1 and th2, and can be
computed by the middle-point values 3/4 and 1/4. Because
this is a monotonic function for this range of α, we can get
the approximate output based on the value of α.

Fig. 5: Applying piecewise-constant approximation to a cosine
function.

Similarly, we can easily know the output of q(k) after
piecewise-constant approximation by checking only the value
of k. Let α = (2k + 1)/(2N), and we know that k ranges
from 0 to N/2− 1. The threshold values of α, th1, and th2,
are easy to compute, and those of k can be computed based
on the relation k = α×N − 0.5.

Furthermore, we can eliminate the multiplication during the
process by using α to compute the threshold of k based on
the relation k = α×N − 0.5. The threshold is approximated
by dyadic values because they can be implemented by bit
operations and additions/subtractions. For example, we can
compute th1 as 0.23 in Fig. 5, and it can be approximately
represented as 1/4−1/32+1/128, where divisions by a power
of two numbers can be also performed by bit operations.

We use more pieces for the output value of the cosine
function to generate more accurate results. The possible output
values are 0, 1/16, 2/16, ... , 15/16, and 1. Their thresholds of
α, the corresponding approximate versions, and their absolute
differences are listed as α Thr., Approx., and Diff columns,
respectively, in Table II.

TABLE II: Configuration of the approximate threshold format.

α Thr. Approx. Diff α Thr. Approx. Diff
0.0798 1

16
+ 1

64
0.0017 0.3447 1

2
− 1

8
− 1

32
0.0010

0.1389 1
8
+ 1

64
0.0017 0.3668 1

2
− 1

8
− 1

128
0.0004

0.1803 1
4
− 1

16
− 1

128
0.0007 0.3883 1

2
− 1

8
+ 1

64
0.0023

0.2146 1
4
− 1

32
− 1

128
0.0036 0.4093 1

2
− 1

8
+ 1

32
0.0030

0.2447 1
4
− 1

128
0.0025 0.4298 1

2
− 1

16
− 1

128
0.0001

0.2721 1
4
+ 1

32
− 1

128
0.0013 0.4501 1

2
− 1

16
+ 1

64
0.0031

0.2976 1
4
+ 1

16
− 1

64
0.0008 0.4701 1

2
− 1

32
0.0014

0.3217 1
4
+ 1

16
+ 1

128
0.0014 0.4901 1

2
− 1

128
0.0021

Given the piecewise-constant values of q(k), h(k) can also
achieve null multiplicative complexity because one of h(k)’s

multipliers (q(k)) can be represented using bit operations. As
mentioned above, the possible output values of q(k) here are
0, 2 × 1/16, 2 × 2/16, ... , 2 × 15/16, and 2. They can
all be represented by a set of dyadic values as 0, 1/8, 1/4,
... , 2 − 1/8, and 2. Considering that multiplication by a
power of two numbers can be performed by bit operations,
the multiplication in h(k) can be eliminated. The same ap-
proximate version of the thresholds listed in Table II can be
applied to item 2cos(πn/2N) of Equation (4) in the subband
decomposition process.

Table III shows the difference between the conventional
DCT and our proposed DCT scheme based on the total time
needed for the compression and decompression processes. The
results are the average values of the time overhead in the FE
application with various input sizes. The time increased for
larger input sizes, which generated longer messages. More-
over, the proposed DCT reduced the time needed substantially
compared with the conventional DCT.

TABLE III: Reduction in the time needed for compression
between the conventional DCT and the proposed scheme.

Size 2003 3003 4003 4503 5003 5503

Speedup 101.18 239.06 350.70 563.74 675.85 571.12

For all applications except for that of the BP, the proposed
DCT scheme maintained the good energy compaction charac-
teristics of the DCT. Fig. 6 shows the comparison of energy
compaction for conventional exact DCT and the proposed
DCT schemes with FE application and BP application. The
x-axis and y-axis are the same as in Fig. 2, and represent
the number of coefficients and the energy of the message, re-
spectively. For FE application, proposed scheme was prevented
from reaching 100% signal energy mainly because some high-
frequency coefficients were discarded, as shown in Fig. 2
(a). For these error-resilient applications, the transmission of
the exact message or maintaining 100% signal energy is not
necessary. Other applications except for BP (Fig. 2 (b)) show
the similar trends.

Fig. 6: Comparison of message energy compaction between
conventional exact DCT and the proposed DCT schemes.

C. Zero run-length coding (RLC)

As a consequence of the message, only a few coefficients are
maintained after DCT compression, and contain most of the
energy of the message. The value of the remaining coefficients
is set to zero, and there are a large number of consecutive zero
coefficients in a message. We exploit this by run-length coding
the consecutive zeros to achieve high compression efficiency,
as shown in Fig. 7. We encode each non-zero coefficient

by pair first and the number of consecutive zeros preceding
that coefficient, followed by the coefficient itself. Consecutive
zeros with a maximum run length of 255 are represented using
an eight-bit number. The non-zero coefficients and zero run-
length values are then arranged in two parts in the output
message, a data part and a run-length part, as shown in Fig. 7.

Fig. 7: Example of the zero run-length scheme. The input
message contains the coefficients after DCT compression and
the output message contains data and the zero run-length parts.

VI. DIFFERENTIAL ANALYSIS OF MESSAGES

For some applications, there are similarities among mes-
sages in the same node. For example, in two consecutive
iterations of the FE application, the changes in messages to
be transmitted to other nodes were not large. Therefore, most
differences between a given message and the previous message
were small. Instead of transmitting the entire message, the
difference can be applied to compression and transmitted over
the network [34]. An overview of the proposed strategy is
shown in Fig. 8 and the details are given below.

This diagram can be divided into three parts: a sender node
part that generates the message and sends it, as shown in the
yellow area; a receiver node part that demands the message
from the sender node, as shown in the green area; and the MPI
that is the interface used to transfer the message, represented
by the red area in the middle.

For the sender side, the mean value range-based relative
difference D is computed based on the given message x and
recorded data rd, defined as

D =
1
N

∑N
k=0 |x(k)− rd(k)|
xmax − xmin

where xmax and xmin are based on the given message x and N
is its length. D is compared with the threshold and determines
the content to be compressed. The definition of the recorded
data rd is shown in the following paragraph.

For the transmission of the first message, there are no
recorded data, and we can directly set D to be higher than
the threshold. The full message is compressed and maintains
high message energy to maintain high quality of the message.
This message updates the recorded data to be used as future
message reference as shown in Fig. 8 using the dashed orange
lines. For the next message in the following iteration, D is
computed. If D is lower than the threshold, which means
that the recorded data can be a good baseline for the given
message, only the difference x − rd is compressed. In this
process, the requirement of message energy in compression is
relaxed, which allows for fewer coefficients to be transmitted
over the network as shown in Fig. 8 using the solid gray
lines. An additional flag is used to indicate the content of
the compression. Therefore, based on differential analysis, the
recorded data are updated with high quality only in case of
full message compression.

At the receiver, the message is first decompressed. A flag
then indicates whether the received message is a full message
or only a difference message. If it is a full message, it is used to
update the recorded data and the receiving process concludes.
Otherwise, the reference in the recorded data needs to be added
back to this difference data to get the final message.

Once an application starts the process of differential anal-
ysis, we can count the number of times the difference D is
higher than the threshold. For the first several iterations, if
D is always higher than the threshold, we can use this as
a criterion to determine if an application has no similarities
among messages. In later iterations, the original message is
directly compressed without any differential analysis.

VII. EXPERIMENTAL RESULTS

We evaluated our DCT-based approximate communication
scheme on a distributed HP Linux cluster [35] with up to
360 nodes consisting of Intel Haswell E5-2680v3 processors
and this system provided 711 Tflop/s of peak performance.
Other lossy compression-based approximate communication
schemes that have been used in HPC-related applications
were also implemented for comparison. These state-of-the-art
lossy compression algorithms were SZ [21], ZFP [22], and
SSEM [24]. In the implementation of SSEM, quantization
was applied to both low- and high-frequency bands instead
of only to the latter to achieve better compression efficiency.
All lossy compression algorithms were directly applied to

Fig. 8: Overview of the proposed strategy between sender node and receiver node. The orange dashed lines and gray solid
lines represent two methods of compression.

OpenMPI implementation. The eight MPI-based error-resilient
applications—FE, LULESH, KNN, BP, Blur, Edge, Sweep3D,
and Halo3D—described in Section III were used to evaluate
the impact of approximate communication on performance.
This section compares the reduction in total execution time
induced by our proposed scheme and the other schemes on the
applications. The communication time, which included com-
pression overhead, was further analyzed. Finally, approximate
communication with differential analysis is evaluated for some
applications.

A. Speedup of total execution time
The goal of approximate communication is to reduce the

total time needed to execute an application. We evaluated
the speedup of total execution time compared with that in
the non-compression scheme. It is defined as Tnoncomp/Tapp,
where Tnoncomp is the total execution time using the non-
compression scheme, which does not feature compression and
decompression processes. Tapp is the total execution time
using approximate communication.

Fig. 9: The speedup of total execution time for varying number
of processors.

Fig. 9 shows the reduction in execution time for varying
number of processors. The x-axis represents the different
numbers of processors and the y-axis represents the reduction
in total execution time compared with the original non-
compression scheme. The various colored lines represent the
results for different lossy compression schemes. All approxi-
mate communication schemes with different lossy algorithms
maintained the same accuracy, the evaluation matrix for which
is defined in Table I. Specifically, the relative residual norm of
FE was 10−5; the mean relative difference of LULESH was
less than 10%; the accuracy of KNN and BP was 90%; the
mean value range-based relative difference between Sweep3D
and Halo3D was no greater than 10%; and the SSIM of Blur
and Edge, defined in Equation (1), was maintained at 0.9.

Our DCT-based approximate communication scheme out-
performed all other lossy compression schemes on most appli-
cations (except on the BP application), and achieved a speedup
as high as 6.5x compared with the original non-compression

Fig. 10: The execution times for communication and com-
pression for various lossy compression algorithms on different
applications.

scheme. SSEM was second best, and used the other com-
monly used transform-based method: wavelet transformation.
Details of the evaluation of our scheme are described in
Sections VII-B and VII-C.

B. Communication and compression overhead

The compression-based approximate communication algo-
rithm is intended to reduce the overhead incurred by the
time needed for communication. However, the compression
produced an overhead as well. Therefore, the target of the
approximate communication is then to reduce the overhead
due to communication and compression. The proposed scheme
strikes a good balance between the overhead in time incurred
due to compression and a reduction in communication by
substantially reducing the size of messages.

The execution times needed for communication and com-
pression in all applications are illustrated in Fig. 10. Each
bar in the figure for each application represents a lossy
compression algorithm or non-compression scheme. It shows
the communication and compression overhead (including de-
compression time) in orange and gray, respectively. All results
were generated using 256 processors. The total execution
time of an application can be divided into computation time,
communication time, and compression overhead. For a given
application, we maintained the same computation time for all
compression algorithms and the non-compression scheme for
better comparison. All schemes with different lossy algorithms
maintained the same accuracy as described in Section VII-A.

As shown in the results in Fig. 10, the bottleneck of ZFP
and SZ was the large overhead due to the time taken for
compression. The communication time was positively corre-
lated with the length of the message. The compression ratio
of the SSEM-based approximate communication scheme was

Fig. 11: The fraction of total execution time spent on computing, communicating, and compressing as the number of processors
was varied.

limited compared with other schemes. Therefore, the reduction
in communication in the SSEM scheme was not as substantial
as in the others. The low compression overhead and good com-
pression ratio of the proposed DCT-based approximate com-
munication scheme helped it record the shortest execution time
on most applications. On the BP application, the prediction-
based compression algorithm SZ delivered better performance
than the other three transform-based compression algorithms
because of highly random messages in this application, as seen
in Fig. 2 (d). It was challenging to compress this message in
the frequency domain with few coefficients.

C. Fraction of communication

The large fraction of communication overhead in the total
execution time limits the scalability of parallel applications.
Therefore, reducing the fraction of communication is also an
aspect we concerned for approximate communication.

The fraction of each part of the total execution time for
all MPI applications is shown in Fig. 11. The percentage-
stacked column charts are used to represent the fraction of
total execution time. The x-axis represents four scenarios with
different numbers of processors. For each scenario, the results
of five schemes—our proposed scheme, non-compression,
SSEM, SZ, and ZFP—are listed from left to right. As shown
in Fig. 11, the fraction of communication increased in the non-
compression scheme as it used a large number of processors
for all applications. Considering the results for speedup given
in Fig. 9, for applications with larger communication frac-
tions, e.g., Edge, approximate communication achieved higher
speedup with the same or even a smaller reduction in com-
munication. Our scheme can significantly reduce computation
time by reducing more time needed for communication than
the other lossy compression schemes. For Sweep3D with 256

processors, the percentage of total execution time devoted to
communication decreased from 59% to 23%, where this time
included the computational overhead required to compress the
messages. Therefore, our DCT-based approximate communi-
cation scheme can significantly reduce communication and
effectively improve the scalability.

D. Approximate communication with differential analysis

As described in Section VI, differential analysis of messages
can be used in some applications. In this section, finite element
and image blur applications were used to evaluate this strategy.

For FE application, Fig. 12 shows the total execution time
for different values of error tolerance based on the relative
residual norm. In FE, the result became more accurate with
increasing number of iterations, but also took longer to ex-
ecute. We continued running the application and recorded
the execution times for different relative residual norms. The
results were generated with 256 processors at an input size of
3003. When a large error can be tolerated, e.g. 10−5, the DCT-
based approximate communication reduced total execution
time compared with that in the non-compression scheme.
However, the approximate communication lost its advantage
once a strict error tolerance was applied, e.g. 10−11. Moreover,
because of the similarity among the messages, the benefit
in terms of reducing time is greater when using differential
analysis.

For Blur application, Fig. 13 shows the performance of the
proposed scheme with and without differential analysis based
on SSIM and execution time. The size of the original image
was 11500× 11500, and thus only part of the image is shown
in Fig. 13. The execution times of the proposed scheme with
and without differential analysis were maintained. The value of
SSIM with differential analysis was higher and yielded results

of better quality. Therefore, the differential analysis strategy
can be used in certain applications.

Fig. 12: The total execution times for different requirements
of the relative residual norm for various compression schemes
with FE application.

Fig. 13: Visual output and execution time of DCT-based
approximate communication scheme with and without differ-
ential analysis for Blur application.

VIII. CONCLUSION

In this paper, we proposed a DCT-based approximate
communication scheme to reduce communication overhead.
The proposed compression scheme provides a better balance
between compression speed and compression ratio compared
than state-of-the-art lossy compression schemes for non-
random message patterns, and can significantly reduce com-
munication time without a considerable loss in the quality of
the result, particularly for applications with large communica-
tion overhead.

REFERENCES

[1] “MPI: A message passing interface standard.” https://www.mpi-forum.
org/, 2018.

[2] F. Betzel, et al., “Approximate communication: Techniques for reduc-
ing communication bottlenecks in large-scale parallel systems,” ACM
Computing Surveys, vol. 51, no. 1, p. 1, 2018.

[3] K. Bergman, et al., “Exascale computing study: Technology challenges
in achieving exascale systems,” Defense Advanced Research Projects
Agency Information Processing Techniques Office, Tech. Rep, vol. 15,
2008.

[4] S.-H. Jung, et al., “Subband DCT: Definition, analysis, and applica-
tions,” IEEE Transactions on Circuits and systems for Video Technology,
vol. 6, no. 3, pp. 273–286, 1996.

[5] “The Mantevo project.” https://mantevo.org/.
[6] I. Karlin, “LULESH programming model and performance ports

overview,” tech. rep., Lawrence Livermore National Lab, Livermore, CA,
United States, 2012.

[7] “Skin segmentation data set, UCI machine learning repository.” https:
//archive.ics.uci.edu/ml/datasets/Skin+Segmentation#.

[8] “CMU face images data set.” http://archive.ics.uci.edu/ml/datasets/cmu+
face+images.

[9] A. Bhatele, “Evaluating trade-offs in potential exascale interconnect
topologies,” tech. rep., Lawrence Livermore National Lab., Livermore,
CA, United States, 2018.

[10] “ImageNet large scale visual recognition challenge.” http://www.
image-net.org/challenges/LSVRC/.

[11] “NASA earth observatory.” https://earthobservatory.nasa.gov/.
[12] J. Meng, et al., “Exploiting the forgiving nature of applications for

scalable parallel execution,” in Proceedings of the IEEE International
Symposium on Parallel and Distributed Processing, pp. 1–12, 2010.

[13] M. Samadi, et al., “Sage: Self-tuning approximation for graphics
engines,” in Proceedings of the ACM International Symposium on
Microarchitecture, pp. 13–24, 2013.

[14] M. Samadi, et al., “Paraprox: Pattern-based approximation for data
parallel applications,” in Proceedings of the ACM SIGPLAN Notices,
vol. 49, pp. 35–50, 2014.

[15] B. Dickov, et al., “Assessing the impact of network compression on
molecular dynamics and finite element methods,” in Proceedings of the
IEEE International Conference on High Performance Computing and
Communication, pp. 588–597, 2012.

[16] J. Ke, et al., “Runtime compression of MPI messanes to improve the
performance and scalability of parallel applications,” in Proceedings of
the IEEE Conference on Supercomputing, p. 59, 2004.

[17] T. Bicer, et al., “Integrating online compression to accelerate large-scale
data analytics applications,” in Proceedings of the IEEE International
Symposium on Parallel and Distributed Processing, pp. 1205–1216,
2013.

[18] C. Krintz and S. Sucu, “Adaptive on-the-fly compression,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 17, no. 1, pp. 15–24,
2006.

[19] R. Filgueira, et al., “Dynamic-CoMPI: Dynamic optimization techniques
for MPI parallel applications,” The Journal of Supercomputing, vol. 59,
no. 1, pp. 361–391, 2012.

[20] S. Lakshminarasimhan, et al., “ISABELA for effective in situ compres-
sion of scientific data,” Concurrency and Computation: Practice and
Experience, vol. 25, no. 4, pp. 524–540, 2013.

[21] D. Tao, et al., “Significantly improving lossy compression for scientific
data sets based on multidimensional prediction and error-controlled
quantization,” in Proceedings of the IEEE International Parallel and
Distributed Processing Symposium, pp. 1129–1139, 2017.

[22] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2674–2683, 2014.

[23] L. Fischer, et al., “Lossy data compression reduces communication
time in hybrid time-parallel integrators,” Computing and Visualization
in Science, vol. 19, no. 1-2, pp. 19–30, 2018.

[24] N. Sasaki, et al., “Exploration of lossy compression for application-level
checkpoint/restart,” in Proceedings of the IEEE International Parallel
and Distributed Processing Symposium, pp. 914–922, 2015.

[25] Z. Wang, et al., “Image quality assessment: From error visibility to
structural similarity,” IEEE transactions on image processing, vol. 13,
no. 4, pp. 600–612, 2004.

[26] C.-K. Fong and W.-K. Cham, “LLM integer cosine transform and its
fast algorithm,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 22, no. 6, pp. 844–854, 2012.

[27] Z. Chen, et al., “Low-complexity order-64 integer cosine transform
design and its application in HEVC,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 28, no. 9, pp. 2407–2412, 2018.

[28] T. I. Haweel, “A new square wave transform based on the DCT,” Signal
processing, vol. 81, no. 11, pp. 2309–2319, 2001.

[29] R. J. Cintra and F. M. Bayer, “A DCT approximation for image
compression,” IEEE Signal Processing Letters, vol. 18, no. 10, pp. 579–
582, 2011.

[30] R. J. Cintra, et al., “Low-complexity 8-point DCT approximations based
on integer functions,” Signal Processing, vol. 99, pp. 201–214, 2014.

[31] C.-W. Kok, “Fast algorithm for computing discrete cosine transform,”
IEEE Transactions on Signal Processing, vol. 45, no. 3, pp. 757–760,
1997.

[32] B. Lee, “A new algorithm to compute the discrete cosine transform,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 32,
no. 6, pp. 1243–1245, 1984.

[33] C. Loeffler, et al., “Practical fast 1-D DCT algorithms with 11 mul-
tiplications,” in Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing,, pp. 988–991, 1989.

[34] Z. Chen, et al., “NUMARCK: machine learning algorithm for resiliency
and checkpointing,” in Proceedings of the IEEE International Con-
ference for High Performance Computing, Networking, Storage and
Analysis, pp. 733–744, 2014.

[35] “Mesabi compute cluster, Minnesota Supercomputing Institute.” https:
//www.msi.umn.edu/content/mesabi.

