
To appear in the Proceedings of the International Conference on Parallel Processing '94 1

A Convex Programming Approach for Exploiting Data and Functional

Parallelism on Distributed Memory Multicomputers �

Shankar Ramaswamyy, Sachin Sapatnekarz and Prithviraj Banerjeey

y Center for Reliable and High Performance Computing z Dept of EE/CprE
Coordinated Science Laboratory 222 Coover Hall
University of Illinois at Urbana-Champaign Iowa State University
Urbana, IL 61801 Ames, IA 50011

Tel : (217)333-6564
Fax : (217)244-5685

E-mail : shankar,banerjee@crhc.uiuc.edu

ABSTRACT

Compilers have focussed on the exploitation of one
of functional or data parallelism in the past. The
PARADIGM compiler project at the University of Illinois
is among the �rst to incorporate techniques for simulta-
neous exploitation of both. The work in this paper de-
scribes the techniques used in the PARADIGM compiler
and analyzes the optimality of these techniques. It is the
�rst of its kind to use realistic cost models and includes
data transfer costs which all previous researchers have ne-
glected. Preliminary results on the CM-5 show the e�cacy
of our methods and the signi�cant advantages of using
functional and data parallelism together for execution of
real applications.

1. INTRODUCTION

Distributed memory multicomputers such as the Intel
Paragon, the IBM SP-1 and the Thinking Machines CM-5
o�er signi�cant advantages over shared memory multipro-
cessors in terms of cost and scalability. Unfortunately, to
extract all that computational power from these machines,
users have to write e�cient software for them, which is an
extremely laborious process.

The PARADIGM compiler project at Illinois is aimed
at devising a parallelizing compiler for distributed memory
multicomputers that will accept sequential FORTRAN 77
programs as input. The fully implemented PARADIGM
compiler will:

� Generate data partitioning speci�cations [1, 2].

� Partition computations and generate communication
for data parallel programs [3, 4, 5].

� Exploit functional and data parallelism [6].

�This research was supported in part by the O�ce of Naval
Research under Contract N00014-91J-1096, and in part by the
National Aeronautics and SpaceAdministrationunderContract
NASA NAG 1-613.

� Provide compiler and runtime support for irregular
applications [7].

For our discussion, we de�ne Functional Parallelism to
be any parallelism existent among the various loops(nest)
in a given program and Data Parallelism to be parallelism
within a loop (nest). To reiterate, these de�nitions are our
own and may not correspond to popular versions.

1.1 Macro Dataow Graphs

In order to expose the parallelism available in any
given program, we use a representation called the Macro

Dataow Graph (MDG). This representation has been
used before by researchers such as Prasanna and Agar-
wal in [8]. The MDG is a weighted directed acyclic
graph whose nodes correspond to loops (nest) of the given
program and edges correspond to precedence constraints
among these loops.

The weights of the nodes and edges are based on the
concepts of Processing and Data Transfer costs. The time
required for the execution of a loop is called its process-
ing cost. Processing costs will depend on the number of
processors used to execute the loop and include all com-
putation and communication costs incurred. For a loop's
precedence constraints to be met, data transfer may be
required between processors that execute it and the pro-
cessors that process each of its predecessors. The time
needed for data transfer between each such predecessor-
successor pair of loops is referred to as the data transfer
cost for that pair. Data transfer costs are made up of three
components : a sending cost for processors at the sending
loop, a network cost, and, a receiving cost for processors
at the receiving loop. All of these cost components are a
function of the number of processors used for the sending
and receiving loops.

We consider the weight of a node in the MDG to be
composed of:

1. The receiving cost components of all data transfers
from its predecessors

2. The processing cost of the loop it corresponds to

To appear in the Proceedings of the International Conference on Parallel Processing '94 2

N

N N

1

2 3

2

4

6

8

10

12

14

16

18

20

1 2 3 4

E
x
e
c
u
t
i
o
n

T

i
m

e

Processors Used

Execution Times for Loops

N1
N2
N3

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4

E
x
e
c
u
t
i
o
n

E

f
f
i
c
i
e
n
c
y

Processors Used

Execution Efficiencies for Loops

N1
N2
N3

Figure 1: Example Showing Functional Parallelism

3. The sending cost components of all data transfers to
its successors

The weight of an edge between a pair of nodes in the MDG
is taken to be the network cost component of data transfer
between the loops corresponding to the nodes.

The usefulness of MDGs is that they can be used to de-
cide on the strategy to be used to minimize execution time
of the given program on the target multicomputer. MDGs
expose functional and data parallelism in the program, al-
lowing us to exploit both in an optimal manner. Data
parallelism information is implicit in the weight functions
of the nodes and functional parallelism is implicit in the
precedence constraints among nodes. In order to decide
on a good execution strategy for a program, we use an Al-
location and Scheduling approach. Allocation decides on
the number of processors to use for each node in the MDG
and scheduling decides on a scheme of execution for the
allocated nodes on the target multicomputer. Our work
in this paper provides methods that allocate and schedule
any given MDG such that the �nish time obtained is within
a factor of the best �nish time theoretically obtainable.

1.2 Example

The usefulness of good allocation and scheduling may not
be clear at �rst sight. It can be better appreciated by con-
sidering an example. Figure 1 shows an MDG with three
nodes N1, N2 and N3. Plotted alongside are the process-
ing costs of the loops they correspond to as a function of
the number of processors used. For ease of understanding
we assume there are no data transfer costs between loops.
By our de�nitions, the weights of the nodes in this MDG
would be the same as the corresponding processing costs
and the weight of edges would be 0. Now, given a system
with 4 processors, there could be many ways in which we
can allocate and schedule the MDG. For instance, a naive
scheme would be to execute the nodes one after another on
all 4 processors. In this case, we have an execution time of
15:6 seconds. On the other hand, a better way of executing
the MDG would be to �rst execute N1 on all 4 processors,
then allocate 2 processors each to nodes N2 and N3 and
execute them concurrently. This way, the loops �nish in
14:3 seconds. The two schemes are shown pictorially in
Figure 2. The �rst scheme is exploiting pure data paral-
lelism, i.e., all loops use 4 processors. The second scheme
on the other hand, is exploiting both functional and data

1 2 3 4 1 2 3 4

f f
1 2

Time

Processors N N N1 2 3

1
(b) Better Scheme, f =14.3 Secs.

2
(a) Naive Scheme, f =15.6 Secs.

Figure 2: Allocation and Scheduling Schemes for Ex-
ample

parallelism, i.e., loops 2 and 3 execute concurrently as well
as use 2 processors each.

Intuitively, good allocation and scheduling makes pro-
gram execution faster because of more e�cient execution.
Most real applications execute ine�ciently as the size of
the system grows, the processing e�ciency curves of Fig-
ure 1 in our example are typical. We can see that by exe-
cuting the nodes N2 and N3 concurrently and using fewer
processors for them, the second scheme is more e�cient
as compared to the �rst. This makes the second scheme
execute the program faster than the �rst.

In summary, we can identify the issues involved in de-
ciding on a good program execution strategy as:

1. Identi�cation of the nodes and edges to be used in
the MDG representation of the given program. We
do not have any methods developed yet for this step.
The possibility of using the work by Girkar and Poly-
chronopoulos in [9] is being studied.

2. Determination of weights of nodes and edges of the
MDG for the given target machine. We have pro-
posed mathematical models for processing and data
transfer costs in this paper but currently use actual
measurements to determine the parameters of these
models. This approach is similar to the Training Sets
approach of Balasundaram et. al. in [10]. We are
considering the use of static estimation techniques de-
veloped by Gupta and Banerjee in [2, 11] to try and
eliminate the need for some of the measurements in
the future.

3. Allocation of processors to nodes of the MDG and
scheduling of these allocated nodes in a manner such
as to minimize the execution time of the given pro-
gram. This step has been the focus of work presented
in this paper. We have not only developed algorithms
to perform the allocation and scheduling, but also an-
alyzed the quality of the results produced by these
algorithms.

4. Generation of data parallel code for each node in the
MDG based on the allocation produced by Step 3.
Techniques already exist in the PARADIGM compiler
for this step [3, 4, 5].

5. Using the generated code in Step 4 and the schedule
produced in Step 3 to create an executable program

To appear in the Proceedings of the International Conference on Parallel Processing '94 3

for each processor in the target system. It can be
seen that the program created can be very di�erent
for each processor in the system. This type of pro-
gramming is also called Multiple Program Multiple
Data (MPMD) programming. This is in contrast to
purely data parallel code where the program for each
processor is similar to others in the system. Such
type of programming is called Single Program Multi-
ple Data (SPMD) programming.

1.3 Allocation and Scheduling

The basic problem of optimally scheduling a set of nodes
with precedence constraints on a p processor system when
each node uses just one processor has been shown to be
NP-complete by Lenstra and Kan in [12]. Further treat-
ment on this topic can also be found in the book by Garey
and Johnson [13]. The allocation and scheduling problem
is considerably harder than the one just described. There
have been two major approaches to the approximate so-
lution of the allocation and scheduling problem. The �rst
has been a bottom up approach like those used by Sarkar
in [14], and Gerasoulis and Yang in [15, 16]. A bottom up
approach considers the MDG to be made up of lightweight
nodes (in terms of computation requirements) and coa-
lesces these nodes together to form larger nodes during
its construction of a schedule. The second is a top down
approach like the ones used by Prasanna and Agarwal in
[8], Belkhale and Banerjee in [17, 18], Ramaswamy and
Banerjee in [6] and in this paper. Top down approaches
start with the assumption of heavyweight nodes (again,
in terms of computation requirements) in the MDG and
break them down during the process of constructing an
optimal schedule. Top down methods are considered bet-
ter in that they take a more global view of the problem
than the bottom up approaches. Therefore they are able
to perform better optimizations.

The di�erence between earlier top down approaches
mentioned above and the work presented here is signi�-
cant. The methods presented in [8] do not consider data
transfer costs between nodes of the MDG. In addition, they
make simplifying assumptions about the type of MDGs
handled and the processing cost model used. We do not
make any assumptions for our MDGs and use very realistic
cost models. The work in [17, 18] also does not consider
the e�ects of non-zero data transfer costs. Their allocation
and scheduling algorithms are similar to the ones we use.
While data transfer costs were taken into account in the
methods presented for allocation and scheduling in [6], we
could not provide any bounds on the quality of our results
due to the use of heuristics for allocation. In this paper
we use exact methods (a convex programming formula-
tion) for allocation and have developed theoretical bounds
on the quality of our results. Another important di�erence
between our previous work and this paper is that the cost
models we use here for data transfer are considerably more
accurate. A �nal di�erence is that the results presented
here are based on real programs whereas our previous re-
sults were based on synthetic benchmarks.

In the next two sections we discuss our allocation and
scheduling algorithms. We then present the processing and
data transfer cost models used in Section 4. Theoretical
results that discuss the optimality of our algorithms are in
Section 5. Section 6 provides preliminary results obtained
using our algorithms.

2. MDG ALLOCATION ALGORITHM

We �rst consider the problem of allocation of processors
to the nodes of a given MDG. After the allocation is carried
out using this algorithm, the MDG is ready to be scheduled
using the algorithm described in the next section.

For the purposes of allocation and scheduling, we as-
sume the given MDG has n nodes numbered consecutively
from 1 to n. In addition, node 1 is called START and node
n is called STOP. START precedes all nodes and STOP
succeeds all nodes, either directly or indirectly. Intuitively,
these correspond to the notion of FORK and JOIN nodes
in the execution graph of a parallel program. These nodes
could either be existing nodes or dummy nodes created for
convenience.

To obtain an optimum solution to the allocation prob-
lem for a given MDG and a given p processor target sys-
tem, we solve:

minimize �, where:

� = max(Ap; Cp)
Ap = 1

p
�
Pn

i=1
Ti � pi

Cp = yn

yi = maxm2PREDi
(ym + tDmi) + Ti

Ti = (
P

m2PREDi

tRmi + tCi +
P

n2SUCCi

tSin)

tmi
R

t
S
in

t
C
i

t
R
in

tin
D

Ti

tmi
S

tmi
D

iy

ym
PRED

SUCC

where

1. pi represents the number of processors used by the
ith node.

2. tCi is the processing cost of the loop corresponding to
node i and is a function of pi.

3. tRmi represents the time required at node i to process
the messages it receives from predecessor node m (re-
ceiving cost component of data transfer). tDmi repre-
sents the network delay required between the comple-
tion of node i and the start of node m (network cost
component of data transfer, weight of edge between
nodes m and i). tRin represents the time required
at node i to process messages it sends to successor
node n (sending cost component of data transfer).
All these quantities are functions of pi and pj.

4. PREDi and SUCCi are the sets of predecessor and
successor nodes of node i in the given MDG, respec-
tively.

To appear in the Proceedings of the International Conference on Parallel Processing '94 4

5. Ti is the total time required to process node i (weight
of node i).

6. yi is the �nish time of the ith node.

7. � is the Optimum Finish Time obtainable for the
execution of the program corresponding to the given
MDG.

8. Ap is also called the Average Finish Time for the case
when nodes use up to p processors each. To better
understand the idea behind using the average �nish
time, consider a quantity called processor-time area
for a node. This is the product of time taken for
executing a node and the number of processors it uses.
If we sum the processor-time areas for all nodes in
the MDG, this will represent the minimum processor-
time area requirement for the MDG. Another way of
saying the same thing is that � must be at least the
same as the average �nish time which represents the
sum of processor-time areas of all the nodes in the
MDG averaged over p.

9. Cp is called the Critical Path Time for the case when
nodes use up to p processors each. Since the criti-
cal path is the longest in the MDG, it represents the
shortest possible time in which we can �nish execut-
ing the MDG. This implies � must be at least the
same as the critical path time.

The free variables in this formulation are the pi's, with
1 � pi � p81 � i � n.

Our formulation relies on the theory of Convex Func-
tions described in [19] and the theory of Posynomial Func-
tions described in [20]. We are unable to provide any de-
tails of these topics here due to space constraints. Basi-
cally, using the research on convex functions and posyno-
mial functions, we can show that our formulation is equiva-
lent to a Convex Programming Formulation if the following
two conditions hold:

1. tDij , t
R
ij , t

S
ij, and tCi can all be represented by posyno-

mial functions of the free variables.

2. tRij �pj, t
S
ij �pi and t

C
i �pi are also posynomial functions

of the free variables.

Later, in Section 4, we present cost functions to repre-
sent the quantities tDij , t

R
ij, t

S
ij, and tCi that satisfy these

conditions. We also demonstrate the accuracy of these
functions.

The discussion above implies that in practice, we can
construct a formulation equivalent to a convex program-
ming formulation for allocation, and, therefore, obtain a
unique minimum value for �. The allocation that corre-
sponds to this value will be an optimum allocation for the
given MDG. This method of allocation inherently assumes
the existence of a perfect scheduler, i.e. one that can pro-
duce a schedule which �nishes the program in � time units.
In practice, producing such a schedule is an NP-Complete
problem [13]. Therefore, we use a scheduler as described
in the next section which might produce a �nish time dif-
ferent from �. As we shall show in Section 5, we have
quanti�ed this deviation.

3. MDG SCHEDULING ALGORITHM

To schedule a given MDG with processor allocation
done according to the method described in the previous

section, we use an algorithm called the Prioritized Schedul-
ing Algorithm (PSA). The steps involved in the PSA are:

1. The processor allocation produced by the convex pro-
gramming formulation will be a set of positive real
numbers in the general case; however, we cannot al-
locate processors in this manner on a real system. In
this step we round o� the allocated processors for all
the nodes to the nearest power of two. This is done to
make the �nal code generation very easy. The results
we obtain in Section 6 will show that this does not
result in much loss in practice. We refer to this step
in the sections that follow as the rounding-o� step.

2. The rounded-o� processor allocation for the MDG is
then modi�ed to impose a bound (PB) on the num-
ber of processors used by any node. If the ith node
uses pi processors and pi > PB, pi is reduced to PB,
else it is left unchanged. It can be seen that PB has
to be a power of two or else we will have to round o�
again and that may lead to a violation of the bound.
The value of PB to be used is determined using The-
orem 3, which is discussed in Section 5. We refer to
this step in the sections that follow as the bounding
step.

3. Since the processor allocation for the MDG may have
been changed from the value produced by the allo-
cation step, we need to recompute the weights of the
nodes and the edges of the MDG based on the new al-
location. Next, we place the node START on a queue
called the ready queue and mark its Earliest Start
Time (EST) as 0.

4. In this step, we pick a node from the ready queue that
has the lowest possible EST . We then check to see
the time at which the processor requirement of this
node can be met, i.e., the time at which the required
processors will be done with the node(s) they are cur-
rently processing and can accept another node. This
is called the Processor Satisfaction Time (PST). If
PST � EST , the node can be scheduled at PST ;
else, it can be scheduled only at EST . It must be
noted that there will be some idle time in the lat-
ter case since the required processors are available
but not used. However, the scheduler is not forcing
idleness; it simply does not have any other node to
schedule since we have picked the node with the low-
est EST .

5. If the node just scheduled is the STOP node, the
scheduler is terminated; else, we go to the next step.

6. After scheduling the node, we now check to see if any
of its successors have all their predecessors scheduled,
i.e. have all precedence constraints satis�ed. If so, we
compute the EST for those nodes based on the node
and edge weights of the MDG and the schedule built
so far. Such nodes are then placed in the ready queue.

7. Steps are repeated starting at Step 4.

The �nish time of the STOP node based on the schedule
is the predicted �nish time of the program.

The scheduling algorithm described above is a variant
of the popular List Scheduling Algorithm (LSA) which has
been used for example, by Liu in [21], by Garey, Gra-
ham and Johnson in [22], by Wang and Cheng in [23],

To appear in the Proceedings of the International Conference on Parallel Processing '94 5

Node Name � (%) � (mS)
Matrix Addition (64x64) 6.7 3.73

Matrix Multiply (64x64) 12.1 298.47

Table 1: Parameters for Processing Cost Function

by Belkhale and Banerjee in [18], by Turek, Wolf and Yu
in [24], and, by Ramaswamy and Banerjee in [6]. It must
be noted that some of the mentioned researchers also use
variants of the LSA. We call it the PSA because of the im-
plicit prioritization in Step 4 where a node with the lowest
EST is picked even though other nodes may be ready for
scheduling.

In the case where the number of processors used by any
node is bounded, the PSA is shown to be within a factor
of the optimum in Theorem 1 in Section 5. While similar
results have been shown in the references mentioned above
when there are no data transfer costs, our result is unique
in that it takes into account these costs. In fact, it is the
�rst such result to be derived.

4. MATHEMATICAL COST MODELS

This section deals with the important aspect of choos-
ing appropriate functions to represent the processing and
data transfer costs involved in an MDG. The cost functions
we choose have to satisfy two criteria, �rst, they have to
be posynomial functions, and, second, they have to be ac-
curate. Due to lack of space, we are unable to prove here
that these functions are indeed posynomials. However, we
establish the more important fact that they are indeed ac-
curate.

The processing cost function we use is an often used
model. The data transfer cost functions on the other hand
are new and have been derived by us. Again, the lack
of space prevents us from giving a detailed derivation of
these functions. We have tried to give a avor of the ideas
behind the derivations.
Processing Cost Model

For the processing cost model, we use Amdahl's law by
which the execution time of the loop corresponding to the
ith node (tCi) as a function of the number of processors it
uses (pi) is given by:

t
C
i = (�i +

1� �i

pi
) � �i (1)

where �i is the execution time of the loop on a single pro-
cessor and �i is the fraction of the loop that has to be
executed serially.

Lemma 1 tCi is a posynomial function w.r.t. pi.

Proof : Omitted due to lack of space
It must be noted that the value of the parameter �i

need not necessarily be a constant. It may be a function
of the number of processors used or the problem size. As
long as it assumes a form that ensures both tCi and tCi � pi
are posynomial functions with respect to pi, our methods
are applicable.

In order to evaluate the suitability of the form of our
function, we performed the following experiment on the

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

10 20 30 40 50 60

E
x
e
c
u
ti

o
n
 T

im
e
 (

S
)

Processors Used

Matrix Add

Actual
Predict

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10 20 30 40 50 60

E
x
e
c
u
ti

o
n
 T

im
e
 (

S
)

Processors Used

Matrix Multiply

Actual
Predict

Figure 3: Actual versus Predicted Costs for Processing

CM�5. We �rst measured the cost of two of the loops used
in our test programs, Matrix Multiply and Matrix Add, as
a function of the number of processors used by them. We
then used linear regression to determine the values of �
and � for each loop such that the costs predicted using
our posynomial function �t the measured costs as best as
possible. The results we obtained for the two loops are
shown in Table 1. We have also shown the close �t of
actual and predicted costs by plotting these together for
the two loops in Figure 3. This �gure clearly shows that
the form we have chosen for the processing cost function
is very suitable.

Data Transfer Cost Model

Here we consider the cost of transferring an array of
data elements between two nodes of the MDG involving pi
and pj processors at the sending and receiving ends respec-
tively. For modeling such a transfer, we assume that the
array is distributed evenly across the pi sending proces-
sors initially, and across the pj receiving processors �nally.
This is a valid assumption for the realm of regular com-
putations that we are dealing with. The other assumption
we make is that it is distributed along only one of its di-
mensions in a blocked manner. This assumption makes
the model simple to construct and understand and does
not necessarily limit its scope. Many real programs re-
quire only such distributions for good performance. For
other programs more general distributions may be needed
for optimal performance. Keeping this in mind, we are in
the process of extending our cost functions.

In considering costs for any type of array transfer from
node i to node j, we have already seen that there will
be three basic components : a sending component tSij, a

network component tDij, and, a receiving component tRij .

Again, we have seen that tSij is accounted for in the weight

of node i, tDij is taken to be the weight of the edge joining

node i and node j, and, tRij is accounted for in the weight

of node j. The reason for doing this is that tS and tR

require processor involvement, whereas tD does not.
For the programs we use as test cases, we deal with the

transfer of 2 dimensional arrays. With the assumptions
about distributions in mind, we can see that there are two
possible ways in which such an array can be distributed;
all processors sharing rows of the array equally or all pro-

To appear in the Proceedings of the International Conference on Parallel Processing '94 6

SOURCE DISTRIBUTION TARGET DISTRIBUTION COMMUNICATION PATTERNS

ROW_ROW

COL_COL

ROW_COL

COL_ROW

TYPE

Figure 4: Inter Node Data Transfer Patterns

cessors sharing columns of the array equally. For example,
if there were a 10�10 array to be distributed across 5 pro-
cessors, we could either give them all 2 rows each or give
them all 2 columns each. The types of data transfer that
could occur between two nodes in the MDG for such arrays
are illustrated in Figure 4. This �gure assumes both nodes
use the same number of processors for ease of illustration.
In the general case, they could be di�erent.

The �rst two cases in Figure 4 are called ROW2ROW
and COL2COL and occur when the array is distributed
along the same dimension in both sending and receiving
processors. It can be seen that these cases are identical
with respect to the time taken for transfer. We therefore
refer to these cases jointly as the 1D type transfer. The
cost components for the 1D case are given by:

t
S
ij =

max(pi; pj)

pi
� tss + L �

1

pi
� tps

t
D
ij = L �

1

max(pi; pj)
� tn (2)

t
R
ij =

max(pi; pj)

pj
� tsr + L �

1

pj
� tpr

where, L is the length (in bytes) of the array being trans-
ferred, tss, tps are the startup and per byte cost for sending
messages, tn is the network delay per message byte, and,
tsr, tpr are the startup and per byte cost for receiving
messages. In deriving these costs, we have assumed that
network costs are the same for all processor pairs. This
assumption is valid for most of the current machines.

The other two cases in Figure 4 (ROW2COL and
COL2ROW) occur when the array distribution is along
distinct dimensions in the sending and receiving proces-
sors. Again, both cases are identical with respect to mes-
sage transfer time. We refer to these cases jointly as the
2D type transfer. The cost components for this type are
given by:

tss tps tsr tpr tn

(�Secs) (nSecs) (�Secs) (nSecs) (nSecs)
777.56 486.98 465.58 426.25 0

Table 2: Parameters for Data Transfer Cost Functions

t
S
ij = pj � tss+ L �

1

pi
� tps

t
D
ij = L �

1

pi � pj
� tn (3)

t
S
ij = pi � tsr + L �

1

pj
� tpr

where, the various parameters have the same meaning as
mentioned before.

The di�erences in the 1D and 2D types of transfers arise
due to di�erences in the number and size of the messages
being sent between processors of the sending and receiving
nodes. However, the net amount of data transferred for
any given array has to be the same in both cases and is
dependent on the size of the array.

In all the expressions above, we have omitted some de-
tails in order to make them more understandable. First,
we have considered only one array being transferred in all
the cost functions. In practice, this may not be true, i.e.
multiple arrays may be transferred. Second, there may
be both type of transfers occurring between a given pair
of nodes in the MDGs, for example, one array may need
a ROW2ROW type transfer while another may require a
ROW2COL type transfer. It is easy to extend our func-
tions to account for these e�ects. Our actual implementa-
tion uses an extended form of these functions.

Lemma 2 tSij, t
R
ij and tDij are all posynomial functions

w.r.t. pi and pj for both 1D, and, 2D cases.

Proof : Omitted due to lack of space
In order to evaluate the form of our data transfer

cost functions, we performed another experiment on the
CM � 5. First, we measured costs of transferring arrays
using our routines between a varying number of sending
and receiving processors. We then used linear regression
to determine values of the parameters required in our func-
tions such that the costs predicted using these functions
�t the actual costs as best as possible. The results we
obtained are shown in Table 2. We have also shown the
close �t of actual and predicted costs by plotting these to-
gether for the two types of transfer in Figure 5. This �gure
again clearly shows the suitability of the form of our cost
functions.

There is one point to note in Table 2, viz., tn being 0
for transfers. This is because of the way communication
calls are implemented in the CM � 5. In this machine, if
a receive is called at a processor after the corresponding
send has been completed, the data is actually transferred
between processors at the time that the receive is called
and not after the send is completed. The network cost per
byte is therefore included in the processing cost per byte
for a receive. While building the schedule for execution of
the program using our methods, we always have receives

To appear in the Proceedings of the International Conference on Parallel Processing '94 7

0.002

0.004

0.006

0.008

0.01

0.012

0.014

1 2 3 4 5 6 7 8

T
r
a
n
s
f
e
r
 T

im
e
 (

S
)

Sending Processors

1D Transfer with 8 Receivers, 64x64 Array

Actual
Predict

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

1 2 3 4 5 6 7 8

T
r
a
n
s
f
e
r
 T

im
e
 (

S
)

Sending Processors

2D Transfer with 8 Receivers, 64x64 Array

Actual
Predict

Figure 5: Actual versus Predicted Costs for Data
Transfer

being called after the corresponding sends are completed.
This occurs because predecessors of a node execute com-
pletely before the node is scheduled.

Finally, we must point out again that the approach we
use for calculating parameters of the cost functions is sim-
ilar to the one used by Balasundaram et. al. in [10]. The
approach they use is called the Training Sets approach and
involves running a set of programs on the target machine
to perform measurements and then calculate the values of
parameters used in their models.

5. OPTIMALITY ANALYSIS

While developing the Allocation algorithm, we assumed
the existence of a perfect scheduling algorithm. Since
the actual scheduling algorithm we use is not perfect, our
methods may not achieve the optimum value in practice.
The theoretical results that follow quantify the deviations
of our algorithms from the best possible solution.

In deriving these theorems, we have assumed that the
underlying computation and communication cost functions
are of the form discussed in the previous section. As we
have already shown in that section, this assumption is jus-
ti�ed.

We present below a de�nition of a term used in the
proof of the theorem that follows.

De�nition 1 Area of Useful Work

When a schedule S is used for a given MDG on a given
multicomputer system, the area of useful work (Ws) done
by it is de�ned as:

Ws =
X

i=1;nb

t
i
busy � p

i (4)

where, tibusy is the ith interval during which a constant

number (pi) processors are kept busy by the schedule. The
quantity nb denotes the total number of such intervals.

Theorem 1 Assume we are given an MDG with n nodes

and a processor allocation such that no node uses more
than PB processors. Let Tpsa denote the value of the �n-

ish time obtained by scheduling this MDG on a given p

processor system using the PSA algorithm and let TPBopt

denote the value obtained using the best possible scheduler.

The relationship between these quantities is given by:

Tpsa � (1 +
p

p� PB + 1
) � TPBopt (5)

Proof:
In the best case the area of useful work done by the op-

timal scheduling algorithm can be p �TPBopt . This is because
it can, at best, keep all p processors in the system for the
entire length of the schedule it produces. If the work done
by the PSA is denoted by Wpsa, we can write:

Wpsa � p � T
PB
opt (6)

If any node uses at most PB processors, we can say
that the PSA being unable to schedule the next node im-
mediately means it has at least p�PB+1 processors busy
currently. However, as we shall see later, this will not al-
ways be true. If the duration when this is not true is �
(in the worst case), we can write (using the de�nition of
useful work):

Wpsa � (Tpsa ��) � (p� PB + 1) +W� (7)

Here we are assuming W� is the worst case useful work
(if any) done during the periods when less than p�PB+1
processors are busy.

If greater than PB processors are idle, it means the
PSA algorithm has a case when PST < EST for all the
unscheduled nodes (refer to Section 3). This implies that
every other unexecuted node is dependent on the currently
ongoing events which may be a node execution or a edge
delay in progress. It is also clear that such a situation
could occur many times in the building up of the schedule.

Let us call a situation such as the one described above
an Idling Situation (IS). We now contend that one or more
of the events involved in the ith such IS (ISi) control each
of the the events of every subsequent IS (ISj for all j >
i). If this is not true, it means we can �nd some node
execution or edge delay in an ISk ; k > i such that no event
in ISi controls it. In such a case this node execution or
edge delay would have been scheduled concurrently with
the events in ISi, which means it cannot belong to ISk
which is a contradiction. Therefore our contention is true.

The implication of this dependence between events in
IS's is that they must form a set of paths (partial or com-
plete) in the given MDG. We know that the length of any
path in the MDG is bounded by the length of the critical
path. Therefore, in the worst case, we can see that the
total duration for which IS's can occur in the schedule is
the length of the critical path. Since TPBopt must be at least
the length of the critical path, we can write:

� � T
PB
opt (8)

It can be seen that in the worst case, no processors
will be busy during any IS (all events are edge delays),
implying no work is done. This would give us W� � 0.
Using this inequality and Equation 8 in Equation 7, we
have:

Wpsa � (Tpsa � T
PB
opt) � (p� PB + 1) (9)

From Equations 6 and 9, we have:

To appear in the Proceedings of the International Conference on Parallel Processing '94 8

(Tpsa � T
PB
opt) � (p� PB + 1) � Wpsa � T

PB
opt � p

) Tpsa � (1 +
p

p� PB + 1
) � TPBopt (10)

which is the required result 2.

Theorem 2 In the �rst two steps of the PSA we modify
the processor allocation produced by the convex program-

ming formulation of Section 2. If TPBopt denotes the value
of the �nish time obtained for the given MDG on a p pro-

cessor system with this modi�ed allocation using the best
possible scheduler, we have:

T
PB
opt � (

3

2
)2 � (

p

PB
)2 �� (11)

where, � is the solution obtained from the convex program-

ming formulation.

Proof: We �rst look at the e�ect of increasing or decreas-
ing the number of processors used by the nodes of the
MDG on the value of its average �nish time and critical
path time. This can be seen from the de�nition of these
quantities in Section 2 and the cost functions of Section 4.

From this information, we can see that if we increase the
allocation to any node i from pi to p

0

i, its contribution to

the average can increase by a factor of no more than (
p0

i

pi
)2.

This factor comes about because of the startup component
in tRij and tSij. On the other hand, it is also evident that
decreasing the processor allocation for any node will only
decrease the value of the average.

Again, by looking closely at the material in the sec-
tions mentioned, we see that increasing the allocation to
any node i from pi to p0i will increase the critical path by

a factor no more than
p0

i

pi
. This is because of the startup

component in tRij and t
S
ij . Similarly, decreasing the proces-

sor allocation of a node i from pi to p
0

i could also increase
the critical path. This time the factor may be up to (pi

p0

i

)2.

This is because of the structure of tDij .
Having seen this, we now examine the e�ect of the ini-

tial steps of the PSA on the values of the average and
critical path produced by the convex programming formu-
lation (Ap and Cp).

In order to make our allocation practical, we �rst
rounded o� the processor allocation in Step 1 of the PSA.
Since we round o� to the nearest power of 2, it can be
shown that the processor allocation for the ith node is
changed at most by 1

3
of its original value, i.e., pi can de-

crease to 2�pi
3

or increase to 4�pi
3

in the worst case. Let
the value of the average �nish time and critical path time
of the MDG thus allocated be denoted by ARO and CRO
respectively. From the discussion on the e�ect of increase
or decrease of processor allocation , we can write:

ARO � (
4

3
)2 � Ap

CRO � (
3

2
)2 � Cp (12)

After performing the round-o�, we imposed a bound
on the number of processors used by each node in Step 2.
The value of PB we use is assumed to be a power of 2. If

not, we would have to round o� again and might end up
making some pi's more that PB, which renders the bound
useless. The net e�ect of this step is of a decrease in the
processor allocation of some nodes, and no change in the
processor allocation of others. The worst case decrease for
any node is clearly from p to PB. If APB is the value of
the average �nish time and CPB is the value of the critical
path time for this bounded allocation, using the discussion
on e�ects of processor increase or decrease, we have:

APB � ARO

CPB � (
p

PB
)2 �CRO (13)

Since TPBopt denotes the time obtained by using the best
scheduler on this rounded-o� and bounded processor allo-
cation, we can write:

T
PB
opt = max(APB; CPB) (14)

Using Equations 12 and 13 in the equation above we
have:

T
PB
opt � max((

4

3
)2 �Ap; (

3

2
)2 � (

p

PB
)2 �Cp)

) T
PB
opt � (

3

2
)2 � (

p

PB
)2 �max(Ap; Cp) (15)

From the equation above and the de�nition of � in Sec-
tion 2, we have:

T
PB
opt � (

3

2
)2 � (

p

PB
)2 �� (16)

which is the required result 2.
Intuitively, this theorem summarizes the e�ect of our

rounding o� and bounding steps. It tells us how much the
solution can deviate from the optimal even if we used the
best possible scheduler after having applied these steps. In
the next theorem, we summarize all e�ects, i.e., using the
PSA to schedule after the round-o� and bounding steps.

Theorem 3 Let Tpsa denotes the value of the �nish time

obtained for a processor allocation using the convex pro-
gramming formulation of Section 2 and the PSA. Then,

we have:

Tpsa � (1 +
p

p� PB + 1
) � (

3

2
)2 � (

p

PB
)2� (17)

where, � is the solution obtained from the convex program-

ming formulation.

Proof: This result is a direct consequence of the previous
theorems (1 and 2) 2.

Corollary 1 The power of 2 that minimizes the value of

the following expression is the optimum value of PB to use
for the PSA:

(1 +
p

p� PB + 1
) � (

3

2
)2 � (

p

PB
)2 (18)

Proof: From Theorem 3 it is clear that the expression
to be minimized is the one given above.

As we have discussed in Section 3, we must choose a PB
that is a power of 2 or we may end up with an infeasible
solution. A feasible solution is one in which the processor
allocation for any node is both bounded by PB as well as
a power of 2.

Hence, the result 2.

To appear in the Proceedings of the International Conference on Parallel Processing '94 9

+ *

COMPLEX MATRIX MULTIPLY STRASSEN MATRIX MULTIPLY

+ +

MATRIX ADD/SUBTRACT MATRIX MULTIPLY

*

INITIALIZATION

START

* * * * * * *

+ + + + + + + + + +

+++++

+ +

START

INITIALIZATION

+

STOPSTOP

Figure 6: Benchmark MDGs Used

MATRIX

INITIALIZATION

COMPUTATION

PROCESSING

COMMUNICATION

PROCESSING

TIME

PROCESSOR

4 3 2 1

(4 PROCESSORS)

MATRIX

ADD/SUBTRACT

MULTIPLY

(2 PROCESSORS)

(1 PROCESSOR)

Figure 7: Allocation and Scheduling for Complex Ma-
trix Multiply

6. IMPLEMENTATION AND RESULTS

The allocation and scheduling algorithms proposed
above were tried out on two MDGs. The aim of this
exercise was to try and see the e�ectiveness of these al-
gorithms as compared to naive schemes for these graphs.
The MDGs were hand generated after studying the pro-
grams they correspond to and are shown in Figure 6. Our
testbed machine was a 64 Node Thinking Machines CM-5.

The �rst MDG corresponds to multiplication of two
complex matrices. It has few nodes and is relatively sim-
ple. The other MDG we used corresponds to the Strassen's
algorithm for matrix multiply. This is a more complex
MDG with many more nodes than the previous one. The
book by Press et. al. [25] describes Strassen's algorithm in
detail and explains its usefulness. There are three basic
types of loops for both MDGs, viz., Matrix Initialization,
Matrix Multiplication and Matrix Addition. All the data
transfers are of the 1D type in both algorithms. As we have
seen in Section 4, all the parameters for the cost functions

Complex Matrix Multiply

SPMD
MPMD

S
p

ee
d

u
p

Processors

0

5

10

15

20

25

30

16 32 64

Complex Matrix Multiply

SPMD
MPMD

E
ff

ic
ie

n
c
y

Processors

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

16 32 64

Strassen’s Matrix Multiply

SPMD
MPMD

S
p

ee
d

u
p

Processors

0

5

10

15

20

25

30

16 32 64

Strassen’s Matrix Multiply

SPMD
MPMD

E
ff

ic
ie

n
c
y

Processors

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

16 32 64

Figure 8: Speedup and E�ciency Comparison for
SPMD and MPMD versions of Test Programs

corresponding to the routines and the transfers have been
obtained for the CM-5.

Having obtained the MDGs, we used our allocation and
scheduling algorithms to obtain the best allocation and
scheduling scheme to be used for system sizes of 16, 32
and 64 processors. In Figure 7 we show an example of
the allocation and schedule obtained for Complex Matrix
Multiply on a 4 processor system. Using these allocation
and scheduling schemes, we hand generated an MPMD
program for the target machine (64 node CM-5). The
SPMD versions corresponding to these MPMD programs
(All nodes in the MDG use all p processors) were also hand
coded. The MPMD and SPMD versions were executed and
timed. The speedups and execution e�ciencies obtained
are shown in Figure 8. From this �gure it can be seen
that speedups obtained for the MPMD programs are much
higher as compared to SPMD versions, especially for larger
systems.

Another aspect of interest is the accuracy of our models
for processing and data transfer costs. In order to check
this we have plotted the predicted and measured �nish
times of the two test programs for di�erent system sizes
in Figure 9. The �gure shows that the two quantities are
fairly close to each other, which means our cost models are
fairly accurate in practice.

Finally, recall Section 5, where we proved theoretical
bounds on the deviation of the quantity Tpsa from the
quantity �. We wanted to check what the deviation was in
practice. For this, we compared the values of the quantities

To appear in the Proceedings of the International Conference on Parallel Processing '94 10

Complex Matrix Multiply

MPMD Actual

MPMD Predict

E
x
e
c
u

ti
o
n

 T
im

e

Processors

0

0.2

0.4

0.6

0.8

1

1.2

1.4

16 32 64

Strassen’s Matrix Multiply

MPMD Actual

MPMD Predict

E
x
e
c
u

ti
o
n

 T
im

e

Processors

0

0.2

0.4

0.6

0.8

1

1.2

1.4

16 32 64

Figure 9: Predicted versus Actual Execution Times of
Test Programs (Normalized to Actual Times)

Program System � Tpsa Percent
Name Size (S) (S) Change

Complex Matrix 16 0.117 0.114 -2.6
Multiply 32 0.075 0.074 -1.3
(64 � 64) 64 0.054 0.055 -1.9

Strassen's Matrix 16 0.125 0.136 +8.8
Multiply 32 0.222 0.236 +6.3

(128 � 128) 64 0.077 0.085 +15.6

Table 3: Deviation of Tpsa from � for Test Programs

Tpsa and � as produced by our allocation and scheduler
for the two test programs for various system sizes. This is
presented in Table 3. The table shows that the deviation
is very small in practice, i.e. we are able to achieve near
optimal solutions using our methods.

REFERENCES

[1] M. Gupta and P. Banerjee, \Demonstration of Automatic
Data Partitioning Techniques for Parallelizing Compilers
on Multicomputers," IEEE Transactions on Parallel and
Distributed Computing, pp. 179{193, March 1992.

[2] M. Gupta, Automatic Data Partitioning on Distributed
Memory Multicomputers. PhD thesis, University of Illinois
at Urbana-Champaign, 1992.

[3] E. Su, D. Palermo, and P. Banerjee, \Automating Paral-
lelization of Regular Computations for Distributed Mem-
ory Machines in the PARADIGM Compiler," in The Pro-
ceedings of the International Conference on Parallel Pro-
cessing, pp. II:30{38, 1993.

[4] E. Su, D. Palermo, and P. Banerjee, \ProcessorTagged De-
scriptors: A Data Structure for Compiling for Distributed
Memory Multicomputers," in to appear in the Proceed-
ings of the Parallel Architectures and Compiler Technology
Conference, 1994.

[5] D. Palermo, E. Su, J. Chandy, and P. Banerjee, \Commu-
nication Optimizations for DistributedMemory Multicom-
puters used in the PARADIGM Compiler," in to appear in
the Proceedings of the International Conference on Paral-
lel Processing, 1994.

[6] S. Ramaswamy and P. Banerjee, \Processor Allocation
and Scheduling of Macro Dataow Graphs on Distributed

Memory Multicomputers by the PARADIGM Compiler,"
in Proceedings of the International Conference on Parallel
Processing, 1993.

[7] A. Lain and P. Banerjee, \Techniques to Overlap Compu-
tation and Communication in Irregular Iterative Applica-
tions," in to appear in the Proceedings of the International
Conference on Supercomputing, 1994.

[8] G. N. S. Prasanna and A. Agarwal, \Compile-time Tech-
niques for Processor Allocation in Macro Dataow Graphs
for Multiprocessors," in Proceedings of the International
Conference on Parallel Processing, pp. 279{283, 1992.

[9] M. Girkar and C. D. Polychronopoulos, \Automatic Ex-
traction of Functional Parallelism from Ordinary Pro-
grams," IEEE Transactions on Parallel and Distributed
Computing, pp. 166{178, March 1992.

[10] V. Balasundaram,G. Fox, K. Kennedy, and U. Kremer, \A
Static Performance Estimator to Guide Data Partitioning
Decisions," in Proceedings of the Third ACM SIGPLAN
Symposium on Principles and Practice of Parallel Pro-
gramming, 1991.

[11] M. Gupta and P. Banerjee, \Compile-time Estimation of
Communication Costs on Multicomputers," in Interna-
tional Parallel Processing Symposium, 1992.

[12] J. K. Lenstra and A. H. G. R. Kan, \Complexity of
Schedulingunder PrecedenceConstraints,"Operations Re-
search, pp. 22{35, January 1978.

[13] M. R. Garey and D. S. Johnson, Computers and In-
tractability : A Guide to the Theory of NP-Completeness.
Bell Laboratories, 1979.

[14] V. Sarkar, Partitioning and Scheduling Parallel Programs
for Multiprocessors. MIT Press, 1989.

[15] T. Yang and A. Gerasoulis, \A Fast Static Scheduling
Algorithm for DAGs on an Unbounded Number of Pro-
cessors," in Proceedings of Supercomputing, pp. 633{642,
1991.

[16] T. Yang and A. Gerasoulis, \A Parallel Programming
Tool for Scheduling on Distributed Memory Multiproces-
sors," in Scalable High Performance Computing Confer-
ence, pp. 350{357, 1992.

[17] K. P. Belkhale and P. Banerjee, \Approximate Algorithms
for the Partitionable Independent Task Scheduling Prob-
lem," in Proceedings of the International Conference on
Parallel Processing, pp. 72{75, 1990.

[18] K. P. Belkhale and P. Banerjee, \A Scheduling Algorithm
for ParallelizableDependent Tasks," in International Par-
allel Processing Symposium, pp. 500{506, 1991.

[19] D. G. Luenberger, Linear and Nonlinear Programming.
Addison-Wesley, 1984.

[20] J. Ecker, \Geometric Programming: Methods, Computa-
tions and Applications," SIAM Review, pp. 338{362, July
1980.

[21] C. L. Liu, Elements of Discrete Mathematics. McGraw-
Hill Book Company, 1986.

[22] M. R. Garey, R. L. Graham, and D. S. Johnson, \Perfor-
mance Guarantees for SchedulingAlgorithms,"Operations
Research, pp. 3{21, January 1978.

[23] Q. Wang and K. H. Cheng, \A Heuristic of Scheduling
Parallel Tasks and Its Analysis," SIAM Journal on Com-
puting, pp. 281{294, April 1992.

[24] J. W. Turek, J. and P. Yu, \Approximate Algorithms for
Scheduling Parallelizable Tasks," in Proceedings of the 4th
Annual Symposium on Parallel Algorithms and Architec-
tures, pp. 323{332, 1992.

[25] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling, Numerical Recipes in C : The Art of Scienti�c
Computing. Cambridge University Press, 1988.

